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What means TKTD?

https://www.ecotoxmodels.org/hot-topics/toxicokinetic-toxicodynamic-models/

• TK stands for Toxico-Kinetics
• Provides a prediction of the chemical concentration inside an organism from 

the external chemical concentration to which the organism is exposed;
• Models absorption, distribution, metabolism (biotransformation) and 

elimination of toxicants inside the organism (ADME processes);
• Includes physiologically-based (PB) processes.

• TD stands for Toxico-Dynamics
• Translates the internal chemical concentration to an effect on life-history 

traits over time (e.g., survival, growth, reproduction,…);
• Accounts for energy allocation and physiological compensation;
• Accounts for damage inside the organism.
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Organisms are complex …

© T. Jager3
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Stressing organisms…

… adds to this complexity

Response to a chemical stressor depends on:
• type of toxicant;
• organism (species, life stage…);
• endpoint (survival, growth, reproduction…);
• exposure duration and intensity;
• environmental conditions.
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How to face with this complexity?

• Make over-simplifications –> the ‘black-box approach’
• Based on standardized toxicity tests (e.g., OECD);
• Consists of reducing information on toxicity with summarizing statistics 

(namely LCx/ECx) estimated at a target exposure duration;
• Critical effect concentrations are specific to the environmental conditions.

q Nothing mechanistic;
q Nothing predictive;
q Current approach in ERA.
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How to face with this complexity?

• Make over-simplifications –> the ‘black-box approach’
• Use a fully detailed model à the ‘white-box approach’
• Deciphers the finest mechanistic aspects of chemical effects on organisms;
• Consists of linking responses at the molecular, cellular and organ levels to the 

life-history traits.

q species- and compound-dependent;
q often over-parametrized models;
q highly data consuming.

https://en.wikipedia.org/wiki/Modelling_biological_sy
stems#/media/File:Signal_transduction_pathways.svg
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How to face with this complexity?

• Make over-simplifications –> the ‘black-box approach’
• Use a fully detailed model à the ‘white-box approach’
• Make an idealization of the system à the ‘simple-box approach’
• Understands why toxic effects change over time, vary between species and 

toxicants, and depend on environmental conditions;
• Explains links between life-history traits, as well as effects of chemicals over 

the entire life cycle (from egg to death);
• Predicts effects under untested conditions;
• Has parameters with a physical/biological meaning;
• Remains as species- and compound-specific as possible.
à Favours a ‘process-based’ also said ‘mechanistic’ approach
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TKTD: the good compromise

• TKTD models allow describing and understanding effects of chemical 
stressors on organisms;
• They provide a general framework to quantitatively understand, and 

ultimately predict, the biological effects of chemicals over time;
• Chemicals are understood to be the chemical substances that are not 

part of the organism’s “normal” functioning;
• Current TKTD models mainly focus on multicellular ectotherms or 

plants.
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TKTD in comparison with other approaches

Features NOEC/LOEC DR models TKTD models

Simplicity

Model-independency

Statistical correctness

Tested concentration 
independency

Target time independency
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• Chemicals need to be taken up into the body and transported to a 
target site before they will exert an effect;
• They may undergo biotransformation into other compounds (à

metabolites), which may be more or less toxic.
• They may be eliminated from the body (e.g., dilution by growth).

àTK models are ‘compartment’ models;
àOne or more compartments;
àThe chemical is assumed to be evenly distributed within the 

compartment(s).
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• From very simplistic and general one-compartment model…

• … to models of intermediate complexity…

• ... to very complex physiologically-based toxicokinetic models
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• From very simplistic and general one-compartment model…

Bioaccumulation – Depuration curve

uptake elimination
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• From very simplistic and general one-compartment model…

Bioaccumulation – Depuration curve

uptake elimination
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• From very simplistic and general one-compartment model…

Bioaccumulation factor:

𝐵𝐶𝐹! =
𝑘"
𝑘#
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uptake elimination
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• From very simplistic and general one-compartment model…
• … to models of intermediate complexity…
• TK models accounting for different sources and processes of

accumulation and depuration on whole organism 

Ratier et al. 2019. Ecotoxicol. Environ. Saf. 180: 33–42.
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• From very simplistic and general one-compartment model…
• … to models of intermediate complexity…
• TK models accounting different sources and processes of

accumulation and depuration on whole organism 
• TK models accounting for different sources

and processes of accumulation and depuration
but differentiating target organs

Cephalon Caecum
Guts

Rest
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Concentration

(over time)

Gestin et al. 2020. In preparation.
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• From very simplistic and general one-compartment model…
• … to models of intermediate complexity…
• ... to very complex physiologically-based toxicokinetic (PBTK) models

Grech et al. 2016. Sci. Total Environ. 578: 1–15.

Generally restricted to
large-bodied organisms
(e.g., fish or mammals)
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Sub-lethal endpoints

• The Dynamic Energy Budget (DEB) theory
= a unified approach to deal with energy allocation 
by organisms, an integrated view of an organism as 
a dynamical system
à The standard DEB model for animals

• The DEBtox equations
= a way to include the energy-budget approach in 
the TD module
à Effects on growth and reproduction involve a 
change in DEB parameters
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Lethal endpoints

The General Unified
Threshold model of Survival

GUTS

TDDose Metric
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What is GUTS?

à A theoretical framework about stressors effects on
survival over time, based on hypotheses related to:

• Stressor quantification (choice of a dose metric);
• Compensatory processes;
• Nature of the death process.

