Toxico-Kinetic (TK) modelling

Christelle Lopes christelle.lopes@univ-lyon1.fr

1

Introduction

One-compartment models

Multi-compartment

2

models

Aquatic ecosystems, made of several communities

3

models

Communities are exposed to chemicals via individuals

4

models

Evaluation of chemical effects at different biological levels

Importance of TK in environmental risk assessment (ERA)

² Make the link between exposure concentration and individual effects

³ Understand and describe bioaccumulation processes

Importance of TK in environmental risk assessment (ERA)

1 Characterize chemical state of aquatic ecosystem (European WFD)

EU requires good ecological status

Importance of TK in environmental risk assessment (ERA)

Characterize chemical state of aquatic ecosystem (European WFD)

EU requires good ecological status

Importance of TK in environmental risk assessment (ERA)

Characterize chemical state of aquatic ecosystem (European WFD)

EU requires good ecological status

Environmental Quality Standard (EQS)

« Concentration of a pollutant or group of pollutants which must not be exceeded, in order to protect human and environmental health »

➢ EQS for water

EQS for sediment

► EQS for biota

Derived from extrapolation of effects, not from bioaccumulation capacity of the chemicals within the body of organisms

Importance of TK in environmental risk assessment (ERA)

Toxico-Kinetic and Toxico-Dynamic framework

> Translate (time-varying) external concentrations to time patterns of effects.

Importance of TK in environmental risk assessment (ERA)

models

- Characterize chemical state of aquatic ecosystem (European WFD)
- ² Make the link between exposure concentration and individual effects
- 3 Understand and describe bioaccumulation processes \rightarrow ADME = Absorption, Distribution, Metabolism, Excretion

Introduction	One-compartment models	Multi-compartment
models		
TK data		

- **TK data**: accumulation and depuration phases
 - Accumulation phase: individuals exposed at a given (*constant*) concentration (all ADME processes may occur) during a pre-defined time
 - Depuration phase: individuals in clean medium (*without toxicant*) (only depuration processes occur)

Introduction	One-compartment models	Multi-compartment		
models				
TK data and TK mo	dels			

- **TK data**: accumulation and depuration phases
 - Accumulation phase: individuals exposed at a given (constant) concentration (all ADME processes occur) during a defined time
 - Depuration phase: individuals in clean medium (without toxicant) (only elimination processes occur)
- **TK models**: compartment models; the chemical is assumed to be evenly distributed within the compartment(s).
 - One-compartment models
 - Multi-compartments models

One-compartment models: Theory

- > The organism is reduced to a single well-mixed compartment
- > There is one single homogeneous **internal** concentration: $C_i(t)$
- > The uptake flux is proportional to the external concentration: $k_u C_w(t)$
- > The elimination flux is proportional to the internal concentration: $k_e C_i(t)$

- \succ The organism is reduced to a single well-mixed compartment
- \succ There is one single homogeneous **internal** concentration: $C_i(t)$
- \succ The uptake flux is proportional to the external concentration: $k_{\mu} C_{\nu}(t)$
- \succ The elimination flux is proportional to the internal concentration: $k_e C_i(t)$

$$\begin{cases} \frac{dC_{i}(t)}{dt} = k_{u} \times C_{w}(t) - k_{e} \times C_{i}(t) & \text{if } 0 \leq t \leq t_{c} \\ \frac{dC_{i}(t)}{dt} = -k_{e} \times C_{i}(t) & \text{if } t > t_{c} \end{cases}$$

$$\begin{aligned} t_{c} : \text{ duration of the} \\ \text{ accumulation phase} \\ 19 \end{aligned}$$

: duration of the

$$\begin{cases} \frac{dC_i(t)}{dt} = k_u \times C_w(t) - k_e \times C_i(t) & \text{if } 0 \le t \le t_d \\ \frac{dC_i(t)}{dt} = -k_e \times C_i(t) & \text{if } t > t_d \end{cases}$$

