English support for the course on difference equations (3)

Sandrine CHARLES

sandrine.charles@univ-lyon1.fr

17/09/2019

For all details, refer to Elaydi S. 2005. An introduction to difference equations doi:10.1088/1748-0221/11/11/C11006

https://filesender.renater.fr/?s=download&token=4e60d8ad-8d46-79eb-697a-07c2571e6da8

Non linear discrete systems in 2D

$$\begin{cases} x_{n+1} = f(x_n, y_n) \\ y_{n+1} = g(x_n, y_n) \\ \begin{cases} x_{n+1} = x_n \\ y_{n+1} = y_n \end{cases} \Leftrightarrow \begin{cases} x^* = f(x^*, y^*) \\ y^* = g(x^*, y^*) \\ y^* = g(x^*, y^*) \end{cases} \end{cases}$$

$$f(x_n, y_n) = f(x^*, y^*) + \frac{\partial f}{\partial x_n}\Big|_* \underbrace{(x_n - x^*)}_{u_n} + \frac{\partial f}{\partial y_n}\Big|_* \underbrace{(y_n - y^*)}_{v_n} + \dots$$

$$g(x_n, y_n) = g(x^*, y^*) + \frac{\partial g}{\partial x_n}\Big|_* u_n + \frac{\partial g}{\partial y_n}\Big|_* v_n + \dots$$

$$u_{n+1} = \underbrace{f(x^*, y^*) - x^*}_{=0} + \frac{\partial f}{\partial x_n}\Big|_* u_n + \frac{\partial f}{\partial y_n}\Big|_* v_n + \dots$$

$$v_{n+1} = \underbrace{g(x^*, y^*) - y^*}_{=0} + \frac{\partial g}{\partial y_n}\Big|_* v_n + \dots$$

$$v_{n+1} \approx \frac{\partial f}{\partial x_n}\Big|_* u_n + \frac{\partial f}{\partial y_n}\Big|_* v_n + \dots$$

$$\begin{pmatrix} u_{n+1} \\ v_{n+1} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} u_n \\ v_n \end{pmatrix} \Leftrightarrow \begin{pmatrix} u_{n+1} \\ v_{n+1} \end{pmatrix} = \mathbf{A}^* \begin{pmatrix} u_n \\ v_n \end{pmatrix} \qquad \mathbf{A}^* = \begin{pmatrix} \frac{\partial f}{\partial x_n} \Big|_{(x^*, y^*)} & \frac{\partial f}{\partial y_n} \Big|_{(x^*, y^*)} \\ \frac{\partial g}{\partial x_n} \Big|_{(x^*, y^*)} & \frac{\partial g}{\partial y_n} \Big|_{(x^*, y^*)} \end{pmatrix}$$

Local stability of a fixed point

Theorem: A fixed point from the previous system will be locally asymptotically stable if the modulus of all eigenvalues of A^* is strictly less than 1.

 $\lambda^2 - \mathrm{tr} \mathbf{A}^* \lambda + \det \mathbf{A}^* = 0$

 $\Delta = (\mathrm{tr}\mathbf{A}^*)^2 - 4\mathrm{det}\mathbf{A}^*$

Let suppose that $\Delta > 0$.

 $\begin{cases} \lambda_1 = \frac{\mathrm{tr}\mathbf{A}^*}{2} + \frac{1}{2}\sqrt{(\mathrm{tr}\mathbf{A}^*)^2 - 4\mathrm{det}\mathbf{A}^*} \\ \lambda_2 = \frac{\mathrm{tr}\mathbf{A}^*}{2} - \frac{1}{2}\sqrt{(\mathrm{tr}\mathbf{A}^*)^2 - 4\mathrm{det}\mathbf{A}^*} \end{cases}$ Let $\mathrm{tr}\mathbf{A}^* = \beta$ and $\mathrm{det}\mathbf{A}^* = \gamma$

$$\lambda_{1,2} = rac{eta}{2} \pm rac{\sqrt{\Delta}}{2}$$

 $\Delta = eta^2 - 4\gamma \; (> 0).$

Local stability of a fixed point (continued) $d_{1} = \lambda_{1} - \frac{\beta}{2} = \frac{1}{2}\sqrt{\beta^{2} - 4\gamma} = \frac{\sqrt{\Delta}}{2}$ $d_{2} = 1 - \frac{|\beta|}{2}$

Local stability of a fixed point (*continued*) λ $d_1 = \sqrt{\Delta}/2$ $d_1 = \lambda_1 - \frac{\beta}{2} = \frac{1}{2}\sqrt{\beta^2 - 4\gamma} = \frac{\sqrt{\Delta}}{2}$ $\lambda_1 d_2 = 1 - \beta/2 1$ λ2 0 -1 β/2 $d_2 = 1 - \frac{|\beta|}{2}$ **Stability conditions:** λ $\lambda_2 0$ -1 β/2 $|\beta| < 1 + \gamma < 2 \Leftrightarrow |trA^*| < 1 + \det A^* < 2$ λ **√**∆/2 ο λι λ_2 -1 β/2 Example λ $x(n+1) = \frac{\alpha x(n)}{1 + \beta x(n)}$ 0 λ_2 -1 β/2

