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Reminder on linear algebra

 Let A and B two k x k£ matrices. They are similar if there exists a
nonsingular matrix P such that P~1AP = B.

* It may be shown in this case that A and B have the same eigenvalues.

o If a matrix A is similar to a diagonal matrix D = diag(A{, Ay, . . . , Ay),
then A is said to be diagonalizable. Notice here that the diagonal
elements of D, namely A, A,, . . . , A, are the eigenvalues of A.

* For diagonalizable matrices, computing A® is simple: A» = PD*P—1,
with D = diag(A", A%, . . ., A0).

Theorem A k x k matriz 1s diagonalizable if and only if it has k
linearly independent eigenvectors.



Reminder on Jordan’s forms

* General case where the matrix A is not diagonalizable; this may happen
when A has repeated eigenvalues, or is not able to generate k linearly
independent eigenvectors.

* In dimension 2, J = P~1AP, with J of one of the following forms:

e

)\1 0 /\O
(a) At F Ay (b)
0 )\2 0 )\O
AO 1 (8 —‘B f
(c) (d) B>0

0 Ao 8«



Reminder on Jordan’s forms (continued)

* The Jordan’s form depends on eigenvalues of matrix A:
e det(A — A1) = 0 A" — tr(A)A+det(A)=0

A a,, G, tr(A)=a, +a,
\ a, a, ) det(A) = 0y, 0y = 0,0y,
* Example:



Proposal

Any recursive system X, ,; = A X, can be transformed in an equivalent
canonical recursive system Y,,; =J Y, where J = P71 A P is the
Jordan’s form associated to A and X, = P Y.

J=P1TAPS A=PJP! and Ao =P JP-L
Solve a linear recursive system means calculate J»

This calculation depends on the type of eigenvalues.
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A =0.5, Ap=0.75
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If A has 2 distinct real eigenvalues (continued)

A =0.75 Ay =0.5




If A has 2 distinct real eigenvalues (continued)

Ay =-0.5, Ao = —0.75 Ay =—-0.75, hp = -0.5
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If A has 2 distinct real eigenvalues (continued)

A =0.5, hp=-0.5 A =-0.5, ho=0.5




If A has 2 distinct real eigenvalues (continued)

A =1.25,Ap=1.75 Ay =1.75, Ap=1.25
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If A has 2 distinct real eigenvalues (continued)

A =0.75, Ao =1.25

A =1.35,1o=0.85
”“ (]
i -
i wien
soses ceces
eeéee 00 e e0oeo0e
o’ i ........ AL i ....... . — e
G :::: ..... oot i ...................... . a2 [N O .
BT
oom (TTTT
ovies sosce
- -
Il -
I W
Wh Wh



If A has 2 distinct real eigenvalues (continued)

A=1,2=0.75 A =0.75, hp=1
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If A has 2 distinct real eigenvalues (continued)

=1, Ap=1.25 A =1.25, ho=1
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If A has 2 one double eigenvalue
(U’n+1 =J n avec N =P .
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If A has 2 one double eigenvalue (continued)

Tn \ B ( vp1 o1 Agwo + TLA(T)I_IZO
Un ) \ vo2 M2 A 20
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If A has 2 one

double eigenvalue

(continued)
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If A has 2 conjugate eigenvalues

a —| COSWw —psinw
8 « psinw pcosw

J =pR (w)
J*=pR(w)pR (w) = p’R (W)

J" = p"R (nw)

Wy n wp n COS nNw
= p"R (nw) ="
Zn 20 sin nw
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If A has 2 conjugate
eigenvalues (continued)

Example




The Fibonacci Sequence (The Rabbit Problem

e This problem first appeared in 1202, in Liber abaci, a book about the

abacus, written by the famous Italian mathematician Leonardo di Pisa,
better known as Fibonacci.
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The Fibonacci Sequence (The Rabbit Problem)

e This problem first appeared in 1202, in Liber abaci, a book about the
abacus, written by the famous Italian mathematician Leonardo di Pisa,
better known as Fibonacci.

* The problem may be stated as follows: How many pairs of rabbits will
there be after one year if starting with one pair of mature rabbits, if
each pair of rabbits gives birth to a new pair each month starting when
it reaches its maturity age of two months?

