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What means TKTD?

 TK stands for Toxico-Kinetics

* Provides a prediction of the chemical concentration inside an organism from
the external chemical concentration to which the organism is exposed;

* Models absorption, distribution, metabolism (biotransformation) and
elimination of toxicants inside the organism (ADME processes);

* Includes physiologically-based (PB) processes.

* TD stands for Toxico-Dynamics

* Translates the internal chemical concentration to an effect on life-history
traits over time (e.g., survival, growth, reproduction,...);

* Accounts for energy allocation and physiological compensation;
e Accounts for damage inside the organism.


https://www.ecotoxmodels.org/hot-topics/toxicokinetic-toxicodynamic-models/

Organisms are complex ...

© T. Jager



Stressing organismes...

... adds to this complexity

Response to a chemical stressor depends on:
* type of toxicant;

* organism (species, life stage...);

* endpoint (survival, growth, reproduction...);
e exposure duration and intensity;

* environmental conditions.
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How to face with this complexity?

* Make over-simplifications —> the ‘black-box approach’
* Based on standardized toxicity tests (e.g., OECD);
* Consists of reducing information on toxicity with summarizing statistics

(namely LCx/ECx) estimated at a target exposure duration;
* Critical effect concentrations are specific to the environmental conditions.

[ Nothing mechanistic;
J Nothing predictive;
M Current approach in ERA.

Concentration

Fit of classical
dose-response
models



How to face with this complexity?

* Use a fully detailed model = the ‘white-box approach’

* Deciphers the finest mechanistic aspects of chemical effects on organisms;

* Consists of linking responses at the molecular, cellular and organ levels to the
life-history traits. o
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1 species- and compound-dependent;
 often over-parametrized models;
 highly data consuming.

https://en.wikipedia.org/wiki/Modelling biological sy
stems#/media/File:Signal transduction pathways.svg
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https://en.wikipedia.org/wiki/Modelling_biological_systems

How to face with this complexity?

* Make an idealization of the system = the ‘simple-box approach’

* Understands why toxic effects change over time, vary between species and
toxicants, and depend on environmental conditions;

Explains links between life-history traits, as well as effects of chemicals over
the entire life cycle (from egg to death);

Predicts effects under untested conditions;
* Has parameters with a physical/biological meaning;
* Remains as species- and compound-specific as possible.
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TKTD: the good compromise

 TKTD models allow describing and understanding effects of chemical
stressors on organisms;

* They provide a general framework to quantitatively understand, and
ultimately predict, the biological effects of chemicals over time;

e Chemicals are understood to be the chemical substances that are not

part of the organism’s “normal” functioning;

* Current TKTD models mainly focus on multicellular ectotherms or
plants.



TKTD in comparison with other approaches

m NOEC/LOEC DR models TKTD models

Simplicity

Model-independency

Statistical correctness

Tested concentration
independency

Target time independency
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External Internal

Concentration TK Concentration
(over time) (over time)

* Chemicals need to be taken up into the body and transported to a
target site before they will exert an effect;

* They may undergo biotransformation into other compounds (=2
metabolites), which may be more or less toxic.

* They may be eliminated from the body (e.g., dilution by growth).

—2>TK models are ‘compartment’ models;
—>0ne or more compartments;

—>The chemical is assumed to be evenly distributed within the
compartment(s).
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Internal
Concentration
(over time)

External
Concentration
(over time)

* From very simplistic and general one-compartment model...

* ... to models of intermediate complexity...

* ... to very complex physiologically-based toxicokinetic models
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External
Concentration
(over time)

Internal
Concentration
(over time)

* From very simplistic and general one-compartment model...
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External
Concentration
(over time)

Internal
Concentration
(over time)

* From very simplistic and general one-compartment model...

Bioaccumulation — Depuration curve
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Internal
Concentration
(over time)

External
Concentration
(over time)

* From very simplistic and general one-compartment model...
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Internal
Concentration
(over time)

External
Concentration
(over time)

* ... to models of intermediate complexity...

* TK models accounting for different sources and processes of
accumulation and depuration on whole organism
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Internal
Concentration
(over time)

External
Concentration
(over time)

* From very simplistic and general one-compartment model...

e ... to models of intermediate complexity...

 TK models accounting different sources and processes of
accumulation and depuration on whole organism

* TK models accounting for different sources \,
and processes of accumulation and depuration ( Q%
but differentiating target organs

Guts
Cephalon Caecum
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Gestin et al. 2020. In preparation.