- $\succ k_{\rho}$ [time]⁻¹ influences the shape of the curve, and the time to reach x % of the steady-state
- $\succ k_{\mu}$ [time]⁻¹ influences the height of the curve, that is the level of the steady-state

20

$$\begin{cases} \frac{dC_i(t)}{dt} = k_u \times C_w(t) - k_e \times C_i(t) & \text{if } 0 \le t \le t_c \\ \frac{dC_i(t)}{dt} = -k_e \times C_i(t) & \text{if } t > t_c \end{cases}$$

- > k_e [time]⁻¹ influences the shape of the curve, and the time to reach x % of the steady-state
- k_u [time]⁻¹ influences the height of the curve, that is the level of the steady-state
- If the steady state is rapidly achieved, the chemical effects will appear soon after the exposure to the chemical starts.
- If the accumulation process is slow, the chemical effects will only appear after a more prolonged exposure.

$$\begin{cases} \frac{dC_i(t)}{dt} = k_u \times C_w(t) - k_e \times C_i(t) & \text{if } 0 \le t \le t_c \\ \frac{dC_i(t)}{dt} = -k_e \times C_i(t) & \text{if } t > t_c \end{cases}$$

\succ Analytical solution if C_w is **constant** over time

$$\begin{cases} C_i(t) = \frac{k_u \times C_w}{k_e} + \left(C_0 - \frac{k_u \times C_w}{k_e}\right) \times e^{-k_e \times t} & \text{if } 0 \le t \le t_c \\ C_i(t) = \frac{k_u \times C_w}{k_e} \times e^{-k_e \times (t-t_c)} + \left(C_0 - \frac{k_u \times C_w}{k_e}\right) \times e^{-k_e \times t} & \text{if } t > t_c \end{cases}$$

Ratier et al., 2019 Charles et al., 2021

Several uptake routes and eliminations processes

Several uptake routes and eliminations processes

Ratier et al. 2019.

24

> Choice according to experimental data

Constant exposure by water and sediment Excretion and Growth

> C_i: internal concentration L: growth variable

$$\begin{pmatrix} \frac{dC_i(t)}{dt} = (k_w \times C_w) + (k_s \times C_s) - (k_e + k_g) \times C_i(t) \\ \frac{dL(t)}{dt} = k_g \times (L_\infty - L(t))$$

> Choice according to experimental data

Constant exposure by water and sediment Excretion and Growth

C_i: internal concentration L: growth variable

$$\begin{cases} \frac{dC_i(t)}{dt} = (k_w \times C_w) + (k_s \times C_s) - (k_e + k_g) \times C_i(t) \\ \frac{dL(t)}{dt} = k_g \times (L_\infty - L(t)) \end{cases}$$

Constant exposure by water Excretion and biotransformation (1 metabolite)

 C_p : internal parent concentration C_m : internal metabolite concentration

$$\frac{dC_p(t)}{dt} = k_w \times C_w - (k_{e,p} + k_m) \times C_p(t)$$
$$\frac{dC_m(t)}{dt} = k_m \times C_p(t) - k_{e,m} \times C_m(t)$$

Derivation of Bioaccumulation metrics

- To evaluate the bioaccumulation potential of chemical substances
- > Three metrics according to the source of exposure
 - BCF: Bio-Concentration Factor (exposure via water)
 - BSAF: Biota-Sediment Accumulation Factor (exposure via sediment)
 - BMF: Bio-Magnification Factor (exposure via food)

Derivation of Bioaccumulation metrics

- To evaluate the bioaccumulation potential of chemical substances
- > Three metrics according to the source of exposure
 - BCF: Bio-Concentration Factor (exposure via water)
 - BSAF: Biota-Sediment Accumulation Factor (exposure via sediment)
 - BMF: Bio-Magnification Factor (exposure via food)
- For each metric, two types of calculation according to the "shape" of the data during the accumulation phase
 - > If the internal concentration reaches a plateau at the end of the accumulation phase
 - => Steady-state bioaccumulation metric
 - ➤ If not
 - => Kinetic bioaccumulation metric

