Biologie Mathématique et Modélisation (L3 - MIV)

Chapitre 3 : Fonctions de Lyapunov - Notion de cycle limite

Sandrine CHARLES (14/02/2008)

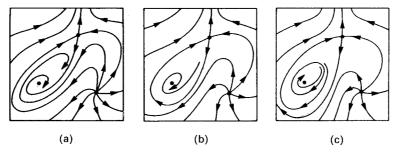


Figure 18 : Trois portraits de phase globaux qualitativement différents mais correspondant à trois points d'équilibre avec le même comportement local.

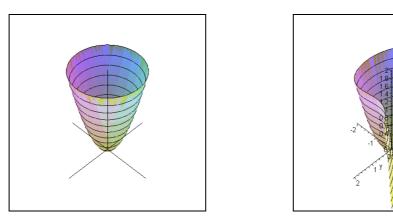


Figure 1: A gauche $V(x, y) = x^2 + y^2$; à droite $V(x, y) = x^2 + y^2 - y^3$.

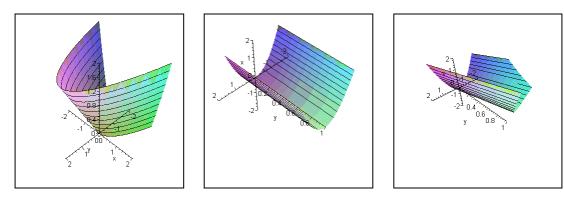


Figure 2: De gauche à droite: $V(x, y) = x + y^2$, $V(x, y) = (x + y)^2$ et $V(x, y) = x^2$.

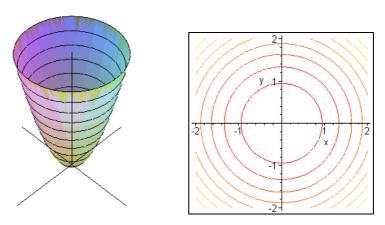
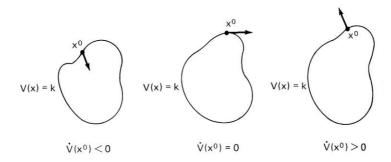


Figure 3 : Courbes de niveaux de la fonction $V(x, y) = x^2 + y^2$.



Intersection des courbes de niveaux avec un vecteur vitesse tangente à la trajectoire d'un système dynamique.

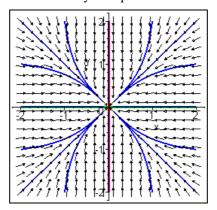
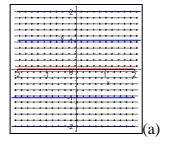
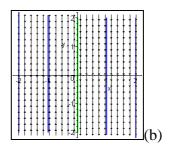


Figure 4: Trajectoire du système $\dot{u} = -u^3$; $\dot{v} = -v^3$





.....

Figure 5 : cas particuliers associés au système $\dot{x} = y$; $\dot{y} = -x - 6x^2y$; (à gauche) lorsque x = 0 ; (à droite) lorsque y = 0.

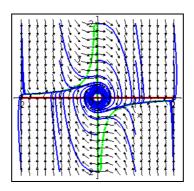


Figure 6: Trajectoires associées au système $\dot{x} = y$; $\dot{y} = -x - 6x^2y$.

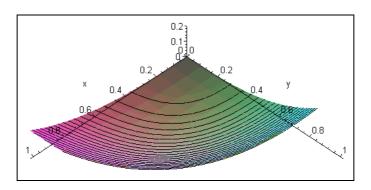


Figure 7: Représentation 3D de la fonction $V(x,y) = \frac{1}{6}x^3 + \frac{1}{8}x^2y + \frac{1}{3}y^3$ lorsque x = 0.

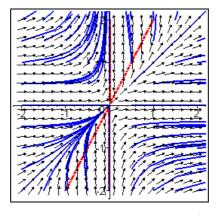


Figure 8 : Trajectoires associés au système $\dot{x} = 2x^2 - xy$; $\dot{y} = y^2$.

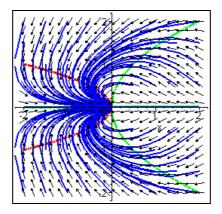


Figure 9: Trajectoires associés au système $\dot{x} = -x - 2y^2$; $\dot{y} = 2xy - y^3$.