Internal
Concentration
(over time)

External
Concentration
(over time)

* ... to very complex physiologically-based toxicokinetic (PBTK) models
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MOSAIC Bioacc

C ® 127.0.0.1:4

M OSAI Cbioacc ‘ Université Claude Bernard LJS: Lyon 1

modeling and statistical toals for ecotoxicology

The MOSAICy0acc application is a turn-key web tool providing bioaccumulation factors (BCF/BMF/BAF) from a

toxicokinetic (TK) model fitted to accumulation-depuration data. It is designed to fulfil the requirements of ‘ l B B E

regulators when examining applications for market authorization of active substances. Lear:

H,0'Lyon
Contact: sandrine.charles@univ-lyon1.f Université de Lyon

Measured concentrations

Please upload at least a four-column file in .txt or .csv format. The correct separator has to be chosen. Columns with headers, in exact order, must be the followings:

* The time points at which you measured concentrations (header ='time')
» The measured concentrations within the organisms, must be in ug.g”* (header = 'conc’)

The exposure concentration in water, sediment, food and/or pore water, nominal or measured (constant over time), must be in ug.mL™” or ug.g* (header = 'expw', 'exps', 'expf' or 'exppw')

https://mosaic.univ-lyonl.fr/bioacc

The IDs of the replicates (header = "replicate’)

Other columns can be added in the file:
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Measured concentrations

Please upload at least a four-column file in .txt or .csv format. The correct separator has to be chosen. Columns with headers, in exact order, must be the followings:

* The time points at which you measured concentrations (header ='time')
» The measured concentrations within the organisms, must be in ug.g”* (header = 'conc’)

The exposure concentration in water, sediment, food and/or pore water, nominal or measured (constant over time), must be in ug.mL™” or ug.g* (header = 'expw', 'exps', 'expf' or 'exppw')

The IDs of the replicates (header = "replicate’)

Other columns can be added in the file:
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Observed

Dose IV!etrlc Effects
(over time)

Sub-lethal endpoints

* The Dynamic Energy Budget (DEB) theory
= a unified approach to deal with energy allocation
by organisms, an integrated view of an organism as
a dynamical system
— The standard DEB model for animals

* The DEBtox equations
= a way to include the energy-budget approach in
the TD module
- Effects on growth and reproduction involve a
change in DEB parameters

http://www.debtox.info/



http://www.debtox.info/

Lethal endpoints

The General Unified
Threshold model of Survival

GUTS
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What is GUTS?

VIRONMENTAL
18CIN0 ﬂqu 2011, 45, 2529-2540 s acsorg/est

Clence

General Unified Threshold Model of Survival - a Toxicokinetic-
Toxicodynamic Framework for Ecotoxicology

Modelling survival
Tjalling Jager," Carlo Albert,” Thomas G. Preuss,” and Roman Ashauer™* under cher%lical stress

- A theoretical framework about stressors effects on 2018
survival over time, based on hypotheses related to:
 Stressor quantification (choice of a dose metric); %@

* Compensatory processes;
* Nature of the death process.

P | P2 | Ps3
0-1 day 1-2 day >2 day

Tjalling JAGER and Roman ASHAUER
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TKTD models for
Environmental Risk Assessment

Scientific Opinion on the state of the art of
Toxicokinetic/Toxicodynamic (TKTD) effect
models for regulatory risk assessment of
pesticides for aquatic organisms

* n
¥

- efsam

European Food Safety Authority

‘ J’ EFSA Journal

https://efsa.onlinelibrary.wiley.com/doi/full/10.2903/j.efsa.2018.5125#



https://efsa.onlinelibrary.wiley.com/doi/full/10.2903/j.efsa.2018.5125
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TKTD models for
Environmental Risk Assessment

¥
*i
Efsa i eJ EFSA Journa

European Food Safety Authority

https://efsa.onlinelibrary.wiley.com/doi/full/10.2903/j.efsa.2018.5125#



https://efsa.onlinelibrary.wiley.com/doi/full/10.2903/j.efsa.2018.5125

> Ecological realism

Acute Effect Assessment

Chronic Effect Assessment

Specific Protection Goal

RAC,,,.,. — derivation
(linked to PEC.,-max)

— ylier-4 ¢

Field studies and

landscape level
models

Tier-2: Acute lab tests
with additional species
and/or refined exposure

Tier-1: Core acute toxicity data

Tier-3:

Population and community level
experiments and models

ronic lab tests
additional species
and/or refined exposure

Tier-1: Core chronic toxicity data

RAC,,,.., — derivation
(linked to PECy,, max
oF PEC s:6ma)

Complexity

(data)

¥

- efsam

European Food Safety Authority
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TKTD models in Tier-2C

Tier-2 RAC and risk assessment

Tier-2B: SSD approach
>5 valid studies for vertebrates
>8 valid studies for
invertebrates and/or primary
producers

a

Tier-2 A: Geometric mean /
WoE approach

<5 valid studies for vertebrates

Tier-2C,: Refined exposure approach for relevant species

Experimental studies
Relevant (worst-case)
exposure profile

TKTD models Calibration
In line with good modelling |[@=sssssassanasnanap
practice guidance Validation

A

h———--————--—»

Tier-2C;: Refined exposure approach for relevant Tier-1 test species

TKTD models

Calibration

<8 valid studies for invertebrates In line with good modelling

*-——-----.

