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Preface to the Third Edition

In contemplating the third edition, I have had multiple objectives to
achieve. The first and foremost important objective is to maintain the ac-
cessibility and readability of the book to a broad readership with varying
mathematical backgrounds and sophistication. More proofs, more graphs,
more explanations, and more applications are provided in this edition.

The second objective is to update the contents of the book so that the
reader stays abreast of new developments in this vital area of mathematics.
Recent results on local and global stability of one-dimensional maps are
included in Chapters 1, 4, and Appendices A and C. An extension of the
Hartman–Grobman Theorem to noninvertible maps is stated in Appendix
D. A whole new section on various notions of the asymptoticity of solutions
and a recent extension of Perron’s Second Theorem are added to Chapter
8. In Appendix E a detailed proof of the Levin–May Theorem is presented.
In Chapters 4 and 5, the reader will find the latest results on the larval–
pupal–adult flour beetle model.

The third and final objective is to better serve the broad readership of
this book by including most, but certainly not all, of the research areas
in difference equations. As more work is being published in the Journal of
Difference Equations and Applications and elsewhere, it became apparent
that a whole chapter needed to be dedicated to this enterprise. With the
prodding and encouragement of Gerry Ladas, the new Chapter 5 was born.
Major revisions of this chapter were made by Fozi Dannan, who diligently
and painstakingly rewrote part of the material and caught several errors
and typos. His impact on this edition, particularly in Chapters 1, 4, and
Chapter 8 is immeasurable and I am greatly indebted to him. My thanks
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vi Preface to the Third Edition

go to Shandelle Henson, who wrote a thorough review of the book and
suggested the inclusion of an extension of the Hartman–Groman Theorem,
and to Julio Lopez and his student Alex Sepulveda for their comments and
discussions about the second edition.

I am grateful to all the participants of the AbiTuMath Program and
to its coordinator Andreas Ruffing for using the second edition as the
main reference in their activities and for their valuable comments and dis-
cussions. Special thanks go to Sebastian Pancratz of AbiTuMath whose
suggestions improved parts of Chapters 1 and 2. I benefited from comments
and discussions with Raghib Abu-Saris, Bernd Aulbach, Martin Bohner,
Luis Carvahlo, Jim Cushing, Malgorzata Guzowska, Sophia Jang, Klara
Janglajew, Nader Kouhestani, Ulrich Krause, Ronald Mickens, Robert
Sacker, Hassan Sedaghat, and Abdul-Aziz Yakubu. It is a pleasure to thank
Ina Lindemann, the editor at Springer-Verlag for her advice and support
during the writing of this edition. Finally, I would like to express my deep
appreciation to Denise Wilson who spent many weekends typing various
drafts of the manuscript. Not only did she correct many glitches, typos,
and awkward sentences, but she even caught some mathematical errors.

I hope you enjoy this edition and if you have any comments or questions,
please do not hesitate to contact me at selaydi@trinity.edu.

San Antonio, Texas Saber N. Elaydi
April 2004

Suggestions for instructors using this book.

The book may be used for two one-semester courses. A first course may
include one of the following options but should include the bulk of the first
four chapters:

1. If one is mainly interested in stability theory, then the choice would
be Chapters 1–5.

2. One may choose Chapters 1–4, and Chapter 8 if the interest is to get
to asymptotic theory.

3. Those interested in oscillation theory may choose Chapters 1, 2, 3, 5,
and 7.

4. A course emphasizing control theory may include Chapters 1–3, 6, and
10.
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Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5 Chapter 6

Chapter 7

Chapter 6Chapter 7

Chapter 9

The diagram above depicts the dependency among the chapters.



Preface to the Second Edition

The second edition has greatly benefited from a sizable number of com-
ments and suggestions I received from users of the first edition. I hope
that I have corrected all the errors and misprints in the book. Important
revisions were made in Chapters 1 and 4. In Chapter 1, I added two ap-
pendices (Global Stability and Periodic Solutions). In Chapter 4, I added
a section on applications to mathematical biology. Influenced by a friendly
and some not so friendly comments about Chapter 8 (previously Chapter 7:
Asymptotic Behavior of Difference Equations), I rewrote the chapter with
additional material on Birkhoff’s theory. Also, due to popular demand, a
new chapter (Chapter 9) under the title “Applications to Continued Frac-
tions and Orthogonal Polynomials” has been added. This chapter gives a
rather thorough presentation of continued fractions and orthogonal poly-
nomials and their intimate connection to second-order difference equations.
Chapter 8 (Oscillation Theory) has now become Chapter 7. Accordingly,
the new revised suggestions for using the text are as follows.

The book may be used with considerable flexibility. For a one-semester
course, one may choose one of the following options:

(i) If you want a course that emphasizes stability and control, then you
may select Chapters 1, 2, and 3, and parts of Chapters 4, 5, and 6. This
is perhaps appropriate for a class populated by mathematics, physics,
and engineering majors.

(ii) If the focus is on the applications of difference equations to orthogonal
polynomials and continued fractions, then you may select Chapters 1,
2, 3, 8, and 9.

ix
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I am indebted to K. Janglajew, who used the book several times and
caught numerous glitches and typos. I am very grateful to Julio Lopez
and his students, who helped me correct some mistakes and improve the
exposition in Chapters 7 and 8. I am thankful to Raghib Abu-Saris, who
caught some errors and typos in Chapter 4. My thanks go to Gerry Ladas,
who assisted in refining Chapter 8, and to Allan Peterson, who graciously
used my book and caught some mistakes in Chapter 4. I thank my brother
Hatem Elaydi who read thoroughly Chapter 6 and made valuable revisions
in the exercises. Many thanks to Fozi Dannan, whose comments improved
Chapters 1, 4, and 9. Ronald Mickens was always there for me when I
needed support, encouragement, and advice. His impact on this edition is
immeasurable. My special thanks to Jenny Wolkowicki of Springer-Verlag.

I apologize in advance to all those whom I did not mention here but who
have helped in one way or another to enhance the quality of this edition.

It is my pleasure to thank my former secretary, Constance Garcia, who
typed the new and revised material.

San Antonio, Texas Saber N. Elaydi
April 1999



Preface to the First Edition

This book grew out of lecture notes I used in a course on difference equa-
tions that I have taught at Trinity University for the past five years.
The classes were largely populated by juniors and seniors majoring in
mathematics, engineering, chemistry, computer science, and physics.

This book is intended to be used as a textbook for a course on difference
equations at both the advanced undergraduate and beginning graduate
levels. It may also be used as a supplement for engineering courses on
discrete systems and control theory.

The main prerequisites for most of the material in this book are calculus
and linear algebra. However, some topics in later chapters may require some
rudiments of advanced calculus and complex analysis. Since many of the
chapters in the book are independent, the instructor has great flexibility in
choosing topics for a one-semester course.

This book presents the current state of affairs in many areas such as sta-
bility, Z-transform, asymptoticity, oscillations, and control theory. However,
this book is by no means encyclopedic and does not contain many impor-
tant topics, such as numerical analysis, combinatorics, special functions
and orthogonal polynomials, boundary value problems, partial difference
equations, chaos theory, and fractals. The nonselection of these topics is
dictated not only by the limitations imposed by the elementary nature of
this book, but also by the research interest (or lack thereof) of the author.

Great efforts were made to present even the most difficult material in
an elementary format and to write in a style that makes the book acces-
sible to students with varying backgrounds and interests. One of the main
features of the book is the inclusion of a great number of applications in
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xii Preface to the First Edition

economics, social sciences, biology, physics, engineering, neural networks,
etc. Moreover, this book contains a very extensive and carefully selected
set of exercises at the end of each section. The exercises form an integral
part of the text. They range from routine problems designed to build ba-
sic skills to more challenging problems that produce deeper understanding
and build technique. The asterisked problems are the most challenging, and
the instructor may assign them as long-term projects. Another important
feature of the book is that it encourages students to make mathematical
discoveries through calculator/computer experimentation.

Chapter 1 deals with first-order difference equations, or one-dimensional
maps on the real line. It includes a thorough and complete analysis of
stability for many popular maps (equations) such as the logistic map, the
tent map, and the Baker map. The rudiments of bifurcation and chaos
theory are also included in Section 1.6. This section raises more questions
and gives few answers. It is intended to arouse the reader’s interest in this
exciting field.

In Chapter 2 we give solution methods for linear difference equations of
any order. Then we apply the obtained results to investigate the stability
and the oscillatory behavior of second-order difference equations. At the
end of the chapter we give four applications: the propagation of annual
plants, the gambler’s ruin, the national income, and the transmission of
information.

Chapter 3 extends the study in Chapter 2 to systems of difference equa-
tions. We introduce two methods to evaluate An for any matrix A. In
Section 3.1 we introduce the Putzer algorithm, and in Section 3.3 the
method of the Jordan form is given. Many applications are then given
in Section 3.5, which include Markov chains, trade models, and the heat
equation.

Chapter 4 investigates the question of stability for both scalar equations
and systems. Stability of nonlinear equations is studied via linearization
(Section 4.5) and by the famous method of Liapunov (Section 4.6). Our ex-
position here is restricted to autonomous (time-invariant) systems. I believe
that the extension of the theory to nonautonomous (time-variant) systems,
though technically involved, will not add much more understanding to the
subject matter.