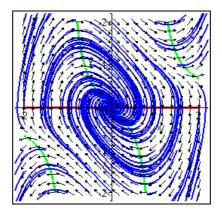


Figure 10 : Trajectoires associés au système $\dot{x}=y$; $\dot{y}=-x-\left(1-x^2\right)y$.

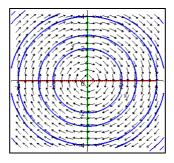


Figure 11 : Trajectoires associées au système $\dot{x} = y$; $\dot{y} = -x$.

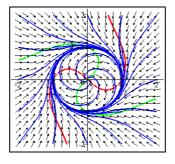


Figure 12 : Trajectoires associés au système
$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} y \\ -x \end{bmatrix} + \alpha (1 - x^2 - y^2) \begin{bmatrix} x \\ y \end{bmatrix}$$
 avec $\alpha = 1$.

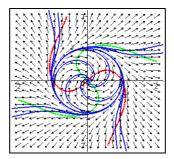


Figure 13: Trajectoires associés au système $\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} y \\ -x \end{bmatrix} + \alpha (1 - x^2 - y^2) \begin{bmatrix} x \\ y \end{bmatrix}$ avec $\alpha = -1$.

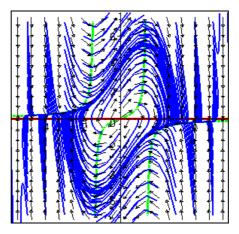
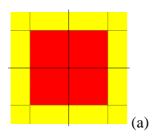


Figure 13bis : Trajectoires de l'oscillateur de Van der Pol, dont le système d'équation est

$$\dot{x} = y \; ; \; \dot{y} = (2 - x^2) y - x$$



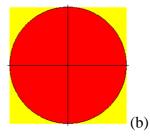


Figure 14 : (a) Carré de côté [a,b] ; (b) Cercle de rayon r.

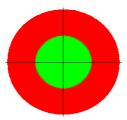


Figure 15: L'anneau rouge est une ensemble connexe mais pas simplement connexe

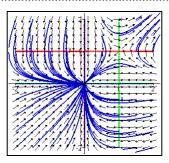


Figure 16 : Trajectoires associées au système $\dot{x} = x(y-1)$; $\dot{y} = y(x-1)$. Les quatre quadrants de \mathbb{R}^2 sont positivement invariants pour ce systèmes.

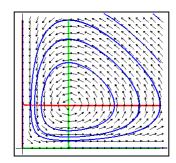


Figure 17 : Trajectoires du modèle de Lotka-Volterra pour a = b = c = d = 1.

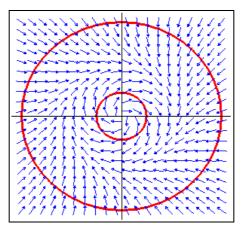


Figure 18: Champ de vecteurs du système $\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} y \\ -x \end{bmatrix} + (1 - x^2 - y^2) \begin{bmatrix} x \\ y \end{bmatrix}$. Les deux cercles rouges de rayons

½ et 2 délimitent un domaine attractant pour ce système.

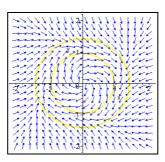


Figure 19 : Champ de vecteurs du système $\dot{x} = y + x - x^3$; $\dot{y} = -x + y - y^3$. Les deux cercles jaunes de rayons < 1 et > 2 délimitent un domaine attractant pour ce système.

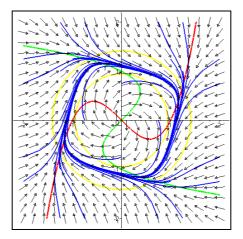


Figure 20 : Trajectoires associées au système $\dot{x} = y + x - x^3$; $\dot{y} = -x + y - y^3$. Les deux cercles jaunes de rayons < 1 et > 2 délimitent un domaine attractant contenant un cycle limite stable.

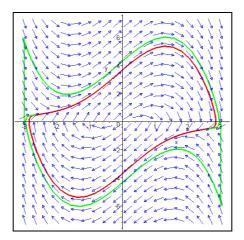


Figure 21 : En vert, « boîte » de Poincaré-Bendixson pour l'oscillateur de Van der Pol ; En rouge, le cycle limite stable pour ce système.

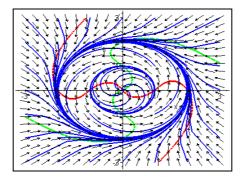


Figure 22 : Trajectoires associées au système $\dot{r} = r(1-r)(r-2)$; $\dot{\theta} = 1$, qui admet deux cycles limites.