Validation

Experimental studies
Relevant (worst-case)
exposure profile

and/or primary producers

I

practice guidance

Calibration I

' Solid blue lines

- Standardised exposure:

————— » Refined exposure (Tier-2C,):

' species and exposure conditions in line with Tier-1 tests

1 1
1 1
i Experimental studies with standard and/or additional test
1 1
] 1
i (worst-case approach) i

===zszanszp Refined exposure (Tier-2GC,):
Tests with standard and/or additional species and refined
exposure conditions informed by predicted field exposure
profiles
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TKTD models in Tier-2C

 TKTD modelling may be used to address (the threshold for) individual-
level effects occurring from time-variable exposure regimes on aquatic
vertebrates and invertebrates (Tier-2C),

’

 The GUTS framework is appropriate as it is for lethal effects in the acute
and the chronic risk assessment scheme;

* The DEBtox framework is promising and seen as very relevant for sub-
lethal effects in the chronic risk assessment scheme;

* Plant models need further standardisation, documentation, calibration
and validation, except for Lemna minor which is ready-to-use.



Fit a TKTD model on toxicity test data and get parameter estimates associated with
their uncertainty

Calibration

Simulate an effect over time under a time-variable exposure profile and compare with
observed data from a refined toxicity test

\Zel[lLii))8 - Three validation criteria are recommended by EFSA

Make simulations under realistic scenarios to assess risk on how far is the exposure

profile from causing a pre-defined effect.

Using GUTS models - Concept of the x% Lethal Profile (LPx) = Multiplication Factor
leading to an additional x% reduction in the final survival rate.

e Prediction

x

- efsamworkflow for ERA

European Food Safety Authority
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KTD models as new tools for
Environmental Risk Assessment

Compare the classical LC., value at final time with the corresponding
calculations from GUTS-IT and GUTS-SD models

Survival rate
o o o

 What do we expect?

Because TKTD models use all data over time at each tested

concentration, we expect a better precision (i.e., a reduced
uncertainty) of the LC;, calculated with GUTS models

e 20 standard survival datasets:
* 10 species / One toxicant (Chlorpyriphos)
* One species (D. magna) / 7 toxicants
* Three other datasets

0.4

Survival rate

0.2

0.0
T




Bayesian implementation workflow

* Fit to each dataset

IT"« Model GUTS-IT

sD * Model GUTS-SD

c * Classical dose-response model Package ‘morse’ 3.1.0 R

https://CRAN.R-project.org/package=morse

\/_'”Il& L||| modeling and statistical tools for ecotoxicology

http://pbil.univ-lyon1.fr/software/mosaic/guts

* Get parameter estimates
* Visual fit quality
 Goodness-of-fit criteria

e LCx,t calculations
* x=50%
e t=final time



https://cran.r-project.org/package=morse
http://pbil.univ-lyon1.fr/software/mosaic/guts

D. magna / Potassium dichromate

GUTS-SD model
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Comparison of LC., calculations

- Reference value = LC.; median value obtained
with the classical dose-response model (C)

D. magna [ Potassium dichromate



Comparison of LC., calculations
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As expected, we get a better
precision with GUTS models

Reference value = LC;, median value obtained
with the classical dose-response model (C)

D. magna [ Potassium dichromate



Comparison of LC., calculations

IT SD C

Pt [ —_
e
b
. |
Ao

D. magna [ Potassium dichromate

* Three questions arise:

1. Does the better precision
depend on x?

2. Does the better precision
depend on the exposure
duration?

3. Does the better precision
depend on the dataset?

* On the species?
* On the toxicant?



One dataset: LCx at final time versus x
— The better precision does not depend D

on X
!

0.6

0.5

LCx at final time

0.2

0.1
60

20 40 .
x value of LCx X=50%

D. magna [ Potassium dichromate

Prof. Sandrine CHARLES Master EPET



One dataset: LCc, over time
— The better precision does not depend
on the exposure duration

0.6

0.4

16 17 18 19 20 21

D. magna / Potassium dichromate ~ =XPosure duration (days)

Prof. Sandrine CHARLES Master EPET
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10 species / One toxicant: LC;, at final time

SD

- The precision depends on the species
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SD
C

One species / 7 toxicants: LC., at final time
- The precision depends on the toxicant



Conclusion

 TKTD models account for all the data from the beginning to the end of the
experiment: no data are lost;

 GUTS models allow the estimation of the LCx,t whatever x and whatever t,
even at time points not in the experimental design;

* Even if dependent on the dataset, for most of them, GUTS models provide
LCx,t estimates with a better precision compared to the classical dose-
response one;

 GUTS models can easily be fitted on any dataset either on-line (MOSAIC
platform) or with the R software (package ‘morse’).

http://pbil.univ-lyonl.fr/software/mosaic/guts https://CRAN.R-project.org/package=morse



http://pbil.univ-lyon1.fr/software/mosaic/guts
https://cran.r-project.org/package=morse

