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Ecotoxicology

I A scientific field at the bridge of chemistry, toxicology and
ecology

“The branch of toxicology concerned with the study of toxic effects,
caused by natural or synthetic pollutants, to the constituents of
ecosystems, animals (including humans), vegetables and
microorganisms, in an integrated context” [Truhaut, 1977]

“Ecology in the presence of toxicants” [Chapman, 2002]

I In ecotoxicology, the answer of the ecosystem to
environmental perturbations (physical, chemical and/or
biological) is studied in all compartments of the biosphere
(air, soil and water) and at all levels of biological organization
[Walker et al., 2006]

4/36 S. Charles, sandrine.charles@univ-lyon1.fr MOSAIC, https://mosaic.univ-lyon1.fr

sandrine.charles@univ-lyon1.fr
https://mosaic.univ-lyon1.fr


A variety of experimental devices

[Caquet et al., 1996]
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A variety of experimental devices

[Caquet et al., 1996]
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Standard experimental design

Under standardized protocols, individuals are counted over time,
that is at regular time points.
Endpoints can be survival, growth and/or reproduction for example.
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Example of a toxicity test

Daphnia magna, acute immobilisation test (OECD 202, 1984) and
chronic reproduction test (OECD 211, 2012)

Daphnia magna

Acute test: the number of immobile
daphnids is determined for each con-
centration at 24 and 48 hours.

Chronic test: offsprings are daily
counted during 21 days.
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Example of survival data
Effect of chlordane on D. magna survival during 21 days
(10 replicates of 1 individual):
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Example of reproduction data
Effect of chlordane on D. magna reproduction during 21 days
(10 replicates of 1 individual):
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NOEC/LOEC: severely criticized for multiple reasons

Shortcomings
I necessarily one of the tested concentrations (hence strongly

dependent on the experimental design);

I based on a wrong interpretation of the p-value (absence of
evidence is not evidence of absence);

I strongly dependent on the sample size
→ unprotectrive with small sample sizes: the lower the sample
size, the higher the NOEC;

I cannot always be determined (e.g., if the first concentration
leads to a significant difference);

I no uncertainty limits are associated.
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x% effective or lethal concentrations (ECx/LCx )

Alternative to the NOEC, ECx/LCx are now strongly
recommended.
→ obtained by fitting a dose-response model to toxicity test data
at a chosen target time point, then deriving the dose which
corresponds to a given effect level (usually x =10, 20 or 50%).

Advantages

I capture and account for the
whole dose-response curve;

I slightly dependent on the
experimental design;

I may be associated to
uncertainty limits.

Shortcomings
I sometimes technical

difficulties when fitting;

I choice of a model;

I choice of an effect level x ;

I choice of the exposure
duration.
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Example of LCx estimation
Use of survival data at the end of the experiment (day 21)
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(Dose or Concentration)-(response or effect) relationships?

A few vocabulary:

I Dose refers to the internal concentration, i.e., the amount of
toxicant within the body of organisms. But in ecotoxicology,
only the exposure concentration is usually known.
→ We rather speak about concentration-response or effect
relationships.

I Concentration-response relationships refer to the link
between the exposure concentration and the proportion of
individuals responding with an all-or-none effect.

I Concentration-effect relationships refer to the link between
the exposure concentration and the magnitude of the induced
biological change, measured in appropriate units.

15/36 S. Charles, sandrine.charles@univ-lyon1.fr MOSAIC, https://mosaic.univ-lyon1.fr

sandrine.charles@univ-lyon1.fr
https://mosaic.univ-lyon1.fr


What is a concentration-response/effect relationship?

A concentration-response/effect relationship is a simple X -Y
graph relating increasing levels of exposure (X ) to the
response/effect (Y ) at a certain exposure time.

Examples of responses:

I Quantal (or binary) data, expressed as proportion or
probability (e.g., mortality or immobilization).

Examples of effects:

I Ordered descriptive categories (e.g., severity of a lesion);

I Counts (or discrete) (e.g., reproduction products like eggs or
clutches);

I Continuous measurements (e.g., body size).
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What is a regression model to be fitted on data?