Chapter 5 delves deeply into Z-transform theory and techniques (Sections
5.1, 5.2). Then the results are applied to study the stability of Volterra
difference scalar equations (Sections 5.3, 5.4) and systems (Sections 5.5,
5.6). For readers familiar with differential equations, Section 5.7 provides
a comparison between the Z-transform and the Laplace transform. Most of
the results on Volterra difference equations appear here for the first time
in a book.

Chapter 6 takes us to the realm of control theory. Here, we cover most
of the basic concepts including controllability, observability, observers,
and stabilizability by feedback. Again, we restrict the presentation to au-
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tonomous (time-invariant) systems, since this is just an introduction to this
vast and growing discipline. Moreover, most practitioners deal mainly with
time-invariant systems.

In Chapter 7 we give a comprehensive and accessible study of asymp-
totic methods for difference equations. Starting from the Poincaré Theorem,
the chapter covers most of the recent development in the subject. Section
7.4 (asymptotically diagonal systems) presents an extension of Levinson’s
Theorem to difference equations, while in Section 7.5 we carry our study to
nonlinear difference equations. Several open problems are given that would
serve as topics for research projects.

Finally, Chapter 8 presents a brief introduction to oscillation theory. In
Section 8.1, the basic results on oscillation for three-term linear difference
equations are introduced. Extension of these results to nonlinear differ-
ence equations is presented in Section 8.2. Another approach to oscillation
theory, for self-adjoint equations, is presented in Section 8.3. Here we also
introduce a discrete version of Sturm’s Separation Theorem.

I am indebted to Gerry Ladas, who read many parts of the book and sug-
gested many useful improvements, especially within the section on stability
of scalar difference equations (Section 4.3). His influence through papers
and lectures on Chapter 8 (oscillation theory) is immeasurable. My thanks
go to Vlajko Kocic, who thoroughly read and made many helpful comments
about Chapter 4 on Stability. Jim McDonald revised the chapters on the
Z-transform and control theory (Chapters 5 and 6) and made significant
improvements. I am very grateful to him for his contributions to this book.
My sincere thanks go to Paul Eloe, who read the entire manuscript and
offered valuable suggestions that led to many improvements in the final
draft of the book. I am also grateful to Istvan Gyori for his comments on
Chapter 8 and to Ronald Mickens for his review of the whole manuscript
and for his advice and support. I would like to thank the following math-
ematicians who encouraged and helped me in numerous ways during the
preparation of the book: Allan Peterson, Donald Bailey, Roberto Hasfura,
Haydar Akca, and Shunian Zhang. I am grateful to my students Jeff Bator,
Michelle MacArthur, and Nhung Tran, who caught misprints and mistakes
in the earlier drafts of this book. My special thanks are due to my student
Julie Lundquist, who proofread most of the book and made improvements
in the presentation of many topics. My thanks go to Constance Garcia, who
skillfully typed the entire manuscript with its many, many revised versions.
And finally, it is a pleasure to thank Ina Lindemann and Robert Wexler
from Springer-Verlag for their enthusiastic support of this project.

San Antonio, Texas Saber N. Elaydi
December 1995
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8.6 Birkhoff’s Theorem . . . . . . . . . . . . . . . . . . . . . . 377
8.7 Nonlinear Difference Equations . . . . . . . . . . . . . . . . 382
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1
Dynamics of First-Order
Difference Equations

1.1 Introduction

Difference equations usually describe the evolution of certain phenomena
over the course of time. For example, if a certain population has discrete
generations, the size of the (n+1)st generation x(n+1) is a function of the
nth generation x(n). This relation expresses itself in the difference equation

x(n + 1) = f(x(n)). (1.1.1)

We may look at this problem from another point of view. Starting from a
point x0, one may generate the sequence

x0, f(x0), f(f(x0)), f(f(f(x0))), . . . .

For convenience we adopt the notation

f2(x0) = f(f(x0)), f3(x0) = f(f(f(x0))), etc.

f(x0) is called the first iterate of x0 under f ; f2(x0) is called the second
iterate of x0 under f ; more generally, fn(x0) is the nth iterate of x0 under
f . The set of all (positive) iterates {fn(x0) : n ≥ 0} where f0(x0) =
x0 by definition, is called the (positive) orbit of x0 and will be denoted
by O(x0). This iterative procedure is an example of a discrete dynamical
system. Letting x(n) = fn(x0), we have

x(n + 1) = fn+1(x0) = f [fn(x0)] = f(x(n)),

and hence we recapture (1.1.1). Observe that x(0) = f0(x0) = x0. For
example, let f(x) = x2 and x0 = 0.6. To find the sequence of iterates

1
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{fn(x0)}, we key 0.6 into a calculator and then repeatedly depress the x2

button. We obtain the numbers

0.6, 0.36, 0.1296, 0.01679616, . . . .

A few more key strokes on the calculator will be enough to convince the
reader that the iterates fn(0.6) tend to 0. The reader is invited to verify
that for all x0 ∈ (0, 1), fn(x0) tends to 0 as n tends to ∞, and that fn(x0)
tends to ∞ if x0 �∈ [−1, 1]. Obviously, fn(0) = 0, fn(1) = 1 for all positive
integers n, and fn(−1) = 1 for n = 1, 2, 3, . . . .

After this discussion one may conclude correctly that difference equa-
tions and discrete dynamical systems represent two sides of the same coin.
For instance, when mathematicians talk about difference equations, they
usually refer to the analytic theory of the subject, and when they talk
about discrete dynamical systems, they generally refer to its geometrical
and topological aspects.

If the function f in (1.1.1) is replaced by a function g of two variables,
that is, g : Z

+ × R → R, where Z
+ is the set of nonnegative integers and

R is the set of real numbers, then we have

x(n + 1) = g(n, x(n)). (1.1.2)

Equation (1.1.2) is called nonautonomous or time-variant, whereas (1.1.1)
is called autonomous or time-invariant. The study of (1.1.2) is much more
complicated and does not lend itself to the discrete dynamical system
theory of first-order equations. If an initial condition x(n0) = x0 is given,
then for n ≥ n0 there is a unique solution x(n) ≡ x(n, n0, x0) of (1.1.2)
such that x(n0, n0, x0) = x0. This may be shown easily by iteration. Now,

x(n0 + 1, n0, x0) = g(n0, x(n0)) = g(n0, x0),
x(n0 + 2, n0, x0) = g(n0 + 1, x(n0 + 1)) = g(n0 + 1, g(n0, x0)),
x(n0 + 3, n0, x0) = g(n0 + 2, x(n0 + 2)) = g[n0 + 2, g(n0 + 1, g(n0, x0))].

And, inductively, we get x(n, n0, x0) = g[n − 1, x(n − 1, n0, x0)].

1.2 Linear First-Order Difference Equations

In this section we study the simplest special cases of (1.1.1) and (1.1.2),
namely, linear equations. A typical linear homogeneous first-order equation
is given by

x(n + 1) = a(n)x(n), x(n0) = x0, n ≥ n0 ≥ 0, (1.2.1)

and the associated nonhomogeneous equation is given by

y(n + 1) = a(n)y(n) + g(n), y(n0) = y0, n ≥ n0 ≥ 0, (1.2.2)

where in both equations it is assumed that a(n) �= 0, and a(n) and g(n)
are real-valued functions defined for n ≥ n0 ≥ 0.
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One may obtain the solution of (1.2.1) by a simple iteration:

x(n0 + 1) = a(n0)x(n0) = a(n0)x0,

x(n0 + 2) = a(n0 + 1)x(n0 + 1) = a(n0 + 1)a(n0)x0,

x(n0 + 3) = a(n0 + 2)x(n0 + 2) = a(n0 + 2)a(n0 + 1)a(n0)x0.

And, inductively, it is easy to see that

x(n) = x(n0 + n − n0))
= a(n − 1)a(n − 2) · · · a(n0)x0,

x(n) =

[
n−1∏
i=n0

a(i)

]
x0. (1.2.3)

The unique solution of the nonhomogeneous (1.2.2) may be found as
follows:

y(n0 + 1) = a(n0)y0 + g(n0),
y(n0 + 2) = a(n0 + 1)y(n0 + 1) + g(n0 + 1)

= a(n0 + 1)a(n0)y0 + a(n0 + 1)g(n0) + g(n0 + 1).

Now we use mathematical induction to show that, for all n ∈ Z
+,

y(n) =

[
n−1∏
i=n0

a(i)

]
y0 +

n−1∑
r=n0

[
n−1∏

i=r+1

a(i)

]
g(r). (1.2.4)

To establish this, assume that formula (1.2.4) holds for n = k. Then from
(1.2.2), y(k + 1) = a(k)y(k) + g(k), which by formula (1.2.4) yields

y(k + 1) = a(k)

[
k−1∏
i=n0

a(i)

]
y0 +

k−1∑
r=n0

[
a(k)

k−1∏
i=r+1

a(i)

]
g(r) + g(k)

=

[
k∏

i=n0

a(i)

]
y0 +

k−1∑
r=n0

(
k∏

i=r+1

a(i)

)
g(r)

+

(
k∏

i=k+1

a(i)

)
g(k) (see footnote 1)

=

[
k∏

i=n0

a(i)

]
y0 +

k∑
r=n0

( ∏
i=r+1

a(i)

)
g(r).

Hence formula (1.2.4) holds for all n ∈ Z
+.

