

## 4BIM - EDEDP: modèles en temps discret Mardi 19 janvier 2021 – Durée : 1 heure 30

## Instructions

This form will be analyzed by optical reading, so please strictly respect the following rules:

- To answer, use rectangles provided below each question;
- Do not write anything outside the rectangle;
- Do not write anything either in the header nor in the margins;
- A pre-defined number of points has been assigned to each question for a total of 20.

All documents and calculators are allowed.

| Identi                                                  | ity |
|---------------------------------------------------------|-----|
| Fill in empty fields below and encode your student num- |     |
| ber beside.                                             |     |
|                                                         |     |
| Last and first name:                                    |     |
|                                                         |     |
| Student number:                                         |     |
|                                                         |     |
|                                                         |     |
|                                                         |     |
|                                                         |     |

## **1** Population dynamics of annual plants

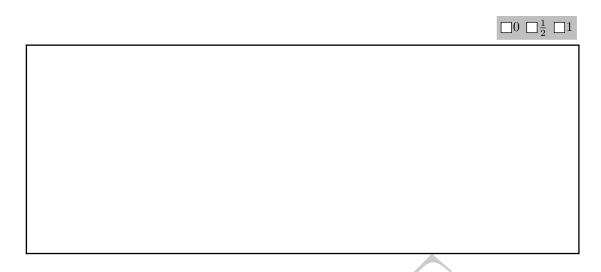
We are interested here in the population dynamics of annual plants, based on their cycle (seeds / germination/ flowering / mortality) over one year. Each plant produces f seeds at flowering. A proportion s of these seeds gives a plant in the next generation.

**Question 1** Let N(t) be the number of plants just before the flowering at year t. Express N(t+1) as a function of N(t). Then, deduce N(t) as a function of N(0).

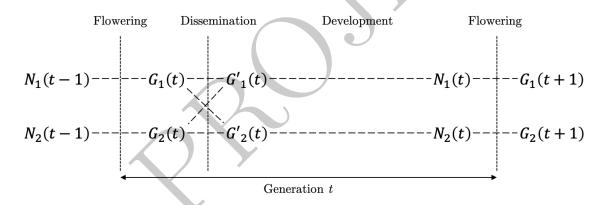
**Question 2** Numerical application: we want to compare two plant populations growing on two different kinds of soil. On soil 1, we have  $f_1 = 1000$  and  $s_1 = 0.005$ ; on soil 2, we have  $f_2 = 500$  and  $s_2 = 0.001$ . Based on the previous question, discuss the time course for these two populations.

| Γ |  |  |  |  |  |  |
|---|--|--|--|--|--|--|

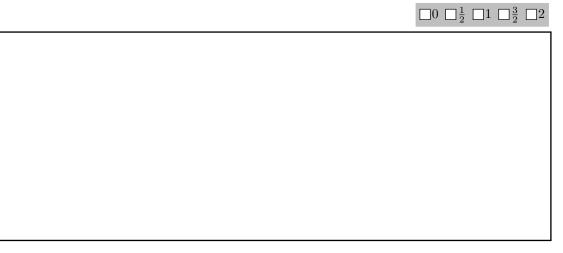
+1/2/59+

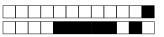


It was found that there was an seed exchange by dissemination between these two populations: a proportion  $p_1$  of the seeds produced by plants on soil 1 is exported to soil 2. These plants then develop with a survival rate  $s_2$  and produce plants with fertility  $f_2$ . In the same way, a proportion  $p_2$  of seeds from soil 2 goes to soil 1, there having a survival rate  $s_1$  and a fertility rate  $f_1$ . Let  $N_1(t)$  be the number of plants on soil 1 just before flowering at generation t (respectively  $N_2(t)$  on soil 2). Let  $G_1(t)$  be the number of seeds present on soil 1 before dissemination and  $G'_1(t)$  after dissemination (respectively  $G_2(t)$  and  $G'_2(t)$  on soil 2).



**Question 3** Express  $G'_1(t)$  and  $G'_2(t)$  as functions of  $G_1(t)$  and  $G_2(t)$  and deduce matrix **D** such that  $\begin{pmatrix} G'_1(t) \\ G'_2(t) \end{pmatrix} = \mathbf{D} \begin{pmatrix} G_1(t) \\ G_2(t) \end{pmatrix}$ .





+1/3/58+

 $\square 0 \square \frac{1}{2} \square 1 \square \frac{3}{2} \square 2$ 

 ${\bf Question} \ {\bf 4} ~~ {\rm In \ the \ same \ way, \ determine \ matrices \ } {\bf F} \ {\rm and} \ {\bf S} \ {\rm such \ that:}$ 

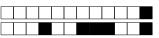
$$\begin{pmatrix} G_1(t) \\ G_2(t) \end{pmatrix} = \mathbf{F} \begin{pmatrix} N_1(t-1) \\ N_2(t-1) \end{pmatrix} \text{ and } \begin{pmatrix} N_1(t) \\ N_2(t) \end{pmatrix} = \mathbf{S} \begin{pmatrix} G'_1(t)) \\ G'_2(t) \end{pmatrix}$$

 ${\bf Question \ 5} \qquad {\rm Deduce \ matrix \ M} \ {\rm describing \ the \ whole \ annual \ cycle:}$ 

 $\left(\begin{array}{c} N_1(t)\\ N_2(t) \end{array}\right) = \mathbf{M} \left(\begin{array}{c} N_1(t-1))\\ N_2(t-1) \end{array}\right)$ 

Numerical application: again  $f_1 = 1000$ ,  $s_1 = 0.005$ ,  $f_2 = 500$  and  $s_2 = 0.001$ .