Host-parasitoid systems

Applications of Nonlinear Difference Equations to Population Biology

Figure Schematic representation of a host-parasitoid system. The adult female parasitoid deposits eggs on or in either larvae or pupae of the

host. Infected hosts die, giving rise to parasitoid progeny. Uninfected hosts may develop into adults and give rise to the next generation of hosts. Utida (1957): Heteropsilus prosopilus vs Callosobruchus chinensis

Host-parasitoid models

 $H_{t+1} = RH_t f\left(H_t, P_t\right)$

 $P_{t+1} = cH_t \left[1 - f \left(H_t, P_t \right) \right]$

- H_t is the female density of hosts at time t;
- P_t is the female density of parasitoids at time t;
- R is the net fecundity of host females (x sex-ratio);
- c is the net fecundity of parasitoids, i.e., the mean number of parasitoid females that emerge from a unique host female and that survive until the next time step (x sex-ratio);
- $f(H_t, P_t)$ is the fraction of non-parasitized host females which depends on the encounter probability between hosts and paraistoids.

The Nicholson-Bailey's model (1935)

- Developed before Utida's data who tried to check the model.
- Hypotheses:
 - Exponential growth for hosts (parameter R);
 - The functional response, *i.e.* the nbr of attacks per parasitoid is proportional to the host density with coefficient a = search efficiency of host per parasitoid that leads to infection (supposed to be constant).
- Parameter a is supposed to be constant:
 - Independent from host nbr (exponential growth, parameter R);
 - Independent from parasitoid nbr (no competition, no avoidance of host already parasitzed).

The Nicholson-Bailey's model (continued)

- Be X the radom variable of the nbr of attacks per host.
- The total nbr of attacks within a population is aH_tP_t , with aH_t the nbr of attacks per parasitoid.
- X can be described by a binomial distribution:

$$X \sim \mathcal{B}\left(aH_tP_t, \frac{1}{H_t}\right)$$

- If the spatial distribution of attacks on the H_t host is random, then $1/H_t$ is the probability of attack per host.
- We can reasonably consider that H_t and P_t are high nbrs, so that aH_tP_t , is high and $1/H_t$ is small.
- Then we can approximate the binomial law by a Poisson's law o parameter $\mu = aH_tP_t \times \frac{1}{H_t} = aP_t$: $X \sim \mathcal{P}(aP_t)$

The Nicholson-Bailey's model (*continued*)

$$p\left(X=k\right) = \frac{e^{-\mu}\mu^k}{k!}$$

$$f\left(H_t, P_t\right) = p\left(X = 0\right)$$

$$f\left(H_t, P_t\right) = e^{-\mu} = e^{-aP_t}$$

$$H_{t+1} = RH_t e^{-aP_t}$$
$$P_{t+1} = cH_t \left(1 - e^{-aP_t}\right)$$

 P_t

 \mathbf{P}_{t}

The Nicholson-Bailey's model (continued)

- Fixed points
- Stability

Modifications of the Nicholson-Baileys model (1)

• Change in the functional response

Modifications of the Nicholson-Baileys model (2)

• Change in parameter a: dependent on P_t

Modifications of the Nicholson-Baileys model (3)

- Change in the spatial distribution of hosts: not random, not homogeneous
- Change in the growth model for hosts
- \rightarrow Beddington et al. (1975)

$$\begin{cases} H_{t+1} = e^{r(1-H_t/K)} H_t e^{-aP_t} = H_t e^{r(1-H_t/K)-aP_t} \\ P_{t+1} = cH_t \left(1-e^{-aP_t}\right) \end{cases}$$

Link with the Nicholson-Bailey's model: $r = \ln R$.

The Beddington's model

The Beddington's model: (1) r = 0.5

The Beddington's model: (1) r = 2

The Beddington's model: (1) r = 2.2

Plants-herbivores interaction

Hardy-Weinberg's law

			Pères		
		Génotypes	AA	Aa	aa
	Génotypes	Fréquence	u	v	w
Mères	AA	\boldsymbol{u}	u^2	uv	uw
	Aa	v		v^2	
	aa	w			

Hardy-Weinberg's law

		Fréquence des génotypes des descendants			
Type des parents	Fréquence	AA	aA	aa	
$AA \times AA$	u^2	u^2			
AA imes Aa	2uv	uv	uv		
$AA \times aa$		0			
$Aa \times Aa$	v^2	$v^{2}/4$	$v^{2}/2$	$v^{2}/4$	
Aa imes aa		0			
aa imes aa		0			
	TOTAL	$u^2 + uv + v^2/4$			