From concentration-response/effect experiments, if there is a
reasonable number of concentrations (usually ≥ 5) of the toxicant
and a reasonably well-behaved response/effect, it is straightforward
to fit a regression model.

A regression model relating a dependent variable Y (the response
or the effect) to an explanatory variable X (the concentration) is
composed of two parts:

1. a deterministic part, which describes the mean value (or
curve) (e.g., a log-logistic model);

2. a stochastic part, which represents the distribution around
the mean curve (e.g., a normal distribution).

→ Each part depends on the nature of data to analyze.
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Four shapes to describe dynamic in life science

Sigmoid Michaelis−Menten

Exponential Linear

From http://bioassay.dk/bioassay/.
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Example of sigmoidal relationship

Data from a single
dose-effect relationship
between root lengths
of perennial ryegrass
(Lolium perenne L.) and
concentration of ferulic
acid.

(n = 24)
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The log-logistic model - Graph
b = 3,c = 0.2,d = 1.1 and e = 0.3
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(here, in arbitrary unit)

For survival, d is the natural mortality (may be fixed to 1) and c is fixed to 0.
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The log-logistic model - Morphology

Case of survival, with c = 0 and d = 1: e = LC50.
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Other sigmoidal models

Many other models exist to describe sigmoidal shapes of
dose-response curves as for example the Weibull’s models:

Y = c + (d − c)e−( x
e
)b or Y = c + (d − c)(1− e−( x

e
)b )
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Comparison of sigmoidal curves
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About the stochastic part

Its role

Modelling of the variability around the mean tendency of the data
→ requires the choice of the appropriate probability distribution

I Quantal (or binary) data: use of a binomial distribution.

Y ∼ B (p(X , θ),n)

I Count (or discrete) data: use of a Poisson distribution

Y ∼ P(λ) with λ = f (X , θ)

I Continuous data: use of a normal distribution

Y ∼ N (f (X , θ), σ)
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In brief: a wide variety of models

1. A deterministic part: linear or non-linear,
and its associated parameters:
for example, (α, β) or (b, c, d , e);

2. A stochastic part: Gaussian or not,
and its associated parameters:
for example, p (binomial), λ (Poisson) or σ (normal).
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A battery of regression types

I Gaussian linear regression: simple linear regression,
polynomial regression, multiple regression,...;

I Generalized linear regression: logistic regression, Poisson
regression, multinomial logit regression, probit regression,...;

I Gaussian non-linear regression: least-square regression,
simple or multiple;

I Generalized non-linear regression .
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What is inference ?

Inference implies the use of both observed data and a model.
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What is inference ≡ Get parameter estimates

Several criteria may provide the best fit parameter values.
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Inference: generalization to population
Inference necessarily implies generalization from a sample to
population, and the calculation of uncertainty in the estimated
parameters, especially uncertainty due to the sampling error.

Sampling 

Results observed 

on a sample 

Conclusion on 

the population 

Statistical inference 

A sample 
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Inference: how to perform?

Two main ways of practicing:

The frequentist framework

Based on the principle of maximizing the probability of the data
given the model, namely the likelihood P(Y |θ).

The Bayesian framework

Based on the principle of maximizing the probability of the model
given the data, namely the joint posterior distribution P(θ|Y ),
combining both the likelihood and prior information available on
parameters in advance.
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Frequentist framework

I Parameter θ is supposed fixed but unknown;

I Parameter inference only uses observed data;

I Confidence intervals are based on repeated sampling from the
model, the probability being associated to the relative occurrence
frequency of an outcome.

Bayesian framework

I Parameter θ is considered as a random variable, associated to
a probability distribution;

I Parameter inference uses both observed data and prior information
(prior distribution);

I Credible intervals are defined from the posterior distribution and can
be easily interpreted: 95% is the probability that the true
parameter value lies within its 95% credible interval.
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The Bayesian framework in pictures

Conclusion on on 

the population Bayesian inference 

A sample from the 
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A prior 

distribution 

A posterior 
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The posterior distribution = 
the conditional distribution 
of the unknown 
parameters given the 
observed data 

33/36 S. Charles, sandrine.charles@univ-lyon1.fr MOSAIC, https://mosaic.univ-lyon1.fr

sandrine.charles@univ-lyon1.fr
https://mosaic.univ-lyon1.fr


Advantages of the Bayesian framework
Use of the posterior distribution for parameter estimation

I Point estimate:
Mean, median or mode of the posterior distribution

I Interval estimate:
Definition of a credible interval (or Bayesian confidence
interval) from posterior distribution quantiles:
→ 2.5% and 97.5% quantiles for a 95% credible interval.
Easy interpretation: the probability that the parameter lies
in a 95% credible interval is 95%.