1Notice that we have adopted the notation
∏k

i=k+1 a(i) = 1 and∑k
i=k+1 a(i) = 0.
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1.2.1 Important Special Cases
There are two special cases of (1.2.2) that are important in many
applications. The first equation is given by

y(n + 1) = ay(n) + g(n), y(0) = y0. (1.2.5)

Using formula (1.2.4) one may establish that

y(n) = any0 +
n−1∑
k=0

an−k−1g(k). (1.2.6)

The second equation is given by

y(n + 1) = ay(n) + b, y(0) = y0. (1.2.7)

Using formula (1.2.6) we obtain

y(n) =

⎧⎪⎨⎪⎩any0 + b

[
an − 1
a − 1

]
if a �= 1,

y0 + bn if a = 1.
(1.2.8)

Notice that the solution of the differential equation

dx

dt
= ax(t), x(0) = x0,

is given by

x(t) = eatx0,

and the solution of the nonhomogeneous differential equation

dy

dt
= ay(t) + g(t), y(0) = y0,

is given by

y(t) = eaty0 +
∫ t

0
ea(t−s)g(s) ds.

Thus the exponential eat in differential equations corresponds to the expo-
nential an and the integral

∫ t

0 ea(t−s)g(s) ds corresponds to the summation
n−1∑
k=0

an−k−1g(k).

We now give some examples to practice the above formulas.

Example 1.1. Solve the equation

y(n + 1) = (n + 1)y(n) + 2n(n + 1)!, y(0) = 1, n > 0.
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TABLE 1.1. Definite sum.

Number Summation Definite sum

1
n∑

k=1

k
n(n + 1)

2

2
n∑

k=1

k2 n(n + 1)(2n + 1)
6

3
n∑

k=1

k3
[

n(n + 1)
2

]2

4
n∑

k=1

k4 n(6n4 + 15n3 + 10n2 − 1)
30

5
n−1∑
k=0

ak

{
(an − 1)/(a − 1) if a �= 1

n if a = 1

6
n−1∑
k=1

ak

{
(an − a)/(a − 1) if a �= 1

n − 1 if a = 1

7
n∑

k=1

kak, a �= 1
(a − 1)(n + 1)an+1 − an+2 + a

(a − 1)2

Solution

y(n) =
n−1∏
i=0

(i + 1) +
n−1∑
k=0

[
n−1∏

i=k+1

(i + 1)

]
2k(k + 1)!

= n! +
n−1∑
k=0

n! 2k

= 2nn! (from Table 1.1).

Example 1.2. Find a solution for the equation

x(n + 1) = 2x(n) + 3n, x(1) = 0.5.

Solution From (1.2.6), we have

x(n) =
(

1
2

)
2n−1 +

n−1∑
k=1

2n−k−1 3k

= 2n−2 + 2n−1
n−1∑
k=1

(
3
2

)k

= 2n−2 + 2n−1 3
2

(( 3
2

)n−1 − 1
3
2 − 1

)
= 3n − 5 · 2n−2.
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Example 1.3. A drug is administered once every four hours. Let D(n) be
the amount of the drug in the blood system at the nth interval. The body
eliminates a certain fraction p of the drug during each time interval. If the
amount administered is D0, find D(n) and limn→∞ D(n).

Solution We first must create an equation to solve. Since the amount of
drug in the patient’s system at time (n+1) is equal to the amount at time
n minus the fraction p that has been eliminated from the body, plus the
new dosage D0, we arrive at the following equation:

D(n + 1) = (1 − p)D(n) + D0.

Using (1.2.8), we solve the above equation, arriving at

D(n) =
[
D0 − D0

p

]
(1 − p)n +

D0

p
.

Hence,

lim
n→∞ D(n) =

D0

p
. (1.2.9)

Let D0 = 2 cubic centimeters (cc), p = 0.25.
Then our original equation becomes

D(n + 1) = 0.75D(n) + 2, D(0) = 2.

Table 1.2 gives D(n) for 0 ≤ n ≤ 10.

It follows from (1.2.9) that limn→∞ D(n) = 8, where D* = 8 cc is the
equilibrium amount of drug in the body. We now enter the realm of finance
for our next example.

Example 1.4. Amortization

Amortization is the process by which a loan is repaid by a sequence of
periodic payments, each of which is part payment of interest and part
payment to reduce the outstanding principal.

Let p(n) represent the outstanding principal after the nth payment g(n).
Suppose that interest charges compound at the rate r per payment period.

The formulation of our model here is based on the fact that the out-
standing principal p(n + 1) after the (n + 1)st payment is equal to the
outstanding principal p(n) after the nth payment plus the interest rp(n)
incurred during the (n + 1)st period minus the nth payment g(n). Hence

p(n + 1) = p(n) + rp(n) − g(n),

TABLE 1.2. Values of D(n).

n 0 1 2 3 4 5 6 7 8 9 10
D(n) 2 3.5 4.62 5.47 6.1 6.58 6.93 7.2 7.4 7.55 7.66
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or

p(n + 1) = (1 + r)p(n) − g(n), p(0) = p0, (1.2.10)

where p0 is the initial debt. By (1.2.6) we have

p(n) = (1 + r)np0 −
n−1∑
k=0

(1 + r)n−k−1g(k). (1.2.11)

In practice, the payment g(n) is constant and, say, equal to T . In this case,

p(n) = (1 + r)np0 − ((1 + r)n − 1)
(

T

r

)
. (1.2.12)

If we want to pay off the loan in exactly n payments, what would be the
monthly payment T? Observe first that p(n) = 0. Hence from (1.2.12) we
have

T = p0

[
r

1 − (1 + r)−n

]
.

Exercises 1.1 and 1.2

1. Find the solution of each difference equation:

(a) x(n + 1) − (n + 1)x(n) = 0, x(0) = c.

(b) x(n + 1) − 3nx(n) = 0, x(0) = c.

(c) x(n + 1) − e2nx(n) = 0, x(0) = c.

(d) x(n + 1) − n
n+1x(n) = 0, n ≥ 1, x(1) = c.

2. Find the general solution of each difference equation:

(a) y(n + 1) − 1
2y(n) = 2, y(0) = c.

(b) y(n + 1) − n
n+1y(n) = 4, y(1) = c.

3. Find the general solution of each difference equation:

(a) y(n + 1) − (n + 1)y(n) = 2n(n + 1)!, y(0) = c.

(b) y(n + 1) = y(n) + en, y(0) = c.

4. (a) Write a difference equation that describes the number of regions
created by n lines in the plane if it is required that every pair of
lines meet and no more than two lines meet at one point.

(b) Find the number of these regions by solving the difference equation
in case (a).

5. The gamma function is defined as Γ(x) =
∫∞
0 tx−1e−t dt, x > 0.

(a) Show that Γ(x + 1) = xΓ(x), Γ(1) = 1.
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(b) If n is a positive integer, show that Γ(n + 1) = n!.

(c) Show that x(n) = x(x − 1) · · · (x − n + 1) =
Γ(x + 1)

Γ(x − n + 1)
.

6. A space (three-dimensional) is divided by n planes, nonparallel, and
no four planes having a point in common.

(a) Write a difference equation that describes the number of regions
created.

(b) Find the number of these regions.

7. Verify (1.2.6).

8. Verify (1.2.8).

9. A debt of $12,000 is to be amortized by equal payments of $380 at
the end of each month, plus a final partial payment one month after
the last $380 is paid. If interest is at an annual rate of 12% com-
pounded monthly, construct an amortization schedule to show the
required payments.

10. Suppose that a loan of $80,000 is to be amortized by equal monthly
payments. If the interest rate is 10% compounded monthly, find the
monthly payment required to pay off the loan in 30 years.

11. Suppose the constant sum T is deposited at the end of each fixed period
in a bank that pays interest at the rate r per period. Let A(n) be the
amount accumulated in the bank after n periods.

(a) Write a difference equation that describes A(n).

(b) Solve the difference equation obtained in (a), when A(0) = 0, T =
$200, and r = 0.008.

12. The temperature of a body is measured as 110◦ F. It is observed that
the amount the temperature changes during each period of two hours
is −0.3 times the difference between the previous period’s temperature
and the room temperature, which is 70◦ F.

(a) Write a difference equation that describes the temperature T (n) of
the body at the end of n periods.

(b) Find T (n).

13. Suppose that you can get a 30-year mortgage at 8% interest. How much
can you afford to borrow if you can afford to make a monthly payment
of $1,000?

14. Radium decreases at the rate of 0.04% per year. What is its half-life?
(The half-life of a radioactive material is defined to be the time needed
for half of the material to dissipate.)
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15. (Carbon Dating). It has been observed that the proportion of carbon-
14 in plants and animals is the same as that in the atmosphere as long
as the plant or the animal is alive. When an animal or plant dies, the
carbon-14 in its tissue starts decaying at the rate r.

(a) If the half-life of carbon-14 is 5,700 years, find r.

(b) If the amount of carbon-14 present in a bone of an animal is 70%
of the original amount of carbon-14, how old is the bone?

1.3 Equilibrium Points

The notion of equilibrium points (states) is central in the study of the dy-
namics of any physical system. In many applications in biology, economics,
physics, engineering, etc., it is desirable that all states (solutions) of a given
system tend to its equilibrium state (point). This is the subject of study
of stability theory, a topic of great importance to scientists and engineers.
We now give the formal definition of an equilibrium point.

