


#### Instructions

Ce formulaire sera analysé par lecture optique, je vous demande donc de respecter strictement les règles ci-dessous.

- Pour cocher une case, remplissez-la en noir (■) en utilisant un stylo à bille noir.
- Pour corriger, effacez la case avec du correcteur blanc; ne la retracez pas.
- N'inscrivez rien dans l'en-tête ni dans les marges des pages.
- Le symbole  $\clubsuit$  indique que le nombre de bonnes réponses proposées est indéterminé  $(0, 1, 2, \ldots)$ . Son absence signifie que la question a une unique bonne réponse.

Voici comment encoder une valeur numérique :

| ← Coder ici la partie entière    |
|----------------------------------|
|                                  |
| ← Coder ici la première décimale |
| Coder ici la seconde décimale    |

Les questions à choix multiples sont à espérance nulle : réponse juste = 1 point ; pas de réponse ou réponses incohérentes = 0 point ; réponse fausse à une question avec n propositions =  $-\frac{1}{n-1}$  points.

Vous pouvez vous munir d'une feuille A4 recto-verso manuscrite originale dont le contenu est à votre convenance, ainsi que de tout type de calculatrice **non connectée à un réseau de télécommunication**. L'usage du téléphone portable est strictement **interdit**.

## Identité Renseignez les champs ci-dessous et codez votre numéro d'étudiant ci-contre. Nom et Prénom : $\square 3$ $\square 3$ $\square 3$ $\square 3$ $\square 3$ $\square 3$ $\square 4$ Numéro d'étudiant : **5 5 5 5 5 5 5** $\square 6 \square 6 \square 6 \square 6 \square 6 \square 6 \square 6$ ......

# Exercice nº1

On veut résoudre le système (1)  $\dot{\mathbf{X}} = \mathbf{A}\mathbf{X}$  avec  $\mathbf{A} = \begin{pmatrix} 3 & 8 \\ -2 & -5 \end{pmatrix}$  et  $\mathbf{X}(\mathbf{t}) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$ .

Question 1 Le système (1) admet-il :

Une infinité de points d'équilibre?

Aucun point d'équilibre?

Un unique point d'équilibre?

Question 2 La matrice  $\mathbf{A}$  admet-elle :

Deux valeurs propres distinctes?

Deux valeurs propres complexes conjuguées?

Une valeur propre double?



Quelle est la nature du point d'équilibre (0,0)? Question 3

- ☐ Foyer instable
- ☐ Nœud asymptotiquement stable
- ☐ Étoile asymptotiquement stable
- ☐ Centre
- ☐ Nœud instable
- Nœud dégénéré asymptotiquement stable

Quelle est la forme de Jordan associée à A?

$$\square \mathbf{J} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\square \mathbf{J} = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$$

$$\square \mathbf{J} = \begin{pmatrix} -1 & -1 \\ 1 & -1 \end{pmatrix}$$

$$\Box \mathbf{J} = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix} \\
\Box \mathbf{J} = \begin{pmatrix} -1 & 1 \\ -1 & -1 \end{pmatrix}$$

Question 5 Quelle matrice de passage permet de mettre A sous sa forme de Jordan?

$$\square \mathbf{P} = \left( \begin{array}{cc} 1/2 & 2 \\ 0 & -1 \end{array} \right)$$

$$\square \mathbf{P} = \begin{pmatrix} 2 & 1/2 \\ 0 & -1 \end{pmatrix}$$

$$\square \mathbf{P} = \begin{pmatrix} 2 & 1/2 \\ -1 & 0 \end{pmatrix}$$

$$\square \mathbf{P} = \begin{pmatrix} 1/2 & 0 \\ 2 & -1 \end{pmatrix}$$

Question 6 Que vaut  $P^{-1}$ ?

$$\square \mathbf{P} = \left( \begin{array}{cc} 2 & 4 \\ 0 & 1/2 \end{array} \right)$$

$$\square \mathbf{P}^{-1} = \left( \begin{array}{cc} 0 & -1 \\ 2 & 4 \end{array} \right)$$

$$\square \mathbf{P} = \begin{pmatrix} 1/2 & 0 \\ 1 & -1/4 \end{pmatrix}$$

$$\square \mathbf{P} = \begin{pmatrix} 1/2 & 1/4 \\ 0 & 1 \end{pmatrix}$$

Question 7 Quel calcul faut-il faire pour passer de A à J?

