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Aquatic ecosystems, made of several communities
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Communities are exposed to chemicals via individuals
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Evaluation of chemical effects at different biological levels
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Central role of the individual level : estimation de LC/ECx
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Central role of the individual level : modèles TKTD
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Characterize chemical state of aquatic ecosystem (European WFD)1

Importance of TK in environmental risk assessment (ERA)
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Characterize chemical state of aquatic ecosystem (European WFD)

Make the link between exposure concentration and individual effects

Understand and describe bioaccumulation processes
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Characterize chemical state of aquatic ecosystem (European WFD)

Chemical state Physico-chemical 
state

Biological state

41 substances:
Heavy metals / Pesticides Nitrates, MES, 

phosphor,
temperature

…

Biota diversity

Good        Bad

Very good
Good
Medium
Bad
Very bad

Ø EU requires good ecological status
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Importance of TK in environmental risk assessment (ERA)
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How to determine that the 
chemical state is good? 

Environmental Quality Standard
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Environmental Quality Standard (EQS)

Introduction One-compartment models Multi-compartment 
models

ØEQS for water

ØEQS for sediment

ØEQS for biota

« Concentration of a pollutant or group of pollutants which must not be 
exceeded, in order to protect human and environmental health »

Derived from extrapolation of effects, not from bioaccumulation capacity
of the chemicals within the body of organisms
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Characterize chemical state of aquatic ecosystem (European WFD)

Make the link between exposure concentration and individual effects

Ecosystem

Community

Population
Individual

Environmental 
conditions

Chemical 
substances Effects TK TD
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Importance of TK in environmental risk assessment (ERA)
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TK TD
External 

Concentration 
(over time)

Dose Metric
(over time)

Observed 
Effects

(over time)

One Compartment

Multi-Compartments

e.g., GUTS

Sub-Lethal 
Effects

Growth for 
plants

Growth and 
Reproduction

for animals

e.g., Plant models

e.g., DEBtox

Lethal Effects

Ø Translate (time-varying) external concentrations to time patterns of effects.
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Toxico-Kinetic and Toxico-Dynamic framework
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Characterize chemical state of aquatic ecosystem (European WFD)

Make the link between exposure concentration and individual effects

Understand and describe bioaccumulation processes
à ADME = Absorption, Distribution, Metabolism, Excretion

Individual

water

food

sediment

excretion

Biostransformation

Dilution by growth

1
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Importance of TK in environmental risk assessment (ERA)

Introduction One-compartment models Multi-compartment 
models



TK data 

Introduction One-compartment models Multi-compartment 
models

Ø TK data: accumulation and depuration phases
Ø Accumulation phase: individuals exposed at a given (constant) concentration

(all ADME processes may occur) during a pre-defined time
Ø Depuration phase: individuals in clean medium (without toxicant)

(only depuration processes occur)
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TK data and TK models

Introduction One-compartment models Multi-compartment 
models

Ø TK models: compartment models;  the chemical is assumed to be evenly distributed 
within the compartment(s).

Ø One-compartment models

Ø Multi-compartments models

Ø TK data: accumulation and depuration phases
Ø Accumulation phase: individuals exposed at a given (constant) concentration (all 

ADME processes occur) during a defined time
Ø Depuration phase: individuals in clean medium (without toxicant) (only elimination 

processes occur)
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One-compartment 
models:
Theory
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Very simplistic and general one-compartment model
Introduction One-compartment models: theory Multi-compartment models

Ø The organism is reduced to a single well-mixed compartment
Ø There is one single homogeneous internal concentration: Ci(t)
Ø The uptake flux is proportional to the external concentration: ku  Cw(t)
Ø The elimination flux is proportional to the internal concentration: ke Ci(t)

Organism
uptake elimination

ku ke

Organism
elimination

ke

tc tc
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Very simplistic and general one-compartment model

Ø The organism is reduced to a single well-mixed compartment
Ø There is one single homogeneous internal concentration: Ci(t)
Ø The uptake flux is proportional to the external concentration: ku  Cw(t)
Ø The elimination flux is proportional to the internal concentration: ke Ci(t)

𝑑𝐶! 𝑡
𝑑𝑡

= 𝑘"×𝐶# 𝑡 − 𝑘$×𝐶! 𝑡 if 0 ≤ 𝑡 ≤ 𝑡%
𝑑𝐶! 𝑡
𝑑𝑡

= − 𝑘$×𝐶! 𝑡 if 𝑡 > 𝑡%

Organism
uptake elimination

ku ke

Organism
elimination

ke

𝑡% : duration of the 
accumulation phase

𝑡! 𝑡!