Definition 1.5. A point x∗ in the domain of f is said to be an equilibrium
point of (1.1.1) if it is a fixed point of f , i.e., f(x*) = x*.

In other words, x∗ is a constant solution of (1.1.1), since if x(0) = x∗ is
an initial point, then x(1) = f(x*) = x∗, and x(2) = f(x(1)) = f(x*) = x*,
and so on.

Graphically, an equilibrium point is the x-coordinate of the point where
the graph of f intersects the diagonal line y = x (Figures 1.1 and 1.2). For
example, there are three equilibrium points for the equation

x(n + 1) = x3(n)

where f(x) = x3. To find these equilibrium points, we let f(x*) = x∗, or
x3 = x, and solve for x. Hence there are three equilibrium points, −1, 0, 1
(Figure 1.1). Figure 1.2 illustrates another example, where f(x) = x2−x+1
and the difference equation is given by

x(n + 1) = x2(n) − x(n) + 1.

Letting x2 − x + 1 = x, we find that 1 is the only equilibrium point.
There is a phenomenon that is unique to difference equations and cannot

possibly occur in differential equations. It is possible in difference equations
that a solution may not be an equilibrium point but may reach one after
finitely many iterations. In other words, a nonequilibrium state may go to
an equilibrium state in a finite time. This leads to the following definition.

Definition 1.6. Let x be a point in the domain of f . If there exists a
positive integer r and an equilibrium point x∗ of (1.1.1) such that fr(x) =
x*, fr−1(x) �= x*, then x is an eventually equilibrium (fixed) point.
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x*=−1

x*=0 x*=1

1

2 3

FIGURE 1.1. Fixed points of f(x) = x3.

f(x)
y=x

x*=1

FIGURE 1.2. Fixed points of f(x) = x2 − x + 1.

Example 1.7. The Tent Map

Consider the equation (Figure 1.3)

x(n + 1) = T (x(n)),

where

T (x) =

⎧⎪⎨⎪⎩
2x for 0 ≤ x ≤ 1

2
,

2(1 − x) for
1
2

< x ≤ 1.

There are two equilibrium points, 0 and 2
3 (see Figure 1.3). The search for

eventually equilibrium points is not as simple algebraically. If x(0) = 1
4 ,

then x(1) = 1
2 , x(2) = 1, and x(3) = 0. Thus 1

4 is an eventually equilibrium
point. The reader is asked to show that if x = k/2n, where k and n are
positive integers with 0 < k/2n ≤ 1, then x is an eventually equilibrium
point (Exercises 1.3, Problem 15).
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x(r+1)

x(n)

x* x*
2 1

FIGURE 1.3. Equilibrium points of the tent map.

x(n)

x*+ε

x*+δ
x0

x*

x*- δ

x* - ε

0     1 2 3 4 5 6 7 8 9 10 n

FIGURE 1.4. Stable x*. If x(0) is within δ from x*, then x(n) is within ε from
x(n) for all n > 0.

One of the main objectives in the study of a dynamical system is to
analyze the behavior of its solutions near an equilibrium point. This study
constitutes the stability theory. Next we introduce the basic definitions of
stability.

Definition 1.8. (a) The equilibrium point x∗ of (1.1.1) is stable (Figure
1.4) if given ε > 0 there exists δ > 0 such that |x0 − x∗| < δ implies
|fn(x0) − x∗| < ε for all n > 0. If x∗ is not stable, then it is called unstable
(Figure 1.5).

(b) The point x∗ is said to be attracting if there exists η > 0 such that

|x(0) − x∗| < η implies lim
n→∞ x(n) = x∗.

If η = ∞, x∗ is called a global attractor or globally attracting.
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x(n)

x*+ε

x*+δ
x0

x*

x*- δ

x* - ε

0 1 2 3 4 5 6 7 8 9 10
n

FIGURE 1.5. Unstable x*. There exists ε > 0 such that no matter how close x(0)
is to x*, there will be an N such that x(N) is at least ε from x*.

1      2     3 4 5 6 7 8 9 10 n

x(n)

x* + η
x1(0)

x*

x2(0)
x-η

FIGURE 1.6. Asymptotically stable x*. Stable if x(0) is within η of x*; then
limn→∞ x(n) = x*.

(c) The point x∗ is an asymptotically stable equilibrium point if it is stable
and attracting.

If η = ∞, x∗ is said to be globally asymptotically stable (Figure 1.7).

To determine the stability of an equilibrium point from the above def-
initions may prove to be a mission impossible in many cases. This is due
to the fact that we may not be able to find the solution in a closed form
even for the deceptively simple-looking equation (1.1.1). In this section we
present some of the simplest but most powerful tools of the trade to help
us understand the behavior of solutions of (1.1.1) in the vicinity of equilib-
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x1(0) 1 2 3 4 5 6 7 8 9 10 n

x2(0)

x*

x(n)

FIGURE 1.7. Globally asymptotically stable x*. Stable and limn→∞ x(n) = x∗

for all x(0).

rium points, namely, the graphical techniques. A hand-held calculator may
fulfill all your graphical needs in this section.

1.3.1 The Stair Step (Cobweb) Diagrams
We now give, in excruciating detail, another important graphical method
for analyzing the stability of equilibrium (and periodic) points for (1.1.1).
Since x(n+1) = f(x(n)), we may draw a graph of f in the (x(n), x(n+1))
plane. Then, given x(0) = x0, we pinpoint the value x(1) by drawing a
vertical line through x0 so that it also intersects the graph of f at (x0, x(1)).
Next, draw a horizontal line from (x0, x(1)) to meet the diagonal line y = x
at the point (x(1), x(1)). A vertical line drawn from the point (x(1), x(1))
will meet the graph of f at the point (x(1), x(2)). Continuing this process,
one may find x(n) for all n > 0.

Example 1.9. The Logistic Equation

Let y(n) be the size of a population at time n. If µ is the rate of growth
of the population from one generation to another, then we may consider a
mathematical model in the form

y(n + 1) = µy(n), µ > 0. (1.3.1)

If the initial population is given by y(0) = y0, then by simple iteration we
find that

y(n) = µny0 (1.3.2)

is the solution of (1.3.1). If µ > 1, then y(n) increases indefinitely, and
limn→∞ y(n) = ∞. If µ = 1, then y(n) = y0 for all n > 0, which means that
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the size of the population is constant for the indefinite future. However, for
µ < 1, we have limn→∞ y(n) = 0, and the population eventually becomes
extinct.

For most biological species, however, none of the above cases is valid as
the population increases until it reaches a certain upper limit. Then, due
to the limitations of available resources, the creatures will become testy
and engage in competition for those limited resources. This competition is
proportional to the number of squabbles among them, given by y2(n). A
more reasonable model would allow b, the proportionality constant, to be
greater than 0,

y(n + 1) = µy(n) − by2(n). (1.3.3)

If in (1.3.3), we let x(n) = b
µy(n), we obtain

x(n + 1) = µx(n)(1 − x(n)) = f(x(n)). (1.3.4)

This equation is the simplest nonlinear first-order difference equation, com-
monly referred to as the (discrete) logistic equation. However, a closed-form
solution of (1.3.4) is not available (except for certain values of µ). In spite of
its simplicity, this equation exhibits rather rich and complicated dynamics.
To find the equilibrium points of (1.3.4) we let f(x∗) = µx∗(1 − x∗) = x∗.
Thus, we pinpoint two equilibrium points: x∗ = 0 and x∗ = (µ − 1)/µ.

Figure 1.8 gives the stair step diagram of (x(n), x(n + 1)) when µ = 2.5
and x(0) = 0.1. In this case, we also have two equilibrium points. One,
x* = 0, is unstable, and the other, x* = 0.6, is asymptotically stable.

Example 1.10. The Cobweb Phenomenon
(Economics Application)

Here we study the pricing of a certain commodity. Let S(n) be the number
of units supplied in period n, D(n) the number of units demanded in period
n, and p(n) the price per unit in period n.

For simplicity, we assume that D(n) depends only linearly on p(n) and
is denoted by

D(n) = −mdp(n) + bd, md > 0, bd > 0. (1.3.5)

This equation is referred to as the price–demand curve. The constant md

represents the sensitivity of consumers to price. We also assume that the
price–supply curve relates the supply in any period to the price one period
before, i.e.,

S(n + 1) = msp(n) + bs, ms > 0, bs > 0. (1.3.6)

The constant ms is the sensitivity of suppliers to price. The slope of the
demand curve is negative because an increase of one unit in price produces
a decrease of md units in demand. Correspondingly, an increase of one unit
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x(n+1)

x0 x*
x(n)

FIGURE 1.8. Stair step diagram for µ = 2.5.

in price causes an increase of ms units in supply, creating a positive slope
for that curve.

A third assumption we make here is that the market price is the price
at which the quantity demanded and the quantity supplied are equal, that
is, at which D(n + 1) = S(n + 1).

Thus

−mdp(n + 1) + bd = msp(n) + bs,

or

p(n + 1) = Ap(n) + B = f(p(n)), (1.3.7)

where

A = −ms

md
, B =

bd − bs

md
. (1.3.8)

This equation is a first-order linear difference equation. The equilibrium
price p∗ is defined in economics as the price that results in an intersection
of the supply S(n + 1) and demand D(n) curves. Also, since p∗ is the
unique fixed point of f(p) in (1.3.7), p* = B/(1 − A). (This proof arises
later as Exercises 1.3, Problem 6.) Because A is the ratio of the slopes of
the supply and demand curves, this ratio determines the behavior of the
price sequence. There are three cases to be considered:

(a) −1 < A < 0,

(b) A = −1,

(c) A < −1.