- $\prod P^{-1}AP$
- $\square$  PAP $^{-1}$

Question 8 Que vaut  $e^{t\mathbf{J}}$ ?

$$\Box e^{t\mathbf{J}} = e^{-t} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\square \ e^{t\mathbf{J}} = e^{-t} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad \square \ e^{t\mathbf{J}} = e^{-t} \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix} \qquad \square \ e^{t\mathbf{J}} = e^{-t} \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$$

**Question 9** En déduire  $e^{t\mathbf{A}}$ .

$$\Box e^{t\mathbf{A}} = e^{-t} \begin{pmatrix} 1 & (5t+1)/2 \\ 0 & -t \end{pmatrix}$$
$$\Box e^{t\mathbf{A}} = e^{-t} \begin{pmatrix} 1 & (5t+8)/4 \\ 0 & -t/2 \end{pmatrix}$$

$$\Box e^{t\mathbf{A}} = e^{-t} \begin{pmatrix} 4t+1 & 8t \\ -2t & 1-4t \end{pmatrix}$$

$$\Box e^{t\mathbf{A}} = e^{-t} \begin{pmatrix} 1 & (5t+8)/4 \\ 0 & -t/2 \end{pmatrix}$$

$$\Box e^{t\mathbf{A}} = e^{-t} \begin{pmatrix} 4t + 1 & 8t \\ -2t & 1 - 4t \end{pmatrix}$$
$$\Box e^{t\mathbf{A}} = e^{-t} \begin{pmatrix} (2t + 1)/4 & -t/8 \\ 2t & (-2t + 1)/4 \end{pmatrix}$$

**Question 10** Soit  $K = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$  une condition initiale du système (1). Comment s'écrit sa solution générale?

$$\square \mathbf{X}(\mathbf{t}) = \mathbf{e}^{-\mathbf{t}} \begin{pmatrix} x_0 + (5t+8)y_0/4 \\ -ty_0/2 \end{pmatrix}$$

$$\Box \mathbf{X}(\mathbf{t}) = \mathbf{e}^{-\mathbf{t}} \begin{pmatrix} x_0 + (5t + 8)y_0/4 \\ -ty_0/2 \end{pmatrix} \qquad \Box \mathbf{X}(\mathbf{t}) = \mathbf{e}^{-\mathbf{t}} \begin{pmatrix} (4t + 1)x_0 + 8ty_0 \\ -2tx_0 + (1 - 4t)y_0 \end{pmatrix} \\
\Box \mathbf{X}(\mathbf{t}) = \mathbf{e}^{-\mathbf{t}} \begin{pmatrix} (2t + 1)x_0/4 + -ty_0/8 \\ 2tx_0 + (-2t + 1)y_0/4 \end{pmatrix} \qquad \Box \mathbf{X}(\mathbf{t}) = \mathbf{e}^{-\mathbf{t}} \begin{pmatrix} x_0 + (5t + 1)y_0/2 \\ -ty_0 \end{pmatrix}$$

$$\square \mathbf{X}(\mathbf{t}) = \mathbf{e}^{-\mathbf{t}} \begin{pmatrix} x_0 + (5t+1)y_0/2 \\ -ty_0 \end{pmatrix}$$

# Exercice nº2

On considère la fonction  $H(x,y) = \frac{x^2y}{2}$ .

Question 11 Quelle est l'allure des courbes de niveau de H?

(A)

(B)

(C)

(B)

(C)

**Question 12** La fonction H est-elle définie positive?

☐ Oui

□ Non

On considère le système dynamique suivant :

$$\begin{cases} \frac{dx(t)}{dt} = -x(t) \\ \frac{dy(t)}{dt} = 2y(t) \end{cases}$$
 (2)

Question 13 La fonction H est-elle une intégrale première pour le système (2)?

☐ Non

☐ Oui

Question 14 Quelle est la nature du point d'équilibre du système (2)?

☐ Noeud instable

☐ Étoile instable

☐ Foyer instable

☐ Point selle

**Question 15** En déduire  $\lim_{t\to +\infty} x(t)$  pour une condition initiale  $(x_0,y_0)$  telle que  $x_0>0$  et  $y_0>0$ .