19

Introduction One-compartment models: theory Multi-compartment models



Very simplistic and general one-compartment model
Introduction One-compartment models: theory Multi-compartment models

𝑑𝐶! 𝑡
𝑑𝑡

= 𝑘"×𝐶# 𝑡 − 𝑘$×𝐶! 𝑡 if 0 ≤ 𝑡 ≤ 𝑡%
𝑑𝐶! 𝑡
𝑑𝑡 = − 𝑘$×𝐶! 𝑡 if 𝑡 > 𝑡%

Ø ke [time]-1   influences the shape of the curve,
and the time to reach x % of the steady-state

Ø ku [time]-1 influences the height of the curve,
that is the level of the steady-state

ke

ku
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Very simplistic and general one-compartment model
Introduction One-compartment models: theory Multi-compartment models

ke

ku

Ø If the steady state is rapidly achieved, the chemical effects 
will appear soon after the exposure to the chemical starts.

Ø If the accumulation process is slow, the chemical effects 
will only appear after a more prolonged exposure.

21

𝑑𝐶! 𝑡
𝑑𝑡

= 𝑘"×𝐶# 𝑡 − 𝑘$×𝐶! 𝑡 if 0 ≤ 𝑡 ≤ 𝑡%
𝑑𝐶! 𝑡
𝑑𝑡 = − 𝑘$×𝐶! 𝑡 if 𝑡 > 𝑡%

Ø ke [time]-1   influences the shape of the curve,
and the time to reach x % of the steady-state

Ø ku [time]-1 influences the height of the curve,
that is the level of the steady-state



Very simplistic and general one-compartment model
Introduction One-compartment models: theory Multi-compartment models

𝐶! 𝑡 =
𝑘"×𝐶#
𝑘$

+ 𝐶' −
𝑘"×𝐶#
𝑘$

×𝑒()!×+ if 0 ≤ 𝑡 ≤ 𝑡%

𝐶! 𝑡 =
𝑘"×𝐶#
𝑘$

×𝑒()!× +(+" + 𝐶' −
𝑘"×𝐶#
𝑘$

×𝑒()!×+ if 𝑡 > 𝑡%

ØAnalytical solution if 𝐶- is constant over time

Ratier et al., 2019 
Charles et al., 2021 22

𝑑𝐶! 𝑡
𝑑𝑡

= 𝑘"×𝐶# 𝑡 − 𝑘$×𝐶! 𝑡 if 0 ≤ 𝑡 ≤ 𝑡%
𝑑𝐶! 𝑡
𝑑𝑡 = − 𝑘$×𝐶! 𝑡 if 𝑡 > 𝑡%



More complex one-compartment models
Introduction One-compartment models: theory Multi-compartment models

Ø Several uptake routes and eliminations processes

food

sediment

water

Organism

excretion

biotransformation

dilution by growth
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m elimination	processes	(kj)
- ke :	excretion
- kg :	growth
- km :	biotransformation
- …

More complex one-compartment models
Introduction One-compartment models: theory Multi-compartment models

Ø Several uptake routes and eliminations processes

food

sediment

water

Organism

excretion

biotransformation

dilution by growth
n uptake	routes	(ku)
- kw	 :	water
- ks :	sediment
- kl :	leaves
- …

Ratier et al. 2019. 

𝑑𝐶! 𝑡
𝑑𝑡

= /
"=>

?

𝑘"×𝐶" 𝑡 −/
@=>

A

𝑘@×𝐶! 𝑡 if 0 ≤ 𝑡 ≤ 𝑡𝑐

𝑑𝐶! 𝑡
𝑑𝑡

= −/
@=>

A

𝑘@×𝐶! 𝑡 if 𝑡 > 𝑡𝑐
24



More complex one-compartment models
Introduction One-compartment models: theory Multi-compartment models

Ø Choice according to experimental data

Constant exposure by water and sediment
Excretion and Growth

𝑑𝐶!(𝑡)
𝑑𝑡

= 𝑘#×𝐶# + 𝒌𝒔×𝑪𝒔 − 𝑘$ + 𝑘C ×𝐶! 𝑡
𝑑𝐿(𝑡)
𝑑𝑡 = 𝑘C× 𝐿D − 𝐿 𝑡

25

Ci: internal concentration
L: growth variable



More complex one-compartment models
Introduction One-compartment models: theory Multi-compartment models