The three cases are now depicted graphically using our old standby, the
stair step diagram.
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p(n)
p0

p(n+1)

FIGURE 1.9. Asymptotically stable equilibrium price.

p(n)

p(n+1)

p0

FIGURE 1.10. Stable equilibrium price.

(i) In case (a), prices alternate above and below but converge to the equi-
librium price p*. In economics lingo, the price p∗ is considered “stable”;
in mathematics, we refer to it as “asymptotically stable” (Figure 1.9).

(ii) In case (b), prices oscillate between two values only. If p(0) = p0, then
p(1) = −p0+B and p(2) = p0. Hence the equilibrium point p∗ is stable
(Figure 1.10).

(iii) In case (c), prices oscillate infinitely about the equilibrium point p∗

but progressively move further away from it. Thus, the equilibrium
point is considered unstable (Figure 1.11).
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p(n)p0

p(n+1)

FIGURE 1.11. Unstable equilibrium price.

An explicit solution of (1.3.7) with p(0) = p0 is given by

p(n) =
(

p0 − B

1 − A

)
An +

B

1 − A
(Exercises 1.3, Problem 9). (1.3.9)

This explicit solution allows us to restate cases (a) and (b) as follows.

1.3.2 The Cobweb Theorem of Economics
If the suppliers are less sensitive to price than the consumers (i.e., ms <
md), the market will then be stable. If the suppliers are more sensitive than
the consumers, the market will be unstable.

One might also find the closed-form solution (1.3.9) by using a computer
algebra program, such as Maple. One would enter this program:

rsolve({p(n + 1) = a ∗ p(n) + b, p(0) = p0}, p(n)).

Exercises 1.3

1. Contemplate the equation x(n + 1) = f(x(n)), where f(0) = 0.

(a) Prove that x(n) ≡ 0 is a solution of the equation.

(b) Show that the function depicted in the following (n, x(n)) diagram
cannot possibly be a solution of the equation:
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1                2                3                 4               5
n

x(n)

2. (Newton’s Method of Computing the Square Root of a Positive
Number)
The equation x2 = a can be written in the form x = 1

2 (x + a/x). This
form leads to Newton’s method

x(n + 1) =
1
2

[
x(n) +

a

x(n)

]
.

(a) Show that this difference equation has two equilibrium points, −√
a

and
√

a.

(b) Sketch a stair step diagram for a = 3, x(0) = 1, and x(0) = −1.

(c) What can you conclude from (b)?

3. (Pielou’s Logistic Equation)
E.C. Pielou [119] referred to the following equation as the discrete
logistic equation:

x(n + 1) =
αx(n)

1 + βx(n)
, α > 1, β > 0.

(a) Find the positive equilibrium point.

(b) Demonstrate, using the stair step diagram, that the positive equi-
librium point is asymptotically stable, taking α = 2 and β =
1.

4. Find the equilibrium points and determine their stability for the
equation

x(n + 1) = 5 − 6
x(n)

.

5. (a) Draw a stair step diagram for (1.3.4) for µ = 0.5, 3, and 3.3. What
can you conclude from these diagrams?

(b) Determine whether these values for µ give rise to periodic solutions
of period 2.

6. (The Cobweb Phenomenon [equation (1.3.7)]). Economists define the
equilibrium price p∗ of a commodity as the price at which the demand
function D(n) is equal to the supply function S(n + 1). These are
defined in (1.3.5) and (1.3.6), respectively.
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(a) Show that p* = B
1−A , where A and B are defined as in (1.3.8).

(b) Let ms = 2, bs = 3, md = 1, and bd = 15. Find the equilibrium
price p*. Then draw a stair step diagram, for p(0) = 2.

7. Continuation of Problem 6:
Economists use a different stair step diagram, as we will explain in the
following steps:

(i) Let the x-axis represent the price p(n) and the y-axis represent
S(n + 1) or D(n). Draw the supply line and the demand line and
find their point of intersection p*.

(ii) Starting with p(0) = 2 we find s(1) by moving vertically to the
supply line, then moving horizontally to find D(1) (since D(1) =
S(1)), which determines p(1) on the price axis. The supply S(2)
is found on the supply line directly above p(1), and then D(2) (=
S(2)) is found by moving horizontally to the demand line, etc.

(iii) Is p∗ stable?

8. Repeat Exercises 6 and 7 for:

(a) ms = md = 2, bd = 10, and bs = 2.

(b) ms = 1, md = 2, bd = 14, and bs = 2.

9. Verify that formula (1.3.9) is a solution of (1.3.7).

10. Use formula (1.3.9) to show that:

(a) If −1 < A < 0, then limn→∞ p(n) = B/1 − A.

(b) If A < −1, then p(n) is unbounded.

(c) If A = −1, then p(n) takes only two values:

p(n) =

{
p(0) if n is even,

p(1) = B − p0 if n is odd.

11. Suppose that the supply and demand equations are given by D(n) =
−2p(n) + 3 and S(n + 1) = p2(n) + 1.

(a) Assuming that the market price is the price at which supply equals
demand, find a difference equation that relates p(n + 1) to p(n).

(b) Find the positive equilibrium value of this equation.

(c) Use the stair step diagrams to determine the stability of the positive
equilibrium value.
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12. Consider Baker’s map defined by

B(x) =

⎧⎪⎨⎪⎩
2x for 0 ≤ x ≤ 1

2
,

2x − 1 for
1
2

< x ≤ 1.

(i) Draw the function B(x) on [0,1].

(ii) Show that x ∈ [0, 1] is an eventually fixed point if and only if it is
of the form x = k/2n, where k and n are positive integers,2 with
0 ≤ k ≤ 2n − 1.

13. Find the fixed points and the eventually fixed points of x(n + 1) =
f(x(n)), where f(x) = x2.

14. Find an eventually fixed point of the tent map of Example 1.7 that is
not in the form k/2n.

15. Consider the tent map of Example 1.7. Show that if x = k/2n, where k
and n are positive integers with 0 < k/2n ≤ 1, then x is an eventually
fixed point.

1.4 Numerical Solutions of Differential Equations

Differential equations have been extensively used as mathematical models
for a wide variety of physical and artificial phenomena. Such models de-
scribe populations or objects that evolve continuously in which time (or the
independent variable) is a subset of the set of real numbers. In contrast,
difference equations describe populations or objects that evolve discretely
in which time (or the independent variable) is a subset of the set of integers.
In many instances, one is unable to solve a given differential equation. In
this case, we need to use a numerical scheme to approximate the solutions
of the differential equations. A numerical scheme leads to the construction
of an associated difference equation that is more amenable to computation
either by a graphing-held calculator or by a computer. Here we present a
couple of simple numerical schemes. We begin by Euler’s method, one of
the oldest numerical methods.

1.4.1 Euler’s Method
Consider the first-order differential equation

x′(t) = g(t, x(t)), x(t0) = x0, t0 ≤ t ≤ b. (1.4.1)

2A number x ∈ [0, 1] is called a dyadic rational if it has the form k/2n for
some nonnegative integers k and n, with 0 ≤ k ≤ 2n − 1.
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Let us divide the interval [t0, b] into N equal subintervals. The size of
each subinterval is called the step size of the method and is denoted by
h = (b − t0)/N . This step size defines the nodes t0, t1, t2, . . . , tN , where
tj = t0 + jh. Euler’s method approximates x′(t) by (x(t + h) − x(t))/h.

Substituting this value into (1.4.1) gives

x(t + h) = x(t) + hg(t, x(t)),

and for t = t0 + nh, we obtain

x[t0 + (n + 1)h] = x(t0 + nh) + hg[t0 + nh, x(t0 + nh)] (1.4.2)

for n = 0, 1, 2, . . . , N − 1.
Adapting the difference equation notation and replacing x(t0 + nh) by

x(n) gives

x(n + 1) = x(n) + hg[n, x(n)]. (1.4.3)

Equation (1.4.3) defines Euler’s algorithm, which approximates the solu-
tions of the differential equation (1.4.1) at the node points.

Note that x∗ is an equilibrium point of (1.4.3) if and only if g(x*) = 0.
Thus the differential equation (1.4.1) and the difference equation (1.4.3)
have the same equilibrium points.

Example 1.11. Let us now apply Euler’s method to the differential
equation:

x′(t) = 0.7x2(t)+0.7, x(0) = 1, t ∈ [0, 1] (DE) (see footnote 3).

Using the separation of variable method, we obtain

1
0.7

∫
dx

x2 + 1
=
∫

dt.

Hence

tan−1(x(t)) = 0.7t + c.

Letting x(0) = 1, we get c = π
4 . Thus, the exact solution of this equation

is given by x(t) = tan
(
0.7t + π

4

)
.

The corresponding difference equation using Euler’s method is

x(n + 1) = x(n) + 0.7h(x2(n) + 1), x(0) = 1 (∆E) (see footnote 4)

Table 1.3 shows the Euler approximations for h = 0.2 and 0.1, as well as
the exact values. Figure 1.12 depicts the (n, x(n)) diagram. Notice that the
smaller the step size we use, the better the approximation we have.