Multi-compartment models

Derivation of Bioaccumulation metrics

Steady-state bioaccumulation metric

Kinetic bioaccumulation metric

$$BCF_{ss} = \frac{C_i(t_c)}{C_w}$$

$$BCF_k = \frac{k_w}{\sum_{j=1}^m k_j}$$

Multi-compartment models

Derivation of Bioaccumulation metrics

Steady-state bioaccumulation metric

Kinetic bioaccumulation metric

> BCF
$$BCF_{ss} = \frac{C_i(t_c)}{C_w}$$

$$BCF_k = \frac{k_w}{\sum_{j=1}^m k_j}$$

> BSAF

$$BSAF_{ss} = \frac{C_i(t_c)}{C_s}$$

$$BSAF_k = \frac{k_s}{\sum_{j=1}^m k_j}$$

Multi-compartment models

Derivation of Bioaccumulation metrics

Steady-state bioaccumulation metric

Kinetic bioaccumulation metric

> BCF
$$BCF_{ss} = \frac{C_i(t_c)}{C_w}$$
 $BCF_k = \frac{k_w}{\sum_{j=1}^m k_j}$

> BSAF
$$BSAF_{ss} = \frac{C_i(t_c)}{C_s}$$
 $BSAF_k = \frac{k_s}{\sum_{j=1}^m k_j}$

➢ BMF

$$BMF_{ss} = \frac{C_i(t_c)}{C_f}$$

$$BMF_k = \frac{k_f}{\sum_{j=1}^m k_j}$$

Fit one-compartment models: practice

Stochastic part of a model

> All models are composed of a deterministic part and a stochastic part

Deterministic part describes the mean tendency as deduced from the data, while the stochastic part describes the variability around this mean tendency

> Here internal concentration = quantitative continuous data => Gaussian stochastic part

$$C_{obs}(t) \sim \mathcal{N}(C_i(t), \sigma)$$

Introduction	One-compartment models: practice	Multi-compartments
models		
Bayesian Inference		

> Fit of the model on accumulation and depuration data simultaneously

$$\begin{cases} \frac{dC_i(t)}{dt} = k_w \times C_w(t) - k_e \times C_i(t) & \text{if } 0 \le t \le tc \\ \frac{dC_i(t)}{dt} = -k_e \times C_i(t) & \text{if } t > tc \end{cases}$$

 $C_{obs}(t) \sim \mathcal{N}(C_i(t), \sigma)$

Introduction	One-compartment models: practice	Multi-compartments
models		
Bayesian Inference		

 \succ Fit of the model on accumulation and depuration data simultaneously

+ Model

 $C_{obs}(t) \sim \mathcal{N}(C_i(t), \sigma)$

+ Information *a priori*

Prior distribution on model parameters

Introduction	One-compartment models: practice	Multi-compartments
models		
Bayesian Inference		

 \succ Fit of the model on accumulation and depuration data simultaneously

parameters

MOSAIC

nodels

All-in-one web platform to fit one-compartment models to uptake and elimination experimental data

- All implemented models may combine
 4 exposure routes (water, sediment, food, pore water)
 3 elimination processes (excretion, dilution by growth and biotransformation for phase I metabolites)
- Automatic fit of the one-compartment model corresponding to the input experimental data

1									0		
- 1	n	т	r	\frown			C	т	1	\cap	n
	11	- U		U	U.	u	\mathbf{U}	L.	U.	\mathbf{U}	

http://lbbe-shiny.univ-lyon1.fr/mosaic-bioacc/

The MOSAIC_{bioacc} application is a turn-key web tool providing bioaccumulation metrics (BCF/BMF/BSAF) from a toxicokinetic (TK) model fitted to accumulation-depuration data. It is designed to fulfil the requirements of regulators when examining applications for market authorization of active substances. Learn more

Delta version (updated on 2021-08-26)

Contact: sandrine.charles@univ-lyon1.fr

		N
 	_	

Université Claude Bernard (

This work is supported by the EUR H2O'Lyon (ANR-17-EURE-0018) of Université de Lyon (UdL), within the program "Investissements d'Avenir" operated by the French National Research Agency (ANR).

