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Introduction

• Difference equations = recursion equations = discrete-time equations

• Used in modelling of biological phenomena
• Population dynamics: non-overlapping generation like fish, plant or insect pop
• Population genetics

• Use in numerically solving and simulating ODE or PDE
• Euler scheme
• Runge-Kutta



Numerical Solutions of Differential Equations









Definitions



Definitions (continued)





Definitions (continued)

(Figure 1.6).











The Stair Step (Cobweb) Diagram



Example: the logistic equation



Linear difference equations

Fixed point

Solution
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-1 < l < 0
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l = - 1
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l < - 1
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Summary
l = -1.5
Répulsif

l = -1
Stable

l = -0.5
Asymptotiquement stable

l = 0
Asymptotiquement stable

l = 0.5
Asymptotiquement stable

l = 1
Asymptotiquement stable

l = 1.5
Répulsif



Non linear difference equations

Linearization



said hyperbolic.









Discrete demographic models

• Populations are genetically compatible individuals of a same species (or 
a same sub-species, in a given place and which reproduce between them.

• Individuals may be uni- (such as microorganisms) or multi-cellular.

• Growth is ensured by:
• Reproduction (sexual or not)
• Individual survival

• Let be nt the discrete nbr of individuals at time t.

• nt evolves with time according to births and deaths.



The exponential model (linear)

• A key issue with discrete-time models is the choice of the beginning of 
the time step.
• Two classical ways of doing:
• Pre-breeding census

• Post-breeding census

Reproduction   |   survival   |   Reproduction   |   survival   |   Reproduction   …

t-1 t t+1

Reproduction   |   survival   |   Reproduction   |   survival   |   Reproduction   …

t-1 t t+1



Example with a semelparus species

• Semelparus = one reproduction event per life span (e.g. annual plants)
• Hyp: pre-breeding census
• 𝑝!: nbr of offspring at time t
• 𝑛!: nbr of females at time t



Example with microbial population

• In the laboratory, under favourable conditions, a growing bacterial 
population doubles at regular intervals.

• Growth is by geometric progression: 1, 2, 4, 8, etc. or 20, 21, 22, 
23.........2n (where n = the number of generations)

• 𝑥" = 2" 𝑥#

• 𝜆 = 2 > 1: bacteria are growing fast.



Generalization

• Bacterial growth

Cellular death is neglected, 1 cell gives 2 new cells: a = 1 and b = 0, thus l = 2

• Semelparus species

a = s (1 - m) f and b = 1, thus l = s (1 - m) f

• Iteroparus species

b < 1



The discrete-time logistic model

May RM. 1976. Simple mathematical models with very complicated 
dynamics. Nature:459–467. doi:10.1038/261459a0.

𝜆 > 1



The logistic equation and Bifurcation





The logistic equation and Bifurcation (continued)





2-cycles



Stability of 2-cycles
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Convergence avec oscillations
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Cycles de période 2
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Cycles de période 4
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Régime quasi−périodique
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Régime chaotique : x0 = 0.1
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Parameter l

x t
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of dynamical behavior in single species 
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