3DE ≡ differential equation.
4∆E ≡ difference equation.
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TABLE 1.3.

(∆E) Euler (∆E) Euler
(h = 0.2) (h = 0.1) Exact (DE)

n t x(n) x(n) x(t)
0 0 1 1 1
1 0.1 1.14 1.150
2 0.2 1.28 1.301 1.328
3 0.3 1.489 1.542
4 0.4 1.649 1.715 1.807
5 0.5 1.991 2.150
6 0.6 2.170 2.338 2.614
7 0.7 2.791 3.286
8 0.8 2.969 3.406 4.361
9 0.9 4.288 6.383
10 1 4.343 5.645 11.681

12

11

10

9

8

7

6

5

4

3

2

0.1 0 .15 0 .2 0 .25 0 .3 0 .35 0 .4 0 .45 0 .5 0 .55 0 .6 0 .65 0 .7 0 .75 0 .8 0 .85 0 .9 0 .95 1 .0

Exact

h=0.1

h=0.2

t

x(t)

FIGURE 1.12. The (n, x(n)) diagram.

Example 1.12. Consider the logistic differential equation

x′(t) = ax(t)(1 − x(t)), x(0) = x0.

The equilibrium points (or constant solutions) are obtained by letting
x′(t) = 0. Hence ax(1 − x) = 0 and we then have two equilibrium points
x∗

1 = 0 and x∗
2 = 1. The exact solution of the equation is obtained by
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separation of variables,

dx

x(1 − x)
= a dt,∫

dx

x
+
∫

dx

1 − x
=
∫

a dt,

ln
(

x

1 − x

)
= at + c,

x

1 − x
= eat+c = beat, b = ec.

Hence

x(t) =
beat

1 + beat
.

Now x(0) = x0 = b
1+b gives b = x0

1−x0
. Substituting in x(t) yields

x(t) =
x0e

at

1 − x0 + x0eat
=

x0e
at

1 + x0(eat − 1)
.

If a > 0, lim
t→∞ x(t) = 1, and thus all solutions converge to the equilibrium

point x∗
2 = 1. On the other hand, if a < 0, lim

t→∞ x(t) = 0, and thus all
solutions converge to the equilibrium point x∗

1 = 0.
Let us now apply Euler’s method to the logistic differential equation.

The corresponding difference equation is given by

x(n + 1) = x(n) + h ax(n)(1 − x(n)), x(0) = x0.

This equation has two equilibrium points x∗
1 = 0, x∗

2 = 1 as in the
differential equation case.

Let y(n) = ha
1+hax(n). Then we have

y(n + 1) = (1 + ha)y(n)(1 − y(n))

0x

x0

1

x(t)

t

FIGURE 1.13. If a > 0, all solutions with x0 > 0 converge to x∗
2 = 1.
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0x

x0

x(t)

t

1

0

FIGURE 1.14. If a < 0, all solutions with x0 < 1 converge to x∗
1 = 0.

or

y(n + 1) = µy(n)(1 − y(n)), y(0) =
ha

1 + ha
x(0), and µ = 1 + ha.

The corresponding equilibrium points are y∗
1 = 0 and y∗

2 = µ−1
µ = ha

1+ha
which correspond to x∗

1 = 0 and x∗
2 = 1, respectively. Using the Cobweb

diagram, we observe that for 1 < µ < 3 (0 < ha < 2), all solutions
whose initial point y0 in the interval (0, 1) converge to the equilibrium point
y∗
2 = ha

1+ha (Figure 1.15) and for 0 < µ < 1 (−1 < ha < 0), all solutions
whose initial point y0 in the interval (0, 1) converge to the equilibrium
point y∗

2 = 0 (Figure 1.16). However, for µ > 3 (ha > 2), almost all
solutions where initial points are in the interval (0, 1) do not converge to
either equilibrium point y∗

1 or y∗
2 . In fact, we will see in later sections that

for µ > 3.57 (ha > 2.57), solutions of the difference equation behave in a
“chaotic” manner (Figure 1.17). In the next section we will explore another
numerical scheme that has been proven effective in a lot of cases [100].

1.4.2 A Nonstandard Scheme
Consider again the logistic differential equation. Now if we replace x2(n)
in Euler’s method by x(n)x(n + 1) we obtain

x(n + 1) = x(n) + hax(n) − hax(n)x(n + 1).

Simplifying we obtain the rational difference equation

x(n + 1) =
(1 + ha)x(n)
1 + hax(n)

or

x(n + 1) =
αx(n)

1 + βx(n)

with α = 1 + ha, β = α − 1 = ha.
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x(n)

x(n+1)
1

0.5

0.5 1x0

FIGURE 1.15. 0 < ha < 2.

x(n)

x(n+1)

0.5 10x

0.5

1

FIGURE 1.16. −1 < ha < 0.

This equation has two equilibrium points x∗
1 = 0 and x∗

2 = 1. From the
Cobweb diagram (Figure 1.18) we conclude that lim

n→∞ x(n) = 1 if α > 1.
Since h > 0, α > 1 if and only if a > 0. Thus all solutions converge to

the equilibrium point x∗
2 = 1 if a > 0 as in the differential equation case

regardless of the size of h.
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x
x(n)

x(n+1)

0 0.5 1

0.5

1

FIGURE 1.17. ha > 2.57.

x0 1

1

0.5

0.5

x(n)

x(n+1)

FIGURE 1.18. α = 1 + ha, β = α − 1 = ha.

Exercises 1.4

In Problems 1–5

(a) Find the associated difference equation.

(b) Draw an (n, y(n)) diagram.

(c) Find, if possible, the exact solution of the differential equation and
draw its graph on the same plot as that drawn in part in (b).
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1. y′ = −y2, y(0) = 1, 0 ≤ t ≤ 1, h = 0.2, 0.1.

2. y′ = −y + 4
y , y(0) = 1, 0 ≤ t ≤ 1, h = 0.25.

3. y′ = −y + 1, y(0) = 2, 0 ≤ t ≤ 1, h = 0.25.

4. y′ = y(1 − y), y(0) = 0.1, 0 ≤ t ≤ 1, h = 0.25.

5. y′ = y2 + 2, y(0) = 1
4 , 0 ≤ t ≤ 1, h = 0.25.

6. Use a nonstandard numerical method to find the associated difference
equation of the differential equation in Problem 1.

7. Do Problem 4 using a nonstandard numerical method and compare
your results with Euler’s method.

8. Do Problem 5 using a nonstandard numerical method and compare
your result with Euler’s method.

9. Use both Euler’s method and a nonstandard method to discretize the
differential equation

y′(t) = y2 + t, y(0) = 1, 0 ≤ t ≤ 1, h = 0.2.

Draw the n − y(n) diagram for both methods. Guess which method
gives a better approximation to the differential equation.

10. (a) Use the Euler method with h = 0.25 on [0, 1] to find the value of y
corresponding to t = 0.5 for the differential equation

dy

dt
= 2t + y, y(0) = 1.

(b) Compare the result obtained in (a) with the exact value.

11. Given the differential equation of Problem 10, show that a better
approximation is given by the difference equation

y(n + 1) = y(n) +
1
2
h(y′(n) + y′(n + 1)).

This method is sometimes called the modified Euler method.

1.5 Criterion for the Asymptotic Stability
of Equilibrium Points

In this section we give a simple but powerful criterion for the asymptotic
stability of equilibrium points. The following theorem is our main tool in
this section.

Theorem 1.13. Let x∗ be an equilibrium point of the difference equation

x(n + 1) = f(x(n)), (1.5.1)
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where f is continuously differentiable at x*. The following statements then
hold true:

(i) If |f ′(x*)| < 1, then x∗ is asymptotically stable.

(ii) If |f ′(x*)| > 1, then x∗ is unstable.

Proof.

(i) Suppose that |f ′(x*)| < M < 1. Then there is an interval J = (x*−γ,
x*+γ) containing x∗ such that |f ′(x)| ≤ M < 1 for all x ∈ J . For if
not, then for each open interval In = (x∗ − 1

n , x∗ + 1
n ) (for large n) there

is a point xn ∈ In such that |f ′(xn)| > M . As n → ∞, xn → x∗. Since
f ′ is a continuous function, it follows that

lim
n→∞ f ′(xn) = f ′(x∗).

Consequently,

M ≤ lim
n→∞ |f ′(xn)| = |f ′(x∗)| < M,

which is a contradiction. This proves our statement. For x(0) ∈ J , we
have

|x(1) − x*| = |f(x(0)) − f(x*)|.

By the Mean Value Theorem, there exists ξ between x(0) and x∗ such
that

|f(x(0)) − f(x*)| = |f ′(ξ)| |x(0) − x*|.
Thus

|f(x(0)) − x*| ≤ M |x(0) − x*|.
Hence

|x(1) − x*| ≤ M |x(0) − x*|. (1.5.2)

Since M < 1, inequality (1.5.2) shows that x(1) is closer to x∗ than
x(0). Consequently, x(1) ∈ J .

By induction we conclude that

|x(n) − x*| ≤ Mn|x(0) − x*|.
For ε > 0 we let δ = ε

2M . Thus |x(0) − x*| < δ implies that |x(n) −
x*| < ε for all n > 0. This conclusion suggests stability. Furthermore,
limn→∞ |x(n) − x*| = 0, and thus limn→∞ x(n) = x*; we conclude
asymptotic stability. �

The proof of part (ii) is left as Exercises 1.5, Problem 11.