 $\Box +\infty$ 

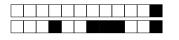
 $\square$  0

 $\Box +\infty$ 

**Question 16** En déduire  $\lim_{t\to +\infty} y(t)$  pour une condition initiale  $(x_0,y_0)$  telle que  $x_0>0$  et  $y_0>0$ .

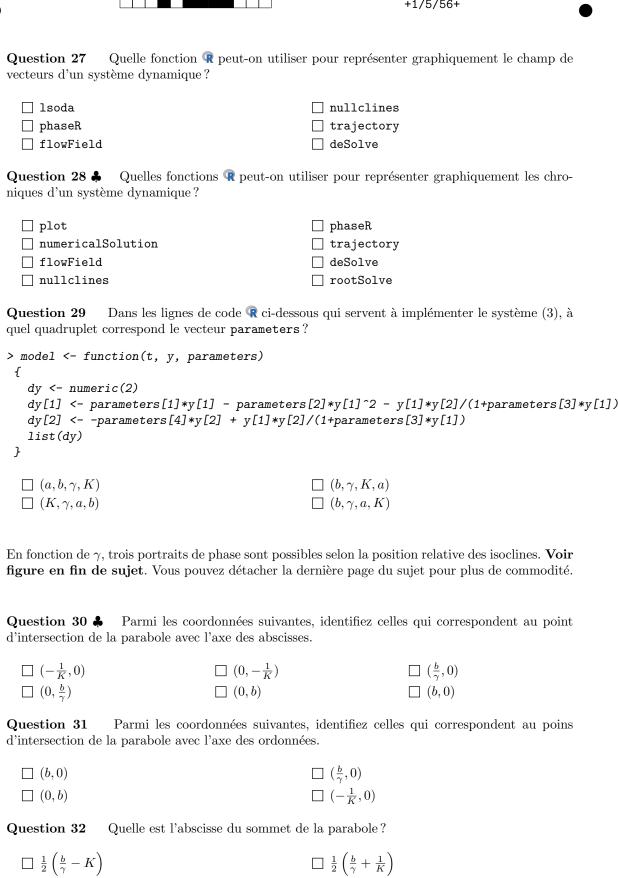
 $\Box +\infty$ 

 $\square$  0


 $\Box +\infty$ 

# Problème nº1

En 2004, Curry et collaborateurs <sup>1</sup> proposent le modèle suivant pour décrire une interaction entre deux espèces :


$$\begin{cases}
\dot{x} = bx - \gamma (x)^2 - \frac{xy}{1+Kx} \\
\dot{y} = -ay + \frac{xy}{1+Kx}
\end{cases}$$
(3)

<sup>1.</sup> Cury P, Freon P, Maloney C, Shannon L, Shin Y. 2004. Processes and patterns of interactions in marine fish populations : an ecosystem perspective. *The Sea*, 13, 475-554.



avec x(t) et y(t) les densités de population des deux espèces au temps  $t, \dot{x}$  et  $\dot{y}$  leurs dérivées par rapport à t.

| Question 17                            | De quelle interac      | tion écologique s'      | agit-il?                                |                                |
|----------------------------------------|------------------------|-------------------------|-----------------------------------------|--------------------------------|
|                                        | amensalisme            |                         | me                                      | ☐ prédation ☐ symbiose         |
| Question 18                            | Dans cette intera      | ction, quel rôle jo     | oue l'espèce assoc                      | ciée à la variable $y(t)$ ?    |
| □ compétiteu<br>□ proie                | ır                     |                         | ☐ symbiote<br>☐ prédateur               |                                |
| Question 19                            | Dans le système        | (3), quelle est l'ex    | xpression de la ré                      | éponse fonctionnelle?          |
|                                        | $\frac{y}{Xx}$         | f(x) = x                |                                         | $  f(x) = \frac{x}{1+Kx}$      |
| Question 20                            | Quel est le type d     | de la réponse fond      | ctionnelle?                             |                                |
| ☐ Holling typ                          | oe I                   | ☐ Holling type          | II                                      | ☐ Holling type III             |
| Question 21                            | A quel modèle de       | e croissance corre      | spond l'expressio                       | on $bx(t) - \gamma (x(t))^2$ ? |
| ☐ Le modèle<br>☐ Le modèle             |                        |                         | ☐ Le modèle de                          |                                |
| Question 22                            | Quelle interpréta      | tion peut-on don        | ner à $\frac{b}{\gamma}$ ?              |                                |
| ☐ coefficient ☐ capacité lir           | -                      |                         | ☐ taux de mor                           |                                |
| On choisit le p                        | olan de phase $(x, y)$ | (y).                    |                                         |                                |
| Question 23                            | Quelles sont les c     | oordonnées des v        | recteurs vitesses?                      | •                              |
|                                        | .)                     |                         |                                         |                                |
| Question 24 & ions des isocline        |                        | ositions suivantes      | s, identifiez lesque                    | elles correspondent aux équa   |
| $  y = (b - \gamma x) $ $  y = 0 $     | x) $(1 + Kx)$          |                         |                                         |                                |
| Question 25 & ions des isocline        |                        | ositions suivantes      | s, identifiez lesque                    | elles correspondent aux équa   |
| $  y = 0 $ $  x = \frac{a}{1 - aK} $   |                        |                         |                                         | (1+Kx)                         |
| Question 26 🌲                          | Quelle(s) librain      | rie(s) <b>Q</b> peut-on | utiliser pour sim                       | uler un système dynamique?     |
| ☐ deSolve☐ flowField☐ nullcline☐ lsoda |                        |                         | ☐ trajectory ☐ rootSolve ☐ phaseR ☐ ode |                                |