Ø Choice according to experimental data

Constant exposure by water and sediment
Excretion and Growth

𝑑𝐶A(𝑡)
𝑑𝑡

= 𝒌𝒎×𝐶F(𝑡) − 𝑘$,A×𝐶A(𝑡)

𝑑𝐶F(𝑡)
𝑑𝑡

= 𝑘#×𝐶# − 𝑘$,F + 𝒌𝒎 ×𝐶F(𝑡)

Constant exposure by water
Excretion and biotransformation
(1 metabolite)

Cp: internal parent concentration
Cm: internal metabolite concentration

𝑑𝐶!(𝑡)
𝑑𝑡

= 𝑘#×𝐶# + 𝒌𝒔×𝑪𝒔 − 𝑘$ + 𝑘C ×𝐶! 𝑡
𝑑𝐿(𝑡)
𝑑𝑡 = 𝑘C× 𝐿D − 𝐿 𝑡
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Ci: internal concentration
L: growth variable



Derivation of Bioaccumulation metrics
Introduction One-compartment models: theory Multi-compartment models

Ø To evaluate the bioaccumulation potential of chemical substances

Ø Three metrics according to the source of exposure
Ø BCF: Bio-Concentration Factor (exposure via water)
Ø BSAF: Biota-Sediment Accumulation Factor (exposure via sediment)
Ø BMF: Bio-Magnification Factor (exposure via food)

27



Derivation of Bioaccumulation metrics
Introduction One-compartment models: theory Multi-compartment models

Ø To evaluate the bioaccumulation potential of chemical substances

Ø Three metrics according to the source of exposure
Ø BCF: Bio-Concentration Factor (exposure via water)
Ø BSAF: Biota-Sediment Accumulation Factor (exposure via sediment)
Ø BMF: Bio-Magnification Factor (exposure via food)

Ø For each metric, two types of calculation according to the “shape” of the data during the 
accumulation phase
Ø If the internal concentration reaches a plateau at the end of the accumulation phase      

=> Steady-state bioaccumulation metric
Ø If not 

=> Kinetic bioaccumulation metric 28



Derivation of Bioaccumulation metrics
Introduction One-compartment models: theory Multi-compartment models

Ø BCF 𝐵𝐶𝐹HH =
𝐶! 𝑡%
𝐶#

𝐵𝐶𝐹) =
𝑘#

∑@=>A 𝑘@

Steady-state bioaccumulation metric Kinetic bioaccumulation metric
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Derivation of Bioaccumulation metrics
Introduction One-compartment models: theory Multi-compartment models

Ø BSAF 𝐵𝑆𝐴𝐹HH =
𝐶! 𝑡%
𝐶H

𝐵𝑆𝐴𝐹) =
𝑘H

∑@=>A 𝑘@
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Ø BCF 𝐵𝐶𝐹HH =
𝐶! 𝑡%
𝐶#

𝐵𝐶𝐹) =
𝑘#

∑@=>A 𝑘@

Steady-state bioaccumulation metric Kinetic bioaccumulation metric



Derivation of Bioaccumulation metrics
Introduction One-compartment models: theory Multi-compartment models

Ø BMF 𝐵𝑀𝐹HH =
𝐶! 𝑡%
𝐶I

𝐵𝑀𝐹) =
𝑘I

∑@=>A 𝑘@
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Ø BSAF 𝐵𝑆𝐴𝐹HH =
𝐶! 𝑡%
𝐶H

𝐵𝑆𝐴𝐹) =
𝑘H

∑@=>A 𝑘@

Ø BCF 𝐵𝐶𝐹HH =
𝐶! 𝑡%
𝐶#

𝐵𝐶𝐹) =
𝑘#

∑@=>A 𝑘@

Steady-state bioaccumulation metric Kinetic bioaccumulation metric



Introduction One-compartment models: practice Multi-compartment 
models
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Fit one-compartment 
models:
practice



Introduction One-compartment models: practice Multi-compartment 
models

Stochastic part of a model

33

Ø All models are composed of a deterministic part and a stochastic part

Ø Deterministic part describes the mean tendency as deduced from the data, 
while the stochastic part describes the variability around this mean tendency

Ø Here internal concentration = quantitative continuous data => Gaussian stochastic part