Remark: In the literature of dynamical systems, the equilibrium point x∗

is said to be hyperbolic if |f ′(x*)| �= 1.
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x(2) x(1)   x0

x

g(x)

FIGURE 1.19. Newton’s method.

Example 1.14. The Newton–Raphson Method

The Newton–Raphson method is one of the most famous numerical meth-
ods for finding the roots of the equation g(x) = 0, where g(x) is continually
differentiable (i.e., its derivative exists and is continuous).

Newton’s algorithm for finding a zero x∗ of g(x) is given by the difference
equation

x(n + 1) = x(n) − g(x(n))
g′(x(n))

, (1.5.3)

where x(0) = x0 is your initial guess of the root x*. Here f(x) = x − g(x)
g′(x) .

Note first that the zero x∗ of g(x) is also an equilibrium point of (1.5.3).
To determine whether Newton’s algorithm provides a sequence {x(n)} that
converges to x∗ we use Theorem 1.13:

|f ′(x*)| =
∣∣∣∣1 − [g′(x*)]2 − g(x*)g′′(x*)

[g′(x*)]2

∣∣∣∣ = 0,

since g(x*) = 0. By Theorem 1.13, limn→∞ x(n) = x∗ if x(0) = x0 is close
enough to x∗ and g′(x*) �= 0.

Observe that Theorem 1.13 does not address the nonhyperbolic case
where |f ′(x*)| = 1. Further analysis is needed here to determine the sta-
bility of the equilibrium point x*. Our first discussion will address the case
where f ′(x*) = 1.

Theorem 1.15. Suppose that for an equilibrium point x∗ of (1.5.1),
f ′(x*) = 1. The following statements then hold:

(i) If f ′′(x*) �= 0, then x∗ is unstable.

(ii) If f ′′(x*) = 0 and f ′′′(x*) > 0, then x∗ is unstable.

(iii) If f ′′(x*) = 0 and f ′′′(x*) < 0, then x∗ is asymptotically stable.



30 1. Dynamics of First-Order Difference Equations

x(n+1)

x(n)

x(0) x* x(0)

FIGURE 1.20. Unstable. f ′′(x*) > 0 (semistable from the left).

x(n+1)

x(0)    x*                           x 0

x(n)

FIGURE 1.21. Unstable. f ′′(x*) < 0 (semistable from the right).

Proof.
(i) If f ′′(x*) �= 0, then the curve y = f(x) is either concave upward if

f ′′(x*) > 0 or concave downward if f ′′(x*) < 0, as shown in Figures 1.20,
1.21, 1.22, 1.23. If f ′′(x*) > 0, then f ′(x) > 1 for all x in a small interval
I = (x*, x*+ε). Using the same proof as in Theorem 1.13, it is easy to show
that x∗ is unstable. On the other hand, if f ′′(x*) < 0, then f ′(x) > 1 for
all x in a small interval I = (x* − ε, x*). Hence x∗ is again unstable. �
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x(n+1)

x(0)        x*          x(0)
x(n)

FIGURE 1.22. Unstable. f ′(x*) = 1, f ′′(x*) = 0, and f ′′′(x*) > 0.

x(n+1)

x(0)                    x*                         x(0)
x(n)

FIGURE 1.23. Asymptotically stable. f ′(x*) = 1, f ′′(x*) = 0, and f ′′′(x*) < 0.

Proofs of parts (ii) and (iii) remain for the student’s pleasure as Exercises
1.5, Problem 14.

We now use the preceding result to investigate the case f ′(x*) = −1.
But before doing so, we need to introduce the notion of the Schwarzian

derivative of a function f :

Sf(x) =
f ′′′(x)
f ′(x)

− 3
2

[
f ′′(x)
f ′(x)

]2
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Note that if f ′(x∗) = −1, then

Sf(x∗) = −f ′′′(x∗) − 3
2

(f ′′(x∗))2 .

Theorem 1.16. Suppose that for the equilibrium point x∗ of (1.1.1),
f ′(x*) = −1. The following statements then hold:

(i) If Sf(x*) < 0, then x∗ is asymptotically stable.

(ii) If Sf(x*) > 0, then x∗ is unstable.

Proof. Contemplate the equation

y(n + 1) = g(y(n)), where g(y) = f2(y). (1.5.4)

We will make two observations about (1.5.4). First, the equilibrium point
x∗ of (1.1.1) is also an equilibrium point of (1.5.4). Second, if x∗ is asymp-
totically stable (unstable) with respect to (1.5.4), then it is so with respect
to (1.1.1). (Why?) (Exercises 1.5, Problem 12.) Now,

d

dy
g(y) =

d

dy
f(f(y)) = f ′(f(y))f ′(y).

Thus
d

dy
g(x*) = [f ′(x*)]2 = 1. Hence Theorem 1.15 applies to this

situation. We need to evaluate
d2

dy2 g(x∗) :

d2

dy2 g(y) =
d2

dy2 f(f(y)) = [f ′(f(y))f ′(y)]′

= [f ′(y)]2f ′′(f(y)) + f ′(f(y))f ′′(y).

Hence
d2

dy2 g(x*) = 0.

Now, Theorem 1.15 [parts (ii) and (iii)] tells us that the asymptotic stability
of x∗ is determined by the sign of [g(x*)]′′′. Using the chain rule again, one
may show that

[g(x*)]′′′ = −2f ′′′(x*) − 3[f ′′(x*)]2. (1.5.5)

(The explicit proof with the chain rule remains as Exercises 1.5, Problem
13.) This step rewards us with parts (i) and (ii), and the proof of the
theorem is now complete. �

Example 1.17. Consider the difference equation x(n+1) = x2(n)+3x(n).
Find the equilibrium points and determine their stability.
Solution The equilibrium points are 0 and −2. Now, f ′(x) = 2x + 3.
Since f ′(0) = 3, it follows from Theorem 1.13 that 0 is unstable. Now,
f ′(−2) = −1, so Theorem 1.16 applies. Using (1.5.5) we obtain −2f ′′′(−2)−
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x0=.5
x(n)

x0=2.9

x(n+1)

FIGURE 1.24. Stair step diagram for x(n + 1) = x2(n) + 3x(n).

3[f ′′(−2)]2 = −12 < 0. Theorem 1.16 then declares that the equilibrium
point −2 is asymptotically stable. Figure 1.24 illustrates the stair step
diagram of the equation.

Remark: One may generalize the result in the preceding example to a gen-
eral quadratic map Q(x) = ax2 + bx + c, a �= 0. Let x∗ be an equilibrium
point of Q(x), i.e., Q(x∗) = x∗. Then the following statements hold true.

(i) If Q′(x∗) = −1, then by Theorem 1.16, the equilibrium point x∗ is
asymptotically stable. In fact, there are two equilibrium points for Q(x);

x∗
1 = [(1 − b) −

√
(b − 1)2 − 4ac]/2a;

x∗
2 = [(1 − b) +

√
(b − 1)2 − 4ac]/2a.

It is easy to see that Q′(x∗
1) = −1, if (b−1)2 = 4ac+4 and Q′(x∗

2) �= −1.
Thus x∗

1 is asymptotically stable if (b − 1)2 = 4ac + 4 (Exercises 1.5,
Problem 8).

(ii) If Q′(x∗) = 1, then by Theorem 1.15, x∗ is unstable. In this case, we
have only one equilibrium point x∗ = (1 − b)/2a. Thus, x∗ is unstable
if (b − 1)2 = 4ac.

Remark:

(i) Theorem 1.15 fails if for a fixed point x∗, f ′(x∗) = 1, f ′′(x∗) =
f ′′′(x∗) = 0. For example, for the map f(x) = x+(x−1)4 and its fixed
point x∗ = 1, f ′(x∗) = 1, f ′′(x∗) = f ′′′(x∗) = 0, and f (4)(x∗) = 24 > 0.

(ii) Theorem 1.16 fails if f ′(x∗) = −1, and Sf(x∗) = 0. This may be
illustrated by the function f(x) = −x+2x2 −4x3. For the fixed x∗ = 0,
f ′(x∗) = −1, and Sf(x∗) = 0.
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In Appendix A, we present the general theory developed by Dannan,
Elaydi, and Ponomarenko in 2003 [30]. The stability of the fixed points in
the above examples will be determined.

Exercises 1.5

In Problems 1 through 7, find the equilibrium points and determine their
stability using Theorems 1.13, 1.15, and 1.16.

1. x(n + 1) = 1
2 [x3(n) + x(n)].

2. x(n + 1) = x2(n) + 1
8 .

3. x(n + 1) = tan−1 x(n).

4. x(n + 1) = x2(n).

5. x(n + 1) = x3(n) + x(n).

6. x(n + 1) =
αx(n)

1 + βx(n)
, α > 1 and β > 0.

7. x(n + 1) = −x3(n) − x(n).

8. Let Q(x) = ax2 + bx+ c, a �= 0, and let x∗ be a fixed point of Q. Prove
the following statements:

(i) If Q′(x∗) = −1, then x∗ is asymptotically stable. Then prove the
rest of Remark (i).

(ii) If Q′(x∗) = 1, then x∗ is unstable. Then prove the rest of Remark
(ii).