On suppose maintenant que  $a = \frac{2}{3}$ ,  $b = \frac{1}{4}$  et K = 1, avec  $\gamma > 0$ .

Question 33 Quelle est la valeur numérique de l'abscisse positionnant la droite verticale en trait plein?  $\square 0 \square 1 \square 2 \square 3 \square 4 \square 5 \square 6 \square 7 \square 8 \square 9$  $\square 0 \square 1 \square 2 \square 3 \square 4 \square 5 \square 6 \square 7 \square 8 \square 9$ Question 34 ♣ Parmi les propositions suivantes, identifiez les coordonnées des points d'équilibre sur les portraits de phase n°1 et 2.  $\Box \left(\frac{1}{4\gamma},0\right)$  $\square$   $(2, \frac{3}{4} - 6\gamma)$  $\square (\frac{3}{4} - 6\gamma, 2)$  $\square$  (0,0)Question 35 Quelle valeur seuil de  $\gamma$  conditionne l'existence du point d'équilibre non trivial?  $\square \frac{2}{2}$  $\frac{5}{12}$  $\frac{1}{20}$ Question 36 Quelle est l'expression de la matrice jacobienne du système (3)?  $\Box \mathbf{A} = \begin{pmatrix} \frac{1}{4} - 2\gamma x - \frac{y}{(1+x)^2} & \frac{y}{(1+x)^2} \\ -\frac{2}{3} + \frac{x}{1+x} & -\frac{x}{1+x} \end{pmatrix} \qquad \Box \mathbf{A} = \begin{pmatrix} \frac{1}{4} - 2\gamma x - \frac{y}{(1+x)^2} & -\frac{x}{1+x} \\ \frac{y}{(1+x)^2} & -\frac{2}{3} + \frac{x}{1+x} \end{pmatrix}$   $\Box \mathbf{A} = \begin{pmatrix} \frac{1}{4} - 2\gamma x - \frac{y}{(1+x)^2} & \frac{y}{(1+x)^2} \\ -\frac{x}{1+x} & -\frac{2}{3} + \frac{x}{1+x} \end{pmatrix} \qquad \Box \mathbf{A} = \begin{pmatrix} -\frac{x}{1+x} & \frac{y}{(1+x)^2} \\ -\frac{2}{3} + \frac{x}{1+x} & \frac{1}{4} - 2\gamma x - \frac{y}{(1+x)^2} \end{pmatrix}$ Question 37 En déduire la nature du point d'équilibre origine? ☐ Point selle ☐ Nœud asymptotiquement stable ☐ Foyer instable ☐ Des centres Donnez la matrice jacobienne au second point d'équilibre trivial (i.e., non ori-Question 38 gine)?  $\square \mathbf{A_2} = \begin{pmatrix} -\frac{1}{4} & 0 \\ -\frac{2}{3} + \frac{1}{1+4\gamma} & -\frac{1}{1+4\gamma} \end{pmatrix}$  $\square \mathbf{A_2} = \begin{pmatrix} -\frac{1}{1+4\gamma} & 0\\ \frac{2}{3} - \frac{1}{1+4\gamma} & -\frac{1}{4} \end{pmatrix}$  $\square \mathbf{A_2} = \begin{pmatrix} -\frac{1}{4} & -\frac{1}{1+4\gamma} \\ 0 & -\frac{2}{2} + \frac{1}{1+4\gamma} \end{pmatrix}$  $\Box \mathbf{A_2} = \begin{pmatrix} -\frac{1}{4} & 0 \\ -\frac{1}{1+4\gamma} & -\frac{2}{3} + \frac{1}{1+4\gamma} \end{pmatrix}$ Question 39 A Parmi les propositions suivantes, cochez ce qui est vrai : Cas n°3 : le second point d'équilibre trivial est un point selle Cas n°2 : le second point d'équilibre trivial est un nœud asymptotiquement stable Cas n°2 : le second point d'équilibre trivial est un point selle Cas n°1: le second point d'équilibre trivial est un point selle