**Question 6** First case study:  $p_1 = 0$  and  $p_2 = 0$ . Give matrix **M** and **M**<sup>k</sup>  $\forall k \in \mathbb{N}$ . Deduce



expressions of  $N_1(t)$  and  $N_2(t)$  as functions of  $N_1(0)$  and  $N_2(0)$ , respectively. Describe and comment time course of both populations.

|                                                                                                                                                           | $\Box 0 \ \Box \frac{1}{2} \ \Box 1$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
|                                                                                                                                                           |                                      |
|                                                                                                                                                           |                                      |
|                                                                                                                                                           |                                      |
|                                                                                                                                                           |                                      |
|                                                                                                                                                           |                                      |
|                                                                                                                                                           |                                      |
|                                                                                                                                                           |                                      |
|                                                                                                                                                           |                                      |
|                                                                                                                                                           |                                      |
|                                                                                                                                                           |                                      |
|                                                                                                                                                           |                                      |
| <b>Question 7</b> Second case study: $p_1 = 0.5$ and $p_2 = 0$ . Give matrix <b>N</b> Give an eigenvector associated to the dominant eigenvalue. What hap | pens globally for all plants         |
| over time? What are the proportions of plants in each population? Con<br>the effect of the dissemination.                                                 | mment and conclude about             |
|                                                                                                                                                           | 1 0                                  |



+1/5/56+

## 2 Molecular evolution

We are interested here in the composition in bases A and T relative to bases G and C of the genomes. For a given nucleotide sequence (read on one of the strands of the DNA molecule), we denote AT the number of bases A + T, and GC the number of bases G + C. At each generation, a proportion u of bases G and C mutates into bases A or T by substitution, and conversely, a proportion v of A and T mutates into G or C. Only mutations by substitution are considered.

**Question 8** Express  $AT_{n+1}$  (the number of AT in the genome sequence at generation n+1) as a function of  $AT_n$  and  $GC_n$  at generation n. Same question for  $GC_{n+1}$  as a function of  $AT_n$  and  $GC_n$ .

|  |  | $\Box 0 \ \Box \frac{1}{2} \ \Box 1$ |
|--|--|--------------------------------------|
|  |  |                                      |
|  |  |                                      |
|  |  |                                      |
|  |  |                                      |
|  |  |                                      |

**Question 9** Show that the total number of bases in the sequence is constant from one generation to the next. Comment on this result with regard to the biological hypotheses formulated above.



**Question 10** Determine matrix **M** such that 
$$\begin{pmatrix} AT_{n+1} \\ GC_{n+1} \end{pmatrix} = \mathbf{M} \begin{pmatrix} AT_n \\ GC_n \end{pmatrix}$$
.



+1/6/55+

| $\neg 0$ | $\Box 1$    | $\square 1$ |
|----------|-------------|-------------|
|          | $\square_2$ |             |

**Question 11** Calculate eigenvalues of **M** by showing that the discriminant of the characteristic equation is equal to  $(u + v)^2$ . Comment on the dominant eigenvalue of **M**.



**Question 12** Which eigenvalue of **M** is associated with eigenvector  $\begin{pmatrix} 1 \\ \frac{v}{u} \end{pmatrix}$ ?

Same question with eigenvector  $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ ?

Pour votre examen, imprimez de préférence les documents compilés à l'aide de auto-multiple-choice.



+1/7/54+



**Question 13** Give the expression of matrix **D**, the diagonal matrix similar to **M**. Determine  $\mathbf{D}^*$ , the limit matrix of  $\mathbf{D}^n$  when *n* tends towards  $+\infty$ . Then, deduce  $\mathbf{M}^*$ , the limit matrix of  $\mathbf{M}^n$  when *n* tends towards  $+\infty$ .

 $\square 0 \square \frac{1}{2} \square 1 \square \frac{3}{2} \square 2$ 

+1/8/53+

**Question 14** For an initial composition  $\begin{pmatrix} AT_0 \\ GC_0 \end{pmatrix}$ , give the limit values  $AT^*$  and  $GC^*$  towards which  $AT_n$  and  $GC_n$  tend when  $n \to +\infty$ . Show that the  $\frac{AT_n}{GC_n}$  ratio tends towards an equilibrium independent on the initial composition. Is the value of this ratio consistent with question 12?

 $\Box 0 \Box \frac{1}{2} \Box 1$ 