𝐶JKH 𝑡 ~𝒩 𝐶! 𝑡 , 𝜎



Introduction  One-compartment models: practice  Multi-compartments 
models

Bayesian Inference

Ø Fit of the model on accumulation and depuration data simultaneously

𝑑𝐶# 𝑡
𝑑𝑡

= 	𝑘$×𝐶$ 𝑡 −	𝑘%×𝐶# 𝑡 	 if	0 ≤ 𝑡 ≤ 𝑡𝑐

𝑑𝐶# 𝑡
𝑑𝑡

= 	−	𝑘%×𝐶# 𝑡 	 if	𝑡 > 𝑡𝑐 

Model+

Experimental data

34

𝐶"#$ 𝑡 ~𝒩 𝐶% 𝑡 , 𝜎



Introduction  One-compartment models: practice  Multi-compartments 
models

Bayesian Inference

Ø Fit of the model on accumulation and depuration data simultaneously

𝑑𝐶# 𝑡
𝑑𝑡

= 	𝑘$×𝐶$ 𝑡 −	𝑘%×𝐶# 𝑡 	 if	0 ≤ 𝑡 ≤ 𝑡𝑐

𝑑𝐶# 𝑡
𝑑𝑡

= 	−	𝑘%×𝐶# 𝑡 	 if	𝑡 > 𝑡𝑐 

Model+

+ Information a priori
Prior distribution on model 

parameters

Experimental data

35

𝐶"#$ 𝑡 ~𝒩 𝐶% 𝑡 , 𝜎



Introduction  One-compartment models: practice  Multi-compartments 
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Bayesian Inference

Ø Fit of the model on accumulation and depuration data simultaneously

𝑑𝐶# 𝑡
𝑑𝑡

= 	𝑘$×𝐶$ 𝑡 −	𝑘%×𝐶# 𝑡 	 if	0 ≤ 𝑡 ≤ 𝑡𝑐

𝑑𝐶# 𝑡
𝑑𝑡

= 	−	𝑘%×𝐶# 𝑡 	 if	𝑡 > 𝑡𝑐 Predictions
Model+

JAGS-4.2.0 ‘rjags’ 
package

Other goodness-of-fit criteria

kw

ke

+ Information a priori
Prior distribution on model 

parameters

Experimental data

Bayesian Inference

Joint posterior distribution
- Correlation
- Marginal distributions
- Median and 95% CI
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Introduction One-compartment models: practice Multi-compartment 
models

MOSAICbioacc

Ø All-in-one web platform to fit one-compartment models
to uptake and elimination experimental data

Ø All implemented models may combine
4 exposure routes (water, sediment, food, pore water)
3 elimination processes (excretion, dilution by growth
and biotransformation for phase I metabolites)

Ø Automatic fit of the one-compartment model
corresponding to the input experimental data

37



Introduction One-compartment models: practice Multi-compartment 
models

MOSAICbioacc

http://lbbe-shiny.univ-lyon1.fr/mosaic-bioacc/
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Introduction One-compartment models: practice Multi-compartment 
models

MOSAICbioacc: output 

39

Ø Bioaccumulation metrics 

Ø Parameters estimates:  median and  bounds of the 95% CI
(quantiles of marginal posterior distributions)

Ø Fit of the median prediction with its uncertainty band
superimposed to observed data

Ø Goodness-of-fit criteria



Introduction One-compartment models: practice Multi-compartment 
models

Goodness-of-fit criteria

40

Ø PPC

Ø Prior / posterior distributions

Ø Correlation between parameters

Ø Convergence criteria (Gelman and Rubin)

Ø WAIC

Ø MCMC traces



Introduction One-compartment models: practice Multi-compartment 
models

Package `rbioacc`

41

https://CRAN.R-project.org/package=rbioacc

https://cran.r-project.org/package=rbioacc


Introduction One-compartment models Multi-compartment 
models: theory
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Multi-compartment 
models:
Theory



Multi-compartment models

Introduction One-compartment models Multi-compartment 
models: theory

Ø The organism is divided into different compartments

Ø There is one single homogeneous internal concentration for each compartment: Cx(t)

Ø The compartments are linked to each others and with the environment

43



Multi-compartment models

Introduction One-compartment models Multi-compartment 
models: theory

Grech A, Brochot C, Dorne J-L, Quignot N, Bois FY, 
Beaudouin R. 2016. Toxicokineticmodels and related 
tools in environmental risk assessment of chemicals. 
Sci. Total Environ.

Generally restricted to
large-bodied organisms
(e.g., fish or mammals)

44

Specific to the studied species