Q@
‘@%@

—

Month O

Month2



The Fibonacci Sequence (The Rabbit Problem)

TABLE 2.2. Rabbits’ population size.

Month | O |1 |23 (|4] 5 6 7 8 9 10 11 12

Pairs L1235 81321 | 34|55 | &9 | 144 | 233 | 377

The first pair has offspring at the end of the first month, and thus we have
two pairs. At the end of the second month only the first pair has offspring,
and thus we havd three pairs. At the end of the third month, the first and
second pairs will have offspring, and hence we have five pairs. Continuing
this procedure, we arrive at Table 2.2. If F'(n) is the number of pairs of
rabbits at the end of n months, then the recurrence relation that represents
this model is given by the second-order linear difference equation

Fn+2)=F(n+1)+ F(n), F(0)=1, F(1) =2, 0 <n<10.
This example is a special case of the Fibonacci sequence, given by

Fn+2)=Fn+1)+ F(n), F(0) =0, F(1)=1, n > 0.



The Fibonacci Sequence as a linear system

.n Un, 0 1 .n
] e p— p— ] jO p— ]_ a'O p— O
an+1 jn + a/n ]. ]. an

An42 = jn+1 + Qp41 = Ap + Ap41-

(1 1)
AP —A—1=0 AmZ#, P:km/g 1_¢3)
2 2




The Fibonacci Sequence as a linear system (continued)
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The golden number

1
- +2‘/§ — 1.6180339887 .. ..
a-+b a def 1
e If a > b >0, then - —g=e<p,1+;=90- @+ 1=’

* Named ¢ to pay homage to the Greek sculptor Phidias (490-430 BC)
who decorated the Parthenon in Athena with many gold rectangles.




Lindenmayer systems (or L-systems)

* Introduced in 1968 by Aristid Lindenmayer, a Hungarian
theoretical biologist and botanist at the University of Utrecht.

* L-systems consist of:
* an alphabet of symbols that can be used to make strings;

* a collection of production rules that expand each symbol into some larger string
of symbols;

* an initial “axiom” string from which to begin construction;
* and a mechanism for translating the generated strings into geometric structures.

* Lindenmayer A. 1968. Mathematical models for cellular interactions in development
I. Filaments with one-sided inputs. J. Theor. Biol. 18:280-299.



A very simple L-system in 1D

* Consider cells in two categories:

1. Young an immature cells, denoted by a, that do not divide;
2. Mature cells, denoted by b, that divide.

* Reproduction is discrete and from one step ¢ to the next t+1:
 Immature cells become mature ones: a =2 b
* Mature cells reproduce in one cell a and one cell b: b =2 ab

» Starting from a unique cell a:
a 2b 2 ab 2 bab 2 abbab 2 bababbab =2 ...

* Let N, (t) and N,(t) be numbers of cells a and b at time t.



A very simple L-system in 1D (continued)
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A very simple L-system in 1D (continued)

finitve Vb)) 145
When ¢ goes to infinity: N = 2 = 0

N, (t 0.276 0.382 0.382
1 )" = (0.276 + 0.447) (255)" = 0.723 (55)
N, (¢) 0.447 0.618 0.618
1.0 Cellules a
Cellules b
0.8
?E o6 ‘.\.\/ \.__-o-_._ P — 90— 90— 90— 90— 0—0—0—0—0—0—0—0—0—0—0—0 O 618 B
E 0.382
g 04 — \./O e— ®— 90— 90— 90— 90— 90— 00— 0—0—0—0—0—0—0—0—0—0—0—0
0.2
00

Temps



L-system trees form realistic models of natural patterns

https://en.wikipedia.org/wiki/L-system
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Ibex population dynamics from “Grand Paradis”

http://www.pngp.it/en
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lbex population dynamics from “Grand Paradis”

year t year t+1 (no repro) year t+2




lbex population dynamics from “Grand Paradis”

J g [ 05 1
X = t X2 = 22 ) Xt = p2 X
Ay 5 p 0.5 1

Nt+2 — Jt+2 + 2At+2
Nt—}—‘Z o p2 ((OSJt + At) + 2 (O5Jt 'l— At)) - p2 (15Jt ‘l— 3At)
Niyo = %P2 (Jy +2A;) = %p2Nt

%p2>1<:>p>0.82




Propagation of annual plants

* Plants produce seeds at the end of their growth season (say August),
after which they die.

