INSA 3BIM - ODE and Modelling Friday 13 Decembre 2019

Instructions

This form will be analyzed by optical reading, so please strictly respect the following rules:

- To check an answer, fill in the \square in black (■) by using a black pen;
- To correct an answer, erase the \square with white correcting fluid; there is no need to redo the \square;
- Do not write anything either in the header nor in margins;
- Symbol \& stands for multiple answers; note that the number of correct answers is indeterminate ($0,1,2, \ldots$). Absence of this sympbol means that the question has a unique correct answer.
Multiple choice questions have a null mean: correct answer $=1$ point ; no answer $=0$ point ; wrong answer to a question with n proposals $=-\frac{1}{n-1}$ points.

A private mémorandum hand-written on both sides of a page, A4 format, is allowed, as well as any type of calculator not connected to the Internet. The use of the smartphone is stricly forbidden.

Identity

Fill in empty fields below and encode your student number beside.

Last and first name:
Student number:

$\square \mathbf{0} \square \mathbf{0} \square \mathbf{0} \square \mathbf{0} \square \mathbf{0} \square \mathbf{0} \square \mathbf{0}$
$\square 1 \square \mathbf{1} \square \mathbf{1} \square \mathbf{1} \square \mathbf{1} \square \mathbf{1} \square \mathbf{1}$
$\square 2 \square 2 \square 2 \square 2 \square 2 \square 2 \square 2$
$\square 4 \square 4 \square 4 \square 4 \square 4 \square 4 \square 4$
$\square 5 \square 5 \square 5 \square 5 \square 5 \square 5 \square 5$
$\square 6 \square 6 \square 6 \square 6 \square 6 \square 6 \square 6$
$\square \mathbf{7} \square \mathbf{7} \square \mathbf{7} \square \mathbf{7} \square \mathbf{7} \square \mathbf{7} \square \mathbf{7}$

$\square 9 \square 9 \square 9 \square 9 \square 9 \square 9 \square 9$

Question 1 \& Among the following systems, which ones correspond to linear systems?
$\square\left\{\begin{array}{l}\dot{x}=x(1+2 y) \\ \dot{y}=y(1+3 x)\end{array}\right.$
$\square\left\{\begin{array}{l}\dot{x}=x-x^{2}-x y \\ \dot{y}=-y+x y\end{array}\right.$
$\square\left\{\begin{array}{l}\dot{x}=4 x-8 y \\ \dot{y}=3 x-4 y\end{array}\right.$
$\square\left\{\begin{array}{l}\dot{x}=x-y \\ \dot{y}=y-x\end{array}\right.$

Let consider dynamical system $\left(S_{1}\right) \dot{\mathbf{X}}=\mathbf{A X}$ with $\mathbf{X}=(x(t), y(t))$ and \mathbf{A} a sqaure matrix of dimension 2.

Question 2 \& Which condition(s) is(are) required to make system $\left(S_{1}\right)$ having a unique equilibrium point?A can be rendered diagonal\mathbf{A} is a transfer matrixA has a null eigenvalue
$\square \operatorname{det} \mathbf{A}=\mathbf{0}$$\operatorname{det} \mathbf{A} \neq \mathbf{0}$A is regular

Question 3 How writes the characteristic polynomial of matrix \mathbf{A} in $\left(S_{1}\right)$?$\lambda^{2}+\operatorname{tr}(\mathbf{A}) \lambda+\operatorname{det}(\mathbf{A})=\mathbf{0}$$\lambda^{2}-\operatorname{tr}(\mathbf{A}) \lambda-\operatorname{det}(\mathbf{A})=\mathbf{0}$$\lambda^{2}+\operatorname{tr}(\mathbf{A}) \lambda-\operatorname{det}(\mathbf{A})=\mathbf{0}$$\lambda^{2}-\operatorname{tr}(\mathbf{A}) \lambda+\operatorname{det}(\mathbf{A})=\mathbf{0}$

Question $4 \boldsymbol{\&}$ If system $\left(S_{1}\right)$ has a unique equilibrium point, when is it unstable?$\operatorname{det}(\mathbf{A})<\mathbf{0}$$\operatorname{tr}(\mathbf{A})<\mathbf{0}$$\operatorname{tr}(\mathbf{A})>0$$\operatorname{det}(\mathbf{A})>\mathbf{0}$$\Delta<0$$\Delta>0$

Question 5 If $\operatorname{det} \mathbf{A} \neq \mathbf{0}$ in system $\left(S_{1}\right)$, how writes the general solution for the initial condition X_{0} ?
$\square X(t)=X_{0} e^{t \mathbf{A}}$
$\square X(t)=e^{t \mathbf{A}} X_{0}$$X(t)=X_{0} e^{-t \mathbf{A}}$ $\square X(t)=e^{-t \mathbf{A}} X_{0}$

Question 6 Let $\mathbf{A}=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$. How writes $e^{t \mathbf{A}}$?
$\square\left(\begin{array}{cc}e^{t} & 0 \\ 0 & e^{-t}\end{array}\right)$
$\square\left(\begin{array}{cc}e^{t} & t e^{t} \\ 0 & e^{t}\end{array}\right)$
$\square\left(\begin{array}{cc}e^{-t} & 0 \\ 0 & e^{t}\end{array}\right)$
$\square e^{t}\left(\begin{array}{cc}\cos t & -\sin t \\ \sin t & \cos t\end{array}\right)$
Question $7 \quad$ Let $\left(S_{2}\right):\left\{\begin{array}{l}\dot{x}=4 x-8 y \\ \dot{y}=3 x-4 y\end{array}\right.$. What is the nature of the equilibrium point?Asymptotically stable starSaddle nodeUnstable spiralCenterAsymptotically stable nodeUnstable degenerated node