Donnez la matrice jacobienne au point d'équilibre non trivial? On supposera que les conditions de son existence sont réunies.

$$\Box \mathbf{A}^* = \begin{pmatrix} \frac{1}{6} - \frac{10}{3} \gamma & -\frac{2}{3} \\ \frac{1}{12} - \frac{2}{3} \gamma & 0 \end{pmatrix} \qquad \qquad \Box \mathbf{A}^* = \begin{pmatrix} -\frac{1}{6} + \frac{10}{3} \gamma & 0 \\ \frac{1}{12} - \frac{2}{3} \gamma & -\frac{2}{3} \end{pmatrix} 
\Box \mathbf{A}^* = \begin{pmatrix} \frac{1}{6} - \frac{10}{3} \gamma & -\frac{2}{3} \\ 0 & \frac{1}{12} - \frac{2}{3} \gamma \end{pmatrix} \qquad \qquad \Box \mathbf{A}^* = \begin{pmatrix} -\frac{2}{3} & \frac{1}{6} - \frac{10}{3} \gamma \\ \frac{1}{12} - \frac{2}{3} \gamma & 0 \end{pmatrix}$$

Cas n°3: le second point d'équilibre trivial est un nœud asymptotiquement stable Cas n°1: le second point d'équilibre trivial est un nœud asymptotiquement stable



**Question 41** Que vaut  $det(\mathbf{A}^*)$ ?

$$\square \frac{10}{9}\gamma - \frac{1}{9}$$

$$\square \frac{4}{9}\gamma - \frac{1}{18}$$

**Question 42** Quel est le signe de  $det(A^*)$ ?

$$\square \det(\mathbf{A}^*) > \mathbf{0}$$

$$\square \det(\mathbf{A}^*) < \mathbf{0}$$

**Question 43** Que vaut  $tr(A^*)$ ?

$$\Box -\frac{1}{2} - \frac{10}{9} \gamma$$

$$\Box \frac{1}{6} - \frac{10}{3} \gamma$$

Question 44 Dans le cas du portrait de phase n°1, on a :

$$\ \, \square \ \, \det(\mathbf{A}^*) > \mathbf{0} \, \, \mathrm{et} \, \, \mathrm{tr}(\mathbf{A}^*) < \mathbf{0}$$

$$\ \, \square \ \, \det(A^*)>0 \, \, \mathrm{et} \, \operatorname{tr}(A^*)>0$$

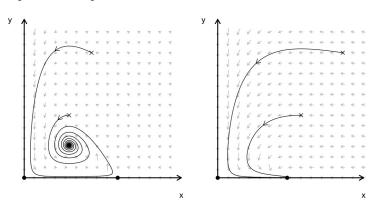
$$\ \, \square \ \, \det(\mathbf{A}^*) < \mathbf{0} \, \, \mathrm{et} \, \, \mathrm{tr}(\mathbf{A}^*) < \mathbf{0}$$

Question 45 Dans le cas du portrait de phase n°2, on a :

$$\square \det(\mathbf{A}^*) < \mathbf{0} \text{ et } \operatorname{tr}(\mathbf{A}^*) > \mathbf{0}$$

$$\ \, \square \ \, \det(A^*) < 0 \, \, \mathrm{et} \, \, \mathrm{tr}(A^*) < 0$$

$$\square \det(\mathbf{A}^*) > \mathbf{0} \ \mathrm{et} \ \mathrm{tr}(\mathbf{A}^*) > \mathbf{0}$$


$$\square \det(\mathbf{A}^*) > \mathbf{0} \, \operatorname{et} \, \operatorname{tr}(\mathbf{A}^*) < \mathbf{0}$$