I There is no more need of hypothesis tests, nor of p-value
calculation: one can make decisions directly from the posterior
distribution.
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Inference: tools for practice

Under the frequentist framework

Under the Bayesian framework
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i n s t i t u t i o n sf i n a n c i a l Supports



MOSAIC is a turnkey decision-making tool for
ecotoxicologists, regulators and industrials.

Without the need to immerse into extensive
mathematical and statistical technicalities, users are
given advanced and innovative methods for a
valuable quantitative environmental risk assessment.

http://pbil.univ-lyon1.fr/software/mosaic/
mosaic@univ-lyon1.fr 

Contact

For who? For what?



The dark side

http://pbil.univ-lyon1.fr/software/mosaic/
mosaic@univ-lyon1.fr 

Contact



Classical dose-response analysis of bioassay
survival data, with descriptive summaries of
the data and x% lethal concentrations (LCx)
estimates under a Bayesian framework.

surv

Two modules 
for survival

Toxicokinetic-toxicodynamic (TKTD) analysis
of survival data, fitted with a General Unified
Threshold model of Survival (GUTS) model to
estimate threshold concentrations and x%
lethal concentrations (LCx) under a Bayesian
framework.

GUTS



Classical dose-response analysis of bioassay
reproduction data, in addition with
descriptive summaries of the data and
estimates of x% effective concentrations
(ECx) under a Bayesian framework.

repro

Species Sensitivity Distribution fitted to
estimate hazardous concentration for p%
(HCp) of the species.

Parameters of the probability distribution
are estimated from toxicity thresholds under
a frequentist framework.

SSD

Two modules
for reproduction and SSD



Classical dose-response analysis of
bioassay data of growth-type, in addition
with descriptive summaries of the data and
estimates of x% effective concentrations
(ECx) under a Bayesian framework.

growth

Provides bioaccumulation factors (BCF/BMF/BAF)
from the fitting of a toxicokinetic (TK) model on
accumulation-depuration data under a
Bayesian framework. Fulfils all requirements of
regulators when examining applications for
market authorization of active substances.

bioacc

Two new modules
2020



Input: data from standard bioassays where survival
has been recorded through time at different
concentrations. Data from different replicates of a
same experimental condition are pooled.

Model: a three parameters log-logistic model
(concentration-exposure part) associated with a
binomial stochastic part (binary data).

Output: LCx values (x = 5, 10, 20, …, 80%) expressed
as median estimates associated with their 95%
credible intervals.

surv



A gateway to R



LC50 = 117.7 µg.L-1 [103.8 ; 124.9]

Features

http://pbil.univ-lyon1.fr/software/mosaic/
mosaic@univ-lyon1.fr 

Contact

Free usage

User-friendly interface

Data privacy

Reproducible results

Open methods



LC50 = 117.7 µg.L-1 [103.8 ; 124.9]

How to cite MOSAIC?

http://pbil.univ-lyon1.fr/software/mosaic/
mosaic@univ-lyon1.fr 

Contact

Charles S, Veber P, Delignette-Muller ML. 2018. MOSAIC: a web-interface for 
statistical analyses in ecotoxicology. Environ. Sci. Pollut. Res. 25:11295–11302.

Kon Kam King G, Veber P, Charles S, Delignette-Muller ML. 2014. MOSAIC_SSD: 
a new web tool for species sensitivity distribution to include censored data by 
maximum likelihood. Environ. Toxicol. Chem. 33:2133–9.

Baudrot V, Veber P, Gence G, Charles S. 2018. Fit GUTS reduced models online: 
from theory to practice. Integr. Environ. Assess. Manag. 14:625–630.



Usage statistics (overview)



Usage statistics (last month)



http://mosaic
.univ-lyon1.fr
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