Question 8 \& Among the following matrices, which ones are in Jordan's format?
$\square\left(\begin{array}{ll}4 & -8 \\ 8 & -4\end{array}\right)$
$\square\left(\begin{array}{ll}4 & 0 \\ 1 & 4\end{array}\right)$
$\square\left(\begin{array}{cc}4 & -8 \\ 8 & 4\end{array}\right)$
$\square\left(\begin{array}{cc}-4 & 1 \\ 0 & -4\end{array}\right)$
$\square\left(\begin{array}{cc}4 & -8 \\ -8 & 4\end{array}\right)$
$\square\left(\begin{array}{ll}4 & -8 \\ 3 & -4\end{array}\right)$
Question 9 Let $\mathbf{A}=\left(\begin{array}{cc}-6 & 0 \\ 0 & 0\end{array}\right)$. What is the topological equivalence class of $\dot{\mathbf{X}}=\mathbf{A X}$?A fluxA valleyA crestA center

Let $\left(S_{3}\right):\left\{\begin{array}{l}\dot{x}=x-x^{2}-x y \\ \dot{y}=-y+x y\end{array} \quad\right.$ describing the dynamics of two interacting species.
Question 10 What is the type of ecological interaction that system $\left(S_{3}\right)$ is modelling?prey-predatorsymbiosiscompetitioncommensalism

Question 11 Give the equilibrium points of $\left(S_{3}\right)$.$\left(x_{1}^{*}, y_{1}^{*}\right)=(0,0)$ et $\left(x_{2}^{*}, y_{2}^{*}\right)=(0,1)$
$\square\left(x_{1}^{*}, y_{1}^{*}\right)=(1,0)$ et $\left(x_{2}^{*}, y_{2}^{*}\right)=(1,1)$$\left(x_{1}^{*}, y_{1}^{*}\right)=(0,0),\left(x_{2}^{*}, y_{2}^{*}\right)=(1,0)$
$\square\left(x_{1}^{*}, y_{1}^{*}\right)=(0,0)$ et $\left(x_{2}^{*}, y_{2}^{*}\right)=(1,-1)$

Question 12 How writes the jacobian matrix associated to $\left(S_{3}\right)$?
$\mathbf{A}=\left(\begin{array}{cc}1-2 x-y & -x \\ y & -1+x\end{array}\right)$
$\square \mathbf{A}=\left(\begin{array}{cc}y & -1+x \\ 1-2 x-y & -x\end{array}\right)$
$\square \mathbf{A}=\left(\begin{array}{cc}y & 1-2 x-y \\ -1+x & -x\end{array}\right)$
$\square \mathbf{A}=\left(\begin{array}{cc}1-2 x-y & y \\ -x & -1+x\end{array}\right)$

Question 13 How writes the jacobian matrix of $\left(S_{3}\right)$ at the equilibrium point $\left(x_{1}^{*}, y_{1}^{*}\right)$?
$\square \mathbf{A}_{1}^{*}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
$\mathbf{A}_{1}^{*}=\left(\begin{array}{cc}-2 & 0 \\ 0 & -1\end{array}\right)$
$\square \mathbf{A}_{1}^{*}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$\square \mathbf{A}_{1}^{*}=\left(\begin{array}{cc}-2 & 0 \\ 0 & 1\end{array}\right)$

Question 14 What is the nature of the equilibrium point $\left(x_{1}^{*}, y_{1}^{*}\right)$ de $\left(S_{3}\right)$?It is asymptotically stableIt is unstableThis is a saddle node
Question 15 Equilibrium point $\left(x_{2}^{*}, y_{2}^{*}\right)$ de $\left(S_{3}\right)$ is non hyperbolic.
True
False
Question 16 \& Among the following relationships, which ones are true?$x=r \cos \theta$ et $y=r \sin \theta$
$\square r^{2}=x^{2}-y^{2}$$\tan \theta=\frac{y}{x}$$x=r \sin \theta$ et $y=r \cos \theta$$\tan \theta=\frac{x}{y}$ $\square r^{2}=x^{2}+y^{2}$

Let $\left(S_{4}\right):\left\{\begin{array}{l}\dot{x}=x-x y \\ \dot{y}=-y+x y\end{array}\right.$.
Question $17 \boldsymbol{\&}$ The jacobian matrix at the equlibrium point origin in $\operatorname{system}\left(S_{4}\right)$:always corresponds to a saddle nodecorresponds to centersis the matrix of the linear part of $\left(S_{4}\right)$

Question 18 \& Which ones of the following functions is a first integral for $\left(S_{4}\right)$?
$\square H(x, y)=\frac{x^{2}}{y}-\ln x-\ln y$
$\square H(x, y)=-\ln x-\ln y+x+y$$H(x, y)=\ln (x y)-x y$$H(x, y)=\ln x+\ln y-x-y$

Question 19 \& Which condition(s) on $H(x, y)$ is(are) required to demonstrate the existence of centers in $\left(S_{4}\right)$?$H(x, y)$ is a continuous function$H(x, y)$ is an homeomorphism$H(x, y)$ has closed level curves$H(x, y)$ is constant along the trajectories

Question 20 The positive quadrant is positively invariant for $\left(S_{4}\right)$?\square Yes