**Question 46** Pour quelle valeur numérique  $\gamma^*$  de  $\gamma$  a-t-on  $tr(\mathbf{A}^*) = \mathbf{0}$ ?

$$\Box \frac{5}{12}$$

$$\frac{2}{3}$$

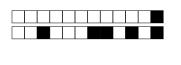
On donne les deux portraits de phase suivants :



Question 47 À quel cas correspond le portrait de phase de gauche :

☐ Cas nº1

|  | Cas | nº3 | 8 |
|--|-----|-----|---|
|--|-----|-----|---|


Question 48 À quel cas correspond le portrait de phase de droite :

Cas nº1

**Question 49** Que peut-on dire du point d'équilibre non trivial lorsque  $tr(A^*) = 0$ ?

☐ C'est un foyer asymptotiquement stable

| П      | C'est | un   | nœud | asymptotiquement        | stable  |
|--------|-------|------|------|-------------------------|---------|
| $\Box$ | 0000  | CLII | noun | aby improving actine in | DUCKDIO |



|                                                     | Soit $\lambda_1(\gamma)$ et $\lambda_2(\gamma)$ les valeurs                                                                                 |                                                                                                                                                                            |                                              |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
|                                                     | Poincaré-Andronov-Hopf, que                                                                                                                 |                                                                                                                                                                            | pour la suite.                               |
|                                                     | $\mathbb{C}, Re\left(\lambda_{1,2}\left(\gamma^*\right)\right) = 0 \text{ et } Im\left(\lambda_1\right)$                                    |                                                                                                                                                                            | ( *)) / 0                                    |
|                                                     | $\mathbb{C}, Re\left(\lambda_{1,2}\left(\gamma^*\right)\right) = 0, \frac{dRe(\lambda_{1,2}(\gamma))}{d\gamma}$                             | ' '                                                                                                                                                                        |                                              |
|                                                     | $\mathbb{C}, Im(\lambda_{1,2}(\gamma^*)) = 0, \frac{dIm(\lambda_{1,2})}{d\gamma}$                                                           | $\left \frac{(\gamma)}{\gamma}\right _{\gamma=\gamma^*} \neq 0 \text{ et } Re\left(\lambda_1\right)$                                                                       | $_{2}(\frac{1}{20})) \neq 0$                 |
| , . , ,                                             | $\mathbb{R} \text{ et } \lambda_{1,2} \left( \gamma^* \right) = 0$                                                                          | (0) 1 11 1                                                                                                                                                                 |                                              |
| Question 51                                         | A ce stade de l'étude du sy                                                                                                                 | rstème (3), de quelles b                                                                                                                                                   | offurcations peut-il s'agir?                 |
| ☐ Bifurcatio                                        | n verticale                                                                                                                                 | ☐ Bifurcation to                                                                                                                                                           | rans-critique                                |
| ☐ Hopf supe                                         |                                                                                                                                             | ☐ Bifurcation se                                                                                                                                                           |                                              |
| ☐ Hopf sous                                         | -critique                                                                                                                                   | ☐ Hopf dégénér                                                                                                                                                             | ée                                           |
| Afin de détermi<br>lignes de code                   | iner de quelle bifurcation il s'a                                                                                                           | igit, nous allons utilise                                                                                                                                                  | r le logiciel <b>R</b> . On donne les        |
| > flowField(m<br>pa<br>ad                           | (4, 4, 0.25, 0.25), mfrow odel, xlim = $c(0, 6.5)$ , yrameters = $c(b, gam, K, a, d)$ = FALSE, xlab = "x", ylameters = $c(b, gam, K, a, d)$ | $\lim_{x \to 0} c(0, 1),$<br>$\lim_{x \to 0} c(0, 1),$ |                                              |
| р                                                   | model, $xlim = c(-0.1, 6.5)$<br>arameters = c(b, gam, K, a)<br>ol = c("red", "blue"))                                                       |                                                                                                                                                                            |                                              |
| c<br>init <- c(5 >                                  |                                                                                                                                             |                                                                                                                                                                            |                                              |
| > trajectory(                                       | model, y0 = init, tlim = o                                                                                                                  |                                                                                                                                                                            |                                              |
| p                                                   | arameters=c(b,gam,K,a), a                                                                                                                   | dd = TRUE)                                                                                                                                                                 |                                              |
| Question 52                                         | Combien de graphes seront r                                                                                                                 | représentés dans la fenê                                                                                                                                                   | tre graphique?                               |
| $\square$ 2                                         | $\square$ 3                                                                                                                                 | □ 1                                                                                                                                                                        | $\square$ 4                                  |
| Question 53                                         | Quelle est la taille de la mar                                                                                                              | ge à gauche du(des) gra                                                                                                                                                    | aphe(s)?                                     |
| $\square$ 2                                         | $\square$ 3                                                                                                                                 | □ 1                                                                                                                                                                        | $\Box$ 4                                     |
| Question 54                                         | Que permet l'option las =                                                                                                                   | 1?                                                                                                                                                                         |                                              |
| <ul><li>☐ Des labels</li><li>☐ Des labels</li></ul> | verticaux<br>horizontaux                                                                                                                    | -                                                                                                                                                                          | rallèles aux axes<br>rpendiculaires aux axes |
| Question 55                                         | Que permet la fonction null                                                                                                                 | clines?                                                                                                                                                                    |                                              |
| ☐ Tracer les                                        | trajectoires isoclines                                                                                                                      | ☐ Tracer le cha                                                                                                                                                            | mp de vecteurs<br>coniques                   |
| Question 56                                         | Que vaut la condition initial                                                                                                               | e?                                                                                                                                                                         |                                              |
| $\square (5, 0.2)$                                  | (2,0.45)                                                                                                                                    | $   \square                                 $                                                                                                                              |                                              |
|                                                     | ne de code <b>R</b> suivante, avec la s<br>étacher la dernière page du su                                                                   |                                                                                                                                                                            |                                              |
| > findEquilib                                       | rium(model, y0 = $c(2, 0.4)$<br>parameters = $c(b, gam)$                                                                                    |                                                                                                                                                                            | UE)                                          |