23
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Scientific Opinion on the state of the art of 
Toxicokinetic/Toxicodynamic (TKTD) effect 
models for regulatory risk assessment of 

pesticides for aquatic organisms

TKTD models for
Environmental Risk Assessment

https://efsa.onlinelibrary.wiley.com/doi/full/10.2903/j.efsa.2018.5125#
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Scientific Opinion on the state of the art of 
Toxicokinetic/Toxicodynamic (TKTD) effect 
models for regulatory risk assessment of 

pesticides for aquatic organisms

TKTD models for
Environmental Risk Assessment

https://efsa.onlinelibrary.wiley.com/doi/full/10.2903/j.efsa.2018.5125#

APPROVED 27-06-20
18

25

https://efsa.onlinelibrary.wiley.com/doi/full/10.2903/j.efsa.2018.5125


Master EPETProf. Sandrine CHARLES

2013 – Aquatic Guidance Document
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TKTD models in Tier-2C
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TKTD models in Tier-2C
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• TKTD modelling may be used to address (the threshold for) individual-
level effects occurring from time-variable exposure regimes on aquatic 
vertebrates and invertebrates (Tier-2C), even if TKTD models could also 
be used from data collected at Tier-1;
• The GUTS framework is appropriate as it is for lethal effects in the acute 

and the chronic risk assessment scheme;
• The DEBtox framework is promising and seen as very relevant for sub-

lethal effects in the chronic risk assessment scheme;
• Plant models need further standardisation, documentation, calibration 

and validation, except for Lemna minor which is ready-to-use.
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EFSA workflow for ERA

Calibration

Fit a TKTD model on toxicity test data and get parameter estimates associated with 
their uncertainty

Validation

Simulate an effect over time under a time-variable exposure profile and compare with 
observed data from a refined toxicity test

à Three validation criteria are recommended by EFSA

Prediction

Make simulations under realistic scenarios to assess risk on how far is the exposure 
profile from causing a pre-defined effect.
Using GUTS models à Concept of the  x% Lethal Profile (LPx) = Multiplication Factor 

leading to an additional x% reduction in the final survival rate.

1

2

3
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TKTD models as new tools for
Environmental Risk Assessment

Compare the classical LC50 value at final time with the corresponding 
calculations from GUTS-IT and GUTS-SD models

• What do we expect?
Because TKTD models use all data over time at each tested 
concentration, we expect a better precision (i.e., a reduced 

uncertainty) of the LC50 calculated with GUTS models

• 20 standard survival datasets:
• 10 species / One toxicant (Chlorpyriphos)
• One species (D. magna) / 7 toxicants
• Three other datasets
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Bayesian implementation workflow
• Fit to each dataset
• Model GUTS-IT
• Model GUTS-SD
• Classical dose-response model

• Get parameter estimates
• Visual fit quality
• Goodness-of-fit criteria

• LCx,t calculations
• x = 50%
• t = final time

Package ‘morse’ 3.1.0
[Baudrot et al., 2018]
https://CRAN.R-project.org/package=morse

http://pbil.univ-lyon1.fr/software/mosaic/guts
[Charles et al., 2017]

[Baudrot et al., 2018]

C

IT

SD

https://cran.r-project.org/package=morse
http://pbil.univ-lyon1.fr/software/mosaic/guts
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D. magna / Potassium dichromate
GUTS-SD model

Visual check of fit

Predicted dose-response curve at day 21

Parameter estimates

LC
50
= 0.47 0.43 ; 0.51⎡⎣ ⎤⎦

LC50 calculation
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2
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Comparison of LC50 calculations

Reference value = LC50 median value obtained 
with the classical dose-response model (C) 

1

C

D. magna / Potassium dichromate

IT SD
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Comparison of LC50 calculations

26/05/2019 SETAC - Helsinki

As expected, we get a better 
precision with GUTS models

1

C

D. magna / Potassium dichromate

Reference value = LC50 median value obtained 
with the classical dose-response model (C) 

IT SD



Master EPETProf. Sandrine CHARLES

Comparison of LC50 calculations
• Three questions arise:
1. Does the better precision 

depend on x?
2. Does the better precision 

depend on the exposure 
duration?

3. Does the better precision 
depend on the dataset?
• On the species?
• On the toxicant?

1

IT SD C

D. magna / Potassium dichromate
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One dataset: LCx at final time versus x
à The better precision does not depend
on x

x=50%
D. magna / Potassium dichromate

C

IT

SD



Master EPETProf. Sandrine CHARLES

One dataset: LC50 over time
à The better precision does not depend
on the exposure duration

D. magna / Potassium dichromate

C

IT

SD
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10 species / One toxicant: LC50 at final time
à The precision depends on the species
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One species / 7 toxicants: LC50 at final time
à The precision depends on the toxicant
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Conclusion

• TKTD models account for all the data from the beginning to the end of the 
experiment: no data are lost;
• GUTS models allow the estimation of the LCx,t whatever x and whatever t, 

even at time points not in the experimental design;
• Even if dependent on the dataset, for most of them, GUTS models provide 

LCx,t estimates with a better precision compared to the classical dose-
response one;
• GUTS models can easily be fitted on any dataset either on-line (MOSAIC 

platform) or with the R software (package ‘morse’).

http://pbil.univ-lyon1.fr/software/mosaic/guts https://CRAN.R-project.org/package=morse

http://pbil.univ-lyon1.fr/software/mosaic/guts
https://cran.r-project.org/package=morse

