.....

Concours B INA ENSA Session 1996

Rappels:

Pour tout s élément de [0,1], on a :

(1)
$$\sum_{n\geq 0} s^n = \frac{1}{1-s}$$
 (2) $\sum_{n\geq 1} n s^{n-1} = \frac{1}{(1-s)^2}$ (3) $\sum_{n\geq 2} n(n-1) s^{n-2} = \frac{2}{(1-s)^3}$

I. Étude d'une fonction associée à une distribution de probabilité.

Dans toute cette partie, on considère la série de terme général p_n positif, convergente et de somme égale à 1.

1. Pour s élément de [0,1], on pose, pour tout n entier naturel :

$$G_n(s) = \sum_{k=0}^n p_k s^k$$

1.a. Montrer que, pour s fixé, la suite de terme général $G_n(s)$ est croissante et majorée par 1. En déduire qu'elle converge vers une limite notée G(s). On écrira donc :

$$G(s) = \sum_{n>0} p_n s^n$$

- **1.b.** Montrer qu'on a ainsi défini une application G de [0,1] dans \mathbb{R} croissante, majorée par 1 et qui vérifie : $G(0) = p_0$ et G(1) = 1.
- **1.c.** En déduire que G admet des limites finies à droite et à gauche en tout point de]0,1[.
- 2. Dans cette question et les suivantes, R désigne un élément de [0,1[: En s'inspirant de la question 1., montrer que l'on peut définir sur [0,R] une fonction H croissante et bornée, par : $H(s) = \sum_{n \ge 1} np_n s^{n-1}$.
- 3. n est un entier naturel, on notera s et s_0 deux éléments distincts de [0,R].
- **3.a.** En utilisant les rappels, montrer que, pour tout x élément de [0, R], on a :

$$\left|G_n'(x)\right| \leq \frac{1}{\left(1-R\right)^2}$$

3.b. Justifier la majoration suivante :

$$\left|G_n(s)-G_n(s_0)\right| \leq \frac{\left|s-s_0\right|}{\left(1-R\right)^2}$$

3.c. En déduire que : $|G(s)-G(s_0)| \le \frac{|s-s_0|}{(1-R)^2}$; puis que G est continue sur [0,1].

4.a. Montrer qu'il existe un élément c compris entre s et s_0 , tel que :

$$\left| \frac{G_n(s) - G_n(s_0)}{s - s_0} - G'_n(s_0) \right| = \frac{|s - s_0|}{2} \times |G''_n(c)|$$

4.b. En déduire, en utilisant la même démarche qu'à la question 3., que l'on a :

$$\left| \frac{G(s) - G(s_0)}{s - s_0} - H(s_0) \right| \le \frac{\left| s - s_0 \right|}{\left(1 - R \right)^3}$$

4.c. Conclure que G est dérivable sur [0,1] et que l'on a :

$$G'(s) = \sum_{n \ge 1} n p_n s^{n-1}$$

On admettra dans la suite de ce problème que G est indéfiniment dérivable sur [0,1[et que, pour tout k entier naturel non nul et tout s de [0,1[, on a :

(4)
$$G^{(k)}(s) = \sum_{n \ge k} n(n-1)...(n-k+1) p_n s^{n-k}$$

II. Interprétation probabiliste de la fonction G.

Si X est une variable aléatoire à valeurs dans \mathbb{N} , on notera G_X l'application définie pour tout s de [0;1] par la relation : $G_X(s) = \sum_{n \ge 0} P[X=n]s^n$.

D'après la partie I, on sait donc que G_X est indéfiniment dérivable sur [0;1[et que ses nombres dérivés successifs sont donnés par la formule (4).

- **1.** Exprimer, pour tout n entier naturel, P[X = n] en fonction de $G_X^{(n)}(0)$. Ainsi la loi de X est entièrement déterminée par G_X qu'on appelle fonction génératrice de X.
- 2. Pour tout s élément de [0,1] on notera s^x la variable aléatoire qui prend comme valeur s^n avec la probabilité P[X = n].
- **2.a.** Établir que s^x admet une espérance donnée par la formule :

$$E\left[s^{X}\right] = G_{X}\left(s\right)$$

2.b. Montrer que si X et Y sont deux variables aléatoires indépendantes à valeurs dans \mathbb{N} , on a, pour tout s de $[0;1]: G_{X+Y}(s) = G_X(s) \times G_Y(s)$

3. Application 1.

X et Y sont deux variables indépendantes, qui suivent respectivement des lois de Poisson de paramètres λ et μ . Déterminer la fonction génératrice de X+Y et en déduire sa loi.

4. Application 2.

On considère une suite d'épreuves de Bernoulli indépendantes, dont les issues sont représentées par $\{0,1\}$, 1 étant obtenu avec la probabilité p. On note B la variable aléatoire qui vaut 1 avec la probabilité p et 0 avec la probabilité (1-p).

4.a. Déterminer G_R , fonction génératrice de B.

4.b. On note, pour tout n entier naturel non nul, X_n la variable aléatoire égale au nombre de fois où on a obtenu 1 au cours des n premières épreuves. Justifier la relation :

$$\forall s \in [0,1], G_{X_n}(s) = (G_B(s))^n$$

4.c. Calculer la loi de X_n à partir de sa fonction génératrice et retrouver ainsi une distribution binomiale.

5. Application 3.

On considère une suite d'épreuves de Bernoulli indépendantes, dont les issues sont représentées par $\{0,1\}$, 1 étant obtenu avec la probabilité p (0 . On notera :

$$q = 1 - p$$

On s'intéresse à la variable aléatoire T qui prend la valeur n si on obtient, pour la première fois, 1 à l'épreuve n-1 suivi de 0 à l'épreuve n.

5.a. Montrer que T prend ses valeurs dans \mathbb{N} ; on notera, pour k entier:

$$p_{\nu} = P[T = k]$$

Déterminer p_k , pour k prenant les valeurs 0, 1 et 2.

- **5.b.** Montrer que T peut s'écrire comme la somme de deux variables géométriques indépendantes de paramètres respectifs p et q. En déduire sa fonction génératrice G_T .
- **5.c.** Montrer que, pour tout s de [0;1], on a la relation :

$$(1-s+pqs^2)G_T(s) = pqs^2$$

En utilisant la formule de dérivation n-ième d'un produit, justifier alors, pour n > 2:

$$p_n = p_{n-1} - pqp_{n-2}$$

5.d. En déduire, par récurrence sur n, l'existence de deux réels a et b tels que :

$$\forall n \in \mathbb{N}^*, p_n = ap^n + bq^n$$

En utilisant **II.5.a**., expliciter p_n en fonction de n, p et q.

5.e. Montrer que T admet une espérance et une variance et les exprimer en fonction de p et de q.