## Biologie Mathématique et Modélisation (L3 - MIV)

## Chapitre 2 : Systèmes dynamiques dans R<sup>2</sup>

Sandrine CHARLES (14/02/2008)



Figure 1 : Allure des trajectoires du système linéaire  $\dot{\mathbf{X}} = \mathbf{A}\mathbf{X}$ , lorsque  $\mathbf{A}$  possède deux valeurs propres réelles distinctes strictement positives.



Figure 2 : Allure des trajectoires du système linéaire  $\dot{\mathbf{X}} = \mathbf{A}\mathbf{X}$ , lorsque  $\mathbf{A}$  possède deux valeurs propres réelles distinctes strictement négatives.



Figure 3 : Allure des trajectoires du système linéaire  $\dot{\mathbf{X}} = \mathbf{A}\mathbf{X}$ , lorsque  $\mathbf{A}$  possède deux valeurs propres réelles distinctes de signe opposé :  $\lambda_1 > 0$  et  $\lambda_2 < 0$ ; ou  $\lambda_1 < 0$  et  $\lambda_2 > 0$ .

.....



Figure 4 : Allure des trajectoires du système linéaire  $\dot{\mathbf{X}} = \mathbf{A}\mathbf{X}$ , lorsque  $\mathbf{A}$  diagonale possède une valeur propre double strictement positive.



Figure 5 : Allure des trajectoires du système linéaire  $\dot{\mathbf{X}} = \mathbf{A}\mathbf{X}$ , lorsque A diagonale possède une valeur propre double strictement négative.



Figure 6 : Allure des trajectoires du système linéaire  $\dot{\mathbf{X}} = \mathbf{A}\mathbf{X}$ , lorsque A non diagonale possède une valeur propre double strictement positive.



Figure 7 : Allure des trajectoires du système linéaire  $\dot{\mathbf{X}} = \mathbf{A}\mathbf{X}$ , lorsque A non diagonale possède une valeur propre double strictement négative.



.....

Figure 8 : Allure des trajectoires du système linéaire  $\dot{\mathbf{X}} = \mathbf{A}\mathbf{X}$ , lorsque  $\mathbf{A}$  possède des valeurs propres complexes conjuguées.  $\alpha > 0$  et  $\beta > 0$ .



Figure 9 : Allure des trajectoires du système linéaire  $\dot{\mathbf{X}} = \mathbf{A}\mathbf{X}$ , lorsque  $\mathbf{A}$  possède des valeurs propres complexes conjuguées.  $\alpha = 0$  et  $\beta > 0$ .



Figure 10 : (a) Allure des trajectoires du système linéaire  $\dot{\mathbf{X}} = \mathbf{A}\mathbf{X}$ , lorsque  $\mathbf{A}$  possède des valeurs propres complexes conjuguées; (b) Chroniques associées.  $\alpha < 0$  et  $\beta > 0$ .



Représentation dans la base de Jordan



Représentation dans la base de départ

- BMM 1 - Cours 2 (L3 - MIV), p3/8 -



Figure 11 : Portraits de phase des représentants des différentes classes d'équivalence topologiques des systèmes linéaires planaires.

S. Charles (scharles@biomserv.univ-lyon1.fr)



Figure 12 : Résumé des différents portraits de phase possibles du système  $\dot{\mathbf{X}} = \mathbf{A}\mathbf{X}$ , en fonction du signe de la trace et du déterminant de la matrice  $\mathbf{A}$ .

En résumé :





Figure 13 : Représentation fictive d'une trajectoire pour un système dynamique donné ;



Figure 14 : Isoclines nulles horizontales et verticales pour le système dynamique  $\dot{x} = x - y$ ;  $\dot{y} = \cos x$ , dans le plan de phase (x, y). On représente la direction horizontale ou verticale du vecteur vitesse sur les isoclines par des segments



Figure 15 : Sens des vecteurs vitesse pour le système dynamique  $\dot{x} = x - y$ ;  $\dot{y} = \cos x$ , dans le plan de phase (x, y).

- BMM 1 - Cours 2 (L3 - MIV), p6/8 -



Figure 16 : Trajectoires associées au système dynamique  $\dot{x} = x - y$ ;  $\dot{y} = \cos x$ .



Figure 19 : Portrait de phase du modèle de Lotka-Volterra.



Figure 20 : Chronique du modèle de Lotka-Volterra pour N(0) = P(0).

.....

.....



Figure 20bis : Data from an interesting study from the 1930's. They represent the number of pelts brought into the Hudson Bay Trading Company over a 28 year period.



Figure 21 : Simulation du modèle de Lotka-Volterra modifié avec une croissance logistique pour les proies.