UNIVERSITÉ LIVON

Data upload	Model and pa	rameters	Results	Downloads	Prediction tool
Bioaccumul	ation matrics	Eitting ro	culte		
DIOACCUMUT	ation metrics	Fitting re	SUILS		
Fitting	results				
Quan parar	tiles of estimation neters:	ated			

Introduction	One-compartment models: practice	Multi-compartment
MOSAIC _{bioacc} : outp	ut	

- Bioaccumulation metrics
- Parameters estimates: median and bounds of the 95% CI (quantiles of marginal posterior distributions)
- Fit of the median prediction with its uncertainty band superimposed to observed data
- Goodness-of-fit criteria

> PPC

Prior / posterior distributions

- Correlation between parameters
- Convergence criteria (Gelman and Rubin)

> WAIC

MCMC traces

Package `rbioacc`

https://CRAN.R-project.org/package=rbioacc

rbioacc: Inference and Prediction of ToxicoKinetic (TK) Models

The MOSAICbioacc application is a turnkey package providing bioaccumulation factors (BCF/BMF/BSAF) from a toxicokinetic (TK) model fitted to accumulation-depuration data. It is designed to fulfil the requirements of regulators when examining applications for market authorization of active substances. See Ratier et al. (2021) < doi:10.1101/2021.09.08.459421 CR >.

Version:	1.1-0
Depends:	R (≥ 3.5.0)
Imports:	<u>ggplot2</u> , methods, <u>Rcpp</u> , <u>rstan</u> (\geq 2.18.1), <u>rstantools</u> (\geq 2.1.1), <u>ggmcmc</u> , <u>GGally</u> , <u>loo</u> , <u>stringr</u> , stats, <u>zoo</u>
LinkingTo:	$\underline{BH} (\geq 1.66.0), \underline{Rcpp}, \underline{RcppEigen} (\geq 0.3.3.3.0), \underline{RcppParallel} (\geq 5.0.1), \underline{rstan} (\geq 2.18.1), \underline{StanHeaders} (\geq 2.18.0)$
Suggests:	knitr, <u>rmarkdown</u> , <u>testthat</u>
Published:	2022-01-12
Author:	Virgile Baudrot [aut], Sandrine Charles [aut], Ophélia Gestin [ctb], Mélina Kaag [aut], Christelle Lopes [ctb], Gauthier Multari [ctb], Alain Pavé [ctb], Aude Ratier [aut], Aurélie Siberchicot [aut, cre]
Maintainer:	Aurélie Siberchicot <aurelie.siberchicot at="" univ-lyon1.fr=""></aurelie.siberchicot>
BugReports:	https://github.com/aursiber/rbioacc/issues
License:	MIT + file LICENSE
URL:	https://github.com/aursiber/rbioacc

models: theory

Multi-compartment models: Theory

Introduction	One-compartment models	Multi-compartment
models: theory		
Multi-compartmer	nt models	

> The organism is divided into different compartments

 \succ There is one single homogeneous internal concentration for each compartment: $C_x(t)$

> The compartments are linked to each others and with the environment

Mechanistic models

Introduction

models: theory

One-compartment models

Multi-compartment

Multi-compartment models

Generally restricted to large-bodied organisms (e.g., fish or mammals)

Grech A, Brochot C, Dorne J-L, Quignot N, Bois FY, Beaudouin R. 2016. Toxicokineticmodels and related tools in environmental risk assessment of chemicals. *Sci. Total Environ*.