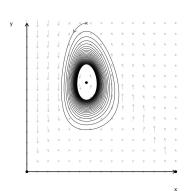
|                                                                            |                                           |                                                                                                |                               | ٠.                            | 1/9/021         |          |            |
|----------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|-----------------|----------|------------|
| Question 57 ci-dessus.                                                     | Donnez la valeur                          | du paramè                                                                                      | tre $\gamma$ qui a $\epsilon$ | été utilisée                  | e pour ob       | tenir l  | es résulta |
|                                                                            | □4 □5 □6 □7                               | □8 □9                                                                                          |                               |                               |                 |          |            |
|                                                                            |                                           |                                                                                                |                               |                               |                 |          |            |
|                                                                            |                                           |                                                                                                |                               |                               |                 |          |            |
| Question 58                                                                | Quelle est l'ordonn                       | ée du point                                                                                    | d'équilibre i                 | non trivial                   | ?               |          |            |
|                                                                            | $\square 4 \square 5 \square 6 \square 7$ | □8 □9                                                                                          |                               |                               |                 |          |            |
|                                                                            |                                           | □8 □9                                                                                          |                               |                               |                 |          |            |
|                                                                            |                                           |                                                                                                |                               |                               |                 |          |            |
| Question 59                                                                | Que vaut approxin                         | nativement                                                                                     | le détermina                  | nt de la ja                   | cobienne '      | ?        |            |
|                                                                            | $\square 4 \square 5 \square 6 \square 7$ | □8 □9                                                                                          |                               |                               |                 |          |            |
|                                                                            |                                           | □8 □9                                                                                          |                               |                               |                 |          |            |
|                                                                            |                                           |                                                                                                |                               |                               |                 |          |            |
| Question 60                                                                | Que vaut approxin                         | nativement                                                                                     | la partie ima                 | ginaire des                   | s valeurs       | propres  | s ?        |
|                                                                            | □4 □5 □6 □7                               | □8 □9                                                                                          |                               |                               |                 |          |            |
|                                                                            | □4 □5 □6 □7                               | <u>8</u> □9                                                                                    |                               |                               |                 |          |            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                     |                                           | $     \begin{bmatrix}       8 & \Box 9 \\       \hline       18 & \Box 9     \end{bmatrix}   $ |                               |                               |                 |          |            |
|                                                                            |                                           |                                                                                                |                               | 174:1:1                       | <i>-</i>        | .:.19    |            |
| Question 61                                                                | Que propose 🥷 qu                          | ant a la nat                                                                                   | ure au point                  | a equilibr                    | e non triv      | nai (    |            |
| <ul><li>☐ Nœud instab</li><li>☐ Nœud asymp</li><li>☐ Point selle</li></ul> | ble<br>ptotiquement stab                  | le                                                                                             | ☐ Cent                        | r asympto<br>re<br>r instable | ${ m tiquemen}$ | t stable | е          |