* Only a fraction of these seeds survive the winter, and those that survive
germinate at the beginning of the season (say May), giving rise to a new
generation of plants.

Let

v = number of seeds produced per plant in August,
a = fraction of one-year-old seeds that germinate in May,
(3 = fraction of two-year-old seeds that germinate in May,

o = fraction of seeds that survive a given winter.



Propagation of annual plants (continued)

Year k=n Year k=n+1 Year k=n+2
AN AN
4 A4 Y4 A\
April-May August  Winter April-May August Winter April-May  August

.
S |,

oo

s4(n+1) S4(n+1)

So(n)

0

—
R
ol
—_
>
+
—
N

SN BN SN SRS B B B B B e e . q——-———-
—_—
Q
2]
-
=
+
—

g
06—
=<
. e
.Y
—

L

p(n) p(n+1) p(n+2) So(N+2)



Propagation of annual plants (continued)

If p(n) denotes the number of plants in generation n, then

plants from plants from
p(n) = + :
one-year-old seeds two-year-old seeds
p(n) = asi(n) + Bsa(n), (2.7.1)

where s1(n) (respectively, so(n)) is the number of one-year-old (two-year-
old) seeds in April (before germination). Observe that the number of seeds
left after germination may be written as

fraction original number
seeds left = . X _ .
not germinated of seeds in April

This gives rise to two equations:

s1(n) = (1 —a)si(n), (2.7.2)

So(n) = (1 — 3)sa(n), (2.7.3)



Propagation of annual plants (continued)

where s1(n) (respectively, So(n)) is the number of one-year (two-year-old)
seeds left in May after some have germinated. New seeds sg(n) (0-year-old)
are produced in August (Figure 2.6) at the rate of v per plant,

so(n) = yp(n). (2.7.4)

After winter, seeds so(n) that were new in generation n will be one year
old in the next generation n+ 1, and a fraction osg(n) of them will survive.
Hence

si(n+1) =o0sp(n),
or, by using formula (2.7.4), we have

s1(n+1) = oyp(n). (2.

(N)
-
ot
e —

Similarly,
so(n+1) = os1(n),
which yields, by formula (2.7.2),

sas(n+1) =0(1 — a)syi(n),
so(n+1) = o?~y(1 — a)p(n —1). (2.7.6)



Propagation of annual plants (continued)

Substituting for s;(n + 1), sa(n + 1) in expressions (2.7.5) and (2.7.6) into
formula (2.7.1) gives

p(n+1) = ayop(n) + pyo?(1 —a)p(n — 1),
or
p(n+2) = ayop(n+ 1) + fyo?(1 — a)p(n). (2.7.7)
The characteristic equation (2.7.7) is given by
N —ayo — Byo?(l—a) =0

with characteristic roots

Xy [ 4.3 . ]
)\1: A 1+\/1-|— : (1—0) .

Xy [ 4.3 ]
Ny = 27 1—\/1+ “(1—a)|.

N

N



Propagation of annual plants (continued)

Observe that A\; and Ao are real roots, since 1 — o > 0. Furthermore,
A1 > 0 and Ay < 0. To ensure propagation (i.e., p(n) increases indefinitely
as n — oo0) we need to have A\; > 1. We are not going to do the same with
A2, since it is negative and leads to undesired fluctuation (oscillation) in
the size of the plant population. Hence

ayo 4/3 .
> |:1+\/1—|— f\/ag(l—a)] > 1,

ayo \/1 N 463(1 — «) o129

2 yor? 2

or

e

Squaring both sides and simplifying yields

1

Y > _ .
"7 ao + Bo2(1 — a)




Propagation of annual plants (continued)

If 3 = 0, that is, if no two-year-old seeds germinate in May, then condition
(2.7.8) becomes
1 ‘
v > —. (2.7.9)
ao

Condition (2.7.9) says that plant propagation occurs if the product of the
fraction of seeds produced per plant in August, the fraction of one-year-old
seeds that germinate in May, and the fraction of seeds that survive a given
winter exceeds 1.

ooy > 1