Voici ci-dessous le portrait de phase obtenu par simulation pour  $\gamma$  égal à la valeur de bifurcation :

Qu'en concluriez-vous quant au type de bifurcation dont il s'agit?

 $\hfill \square$  Hopf dégénérée

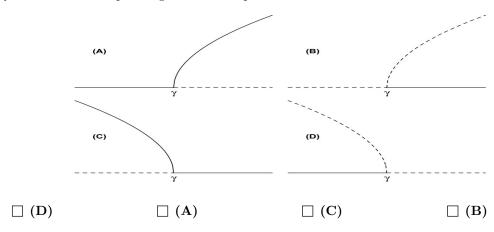
☐ Bifurcation selle-nœud


 $\square$  Bifurcation trans-critique

Question 62

 $\hfill \square$  Bifurcation verticale

 $\square$  Hopf sous-critique

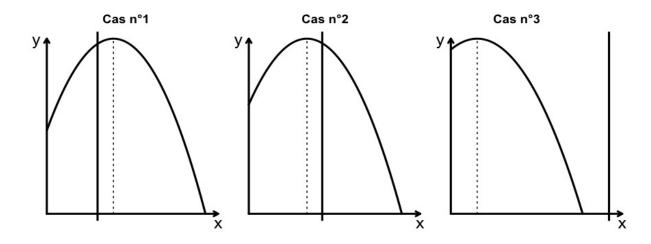

 $\square$  Hopf super-critique



**Question 63** De quelle bifurcation s'agit-il finalement?

| ☐ Bifurcation selle-nœud     | ☐ Bifurcation verticale |
|------------------------------|-------------------------|
| ☐ Bifurcation trans-critique | ☐ Hopf sous-critique    |
| ☐ Hopf dégénérée             | ☐ Hopf super-critique   |

 ${\bf Question}~{\bf 64}~~{\rm A~quel~diagramme~correspond~cette~bifurcation?}$ 




Question 65 Quelle est alors la nature du point d'équilibre non trivial à la bifurcation?

| ☐ Foyer instable | $\hfill \square$ Nœud asymptotiquement stable |
|------------------|-----------------------------------------------|
| ☐ Centre         | ☐ Foyer asymptotiquement stable               |



Figure relative aux questions 47 et 48:



Ligne de code  $\mathbb{R}$  et la sortie  $\mathbb{R}$  correspondante, relativement aux questions 57 à 61 :

```
> findEquilibrium(model, y0 = c(2, 0.4),
              parameters = c(b, gam, K, a), summary=TRUE)
$classification
[1] "Centre"
$Delta
[1] 0.03333333
$deriv
function(t, y, parameters)
 dy <- numeric(2)</pre>
 dy[2] <- -parameters[4]*y[2] + y[1]*y[2]/(1+parameters[3]*y[1])</pre>
 list(dy)
<bytecode: 0x7fb8875f1898>
$discriminant
[1] -0.1333333
$eigenvalues
[1] 0+0.1825742i 0-0.1825742i
$eigenvectors
                   [,1]
                                       [,2]
[1,] -0.9644856+0.0000000i -0.9644856+0.0000000i
[2,] 0.0000000+0.2641353i 0.0000000-0.2641353i
$h
[1] 1e-06
```



# \$jacobian

[,1] [,2]

[1,] 0.00 -0.6666667

[2,] 0.05 0.0000000

# \$max.iter

[1] 50

### \$parameters

[1] 0.2500000 0.0500000 1.0000000 0.6666667

### \$plot.it

[1] FALSE

### \$summary

[1] TRUE

# \$system

[1] "two.dim"

#### \$tol

[1] 1e-16

#### \$tr

[1] 0

# \$y0

[,1]

[1,] 2.0

[2,] 0.4

# \$ystar

[,1]

[1,] 2.00

[2,] 0.45