9. Suppose that in (1.5.3), g(x*) = g′(x*) = 0 and g′′(x*) �= 0. Prove
that x∗ is an equilibrium point of (1.5.3).

10. Prove Theorem 1.13, part (ii).

11. Prove that if x∗ is an equilibrium point of (1.5.1), then it is an equi-
librium point of (1.5.1). Show also that the converse is false in general.
For what class of maps f(x) does the converse hold?

12. Prove that if an equilibrium point x∗ of (1.5.1) is asymptotically stable
with respect to (1.5.4) (or unstable, as the case may be), it is also so
with respect to (1.1.1).

13. Verify formula (1.5.5).

14. Prove Theorem 1.15, parts (ii) and (iii).

15. Definition of Semistability. An equilibrium point x∗ of x(n + 1) =
f(x(n)) is semistable (from the right) if given ε > 0 there exists δ > 0
such that if x(0) > x*, x(0) − x∗ < δ, then x(n) − x∗ < ε. Semistabil-
ity from the left is defined similarly. If in addition, limn→∞ x(n) = x∗
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whenever x(0) − x* < η{x* − x(0) < η}, then x∗ is said to be semi-
asymptotically stable from the right {or from the left, whatever the
case may be}.
Suppose that if f ′(x*) = 1, then f ′′(x∗) �= 0. Prove that x∗ is:

(i) semiasymptotically stable from the right from the right if f ′′(x*) <
0;

(ii) semiasymptotically stable from the left from the left if f ′′(x*) > 0.

16. Determine whether the equilibrium point x* = 0 is semiasymptotically
stable from the left or from the right.

(a) x(n + 1) = x3(n) + x2(n) + x(n).

(b) x(n + 1) = x3(n) − x2(n) + x(n).

1.6 Periodic Points and Cycles

The second most important notion in the study of dynamical systems is the
notion of periodicity. For example, the motion of a pendulum is periodic.
We have seen in Example 1.10 that if the sensitivity ms of the suppliers to
price is equal to the sensitivity of consumers to price, then prices oscillate
between two values only.

Definition 1.18. Let b be in the domain of f . Then:

(i) b is called a periodic point of f (or of (1.5.1)) if for some positive integer
k, fk(b) = b. Hence a point is k-periodic if it is a fixed point of fk, that
is, if it is an equilibrium point of the difference equation

x(n + 1) = g(x(n)), (1.6.1)

where g = fk.

The periodic orbit of b, O(b) = {b, f(b), f2(b), . . . , fk−1(b)}, is often
called a k-cycle.

(ii) b is called eventually k-periodic if for some positive integer m, fm(b) is
a k-periodic point. In other words, b is eventually k-periodic if

fm+k(b) = fm(b).

Graphically, a k-periodic point is the x-coordinate of the point where the
graph of fk meets the diagonal line y = x. Figure 1.25 depicts the graph of
f2, where f is the logistic map, which shows that there are four fixed points
of f2, of which two are fixed points of f as shown in Figure 1.26. Hence
the other two fixed points of f2 form a 2-cycle. Notice also that the point
x0 = 0.3 (in Figure 1.26) goes into a 2-cycle, and thus it is an eventually
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x(n+2)

x(n)

FIGURE 1.25. Graph of f2 with four fixed points. f(x) = 3.43x(1 − x).

x(n+1)

x(n)
x0 x*

FIGURE 1.26. x0 goes into a 2-cycle. f(x) = 3.43x(1 − x).

2-periodic point. Moreover, the point x* = 0.445 is asymptotically stable
relative to f2 (Figure 1.27).

Observe also that if A = −1 in (1.3.7), then f2(p0) = −(−p0 +B)+B =
p0. Therefore, every point is 2-periodic (see Figure 1.10). This means that
in this case, if the initial price per unit of a certain commodity is p0, then
the price oscillates between p0 and B − p0.

Example 1.19. Consider again the difference equation generated by the
tent function

T (x) =

⎧⎪⎨⎪⎩
2x for 0 ≤ x ≤ 1

2
,

2(1 − x) for
1
2

< x ≤ 1 .
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x(n+2)

x0=0.35
x(n)

FIGURE 1.27. x∗ ≈ 0.445 is asymptotically stable relative to f2.

This may also be written in the compact form

T (x) = 1 − 2
∣∣∣∣x − 1

2

∣∣∣∣ .
We first observe that the periodic points of period 2 are the fixed points of
T 2. It is easy to verify that T 2 is given by

T 2(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4x for 0 ≤ x <
1
4
,

2(1 − 2x) for
1
4

≤ x <
1
2
,

4
(

x − 1
2

)
for

1
2

≤ x <
3
4
,

4(1 − x) for
3
4

≤ x ≤ 1.

There are four equilibrium points (Figure 1.28): 0, 0.4, 2
3 , and 0.8, two of

which, 0 and 2
3 , are equilibrium points of T . Hence {0.4, 0.8} is the only

2-cycle of T . Notice from Figure 1.29 that x* = 0.8 is not stable relative to
T 2.

Figure 1.30 depicts the graph of T 3. It is easy to verify that
{ 2

7 , 4
7 , 6

7

}
is

a 3-cycle. Now,

T

(
2
7

)
=

4
7
, T

(
4
7

)
=

6
7
, T

(
6
7

)
=

2
7
.

Using a computer or hand-held calculator, one may show (using the stair
step diagram) that the tent map T has periodic points of all periods. This
is a phenomenon shared by all equations that possess a 3-cycle. It was
discovered by Li and Yorke [92] in their celebrated paper “Period Three
Implies Chaos.”
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x(n=2)

0.4 2
3

0.8 1
x(n)

FIGURE 1.28. Fixed points of T 2.

x*=0.8

x(n)

x(n+2)

FIGURE 1.29. x* = 0.8 is unstable relative to T 2.

x(n+3)

x(n)

FIGURE 1.30. Fixed points of T 3.
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We now turn our attention to explore the stability of periodic points.

Definition 1.20. Let b be a k-period point of f . Then b is:

(i) stable if it is a stable fixed point of fk,

(ii) asymptotically stable if it is an asymptotically stable fixed point of fk,

(iii) unstable if it is an unstable fixed point of fk.

Notice that if b possesses a stability property, then so does every point
in its k-cycle {x(0) = b, x(1) = f(b), x(2) = f2(b), . . . , x(k − 1) = fk−1(b)}.
Hence we often speak of the stability of a k-cycle or a periodic orbit. Figure
1.29 shows that the 2-cycle in the tent map is not stable, since x* = 0.8
is not stable as a fixed point of T 2, while the 2-cycle in the logistic map is
asymptotically stable (see Figure 1.27).

Since the stability of a k-periodic point b of (1.1.1) reduces to the study
of the stability of the point as an equilibrium point of (1.6.1), one can
use all the theorems in the previous section applied to fk. For example,
Theorem 1.13 may be modified as follows.

Theorem 1.21. Let O(b) = {b = x(0), x(1), . . . , x(k − 1)} be a k-cycle
of a continuously differentiable function f . Then the following statements
hold:

(i) The k-cycle O(b) is asymptotically stable if

|f ′(x(0))f ′(x(1)), . . . , f ′(x(k − 1))| < 1.

(ii) The k-cycle O(b) is unstable if

|f ′(x(0))f ′(x(1)), . . . , f ′(x(k − 1))| > 1.

Proof. We apply Theorem 1.13 to (1.6.1). Notice that by using the chain
rule one may show that

[fk(x(r))]′ = f ′(x(0))f ′(x(1)), . . . , f ′(x(k − 1)).

(See Exercises 1.6, Problem 12.) �

The conclusion of the theorem now follows.

Example 1.22. Consider the map Q(x) = x2−0.85 defined on the interval
[−2, 2]. Find the 2-cycles and determine their stability.
Solution Observe that Q2(x) = (x2 − 0.85)2 − 0.85. The 2-periodic points
are obtained by solving the equation

Q2(x) = x, or x4 − 1.7x2 − x − 0.1275 = 0. (1.6.2)

This equation has four roots, two of which are fixed points of the map Q(x).
These two fixed points are the roots of the equation

x2 − x − 0.85 = 0. (1.6.3)
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To eliminate these fixed points of Q(x) from (1.6.2) we divide the left-hand
side of (1.6.2) by the left-hand side of (1.6.3) to obtain the second-degree
equation

x2 + x + 0.15 = 0. (1.6.4)

The 2-periodic points are now obtained by solving (1.6.4). They are given
by

a =
−1 +

√
0.4

2
, b =

−1 − √
0.4

2
.

To check the stability of the cycle {a, b} we apply Theorem 1.21. Now,

|Q′(a)Q′(b)| = |(−1 +
√

0.4)(−1 −
√

0.4)| = 0.6 < 1.

Hence by Theorem 1.21, part (i), the 2-cycle is asymptotically stable.

Exercises 1.6

1. Suppose that the difference equation x(n + 1) = f(x(n)) has a 2-cycle
whose orbit is {a, b}. Prove that:

(i) the 2-cycle is asymptotically stable if |f ′(a)f ′(b)| < 1,

(ii) the 2-cycle is unstable if |f ′(a)f ′(b)| > 1.

2. Let T be the tent map in Example 1.17. Show that
{2

9 , 4
9 , 8

9

}
is an

unstable 3-cycle for T .

3. Let f(x) = − 1
2x2 − x + 1

2 . Show that 1 is an asymptotically stable
2-periodic point of f .

In Problems 4 through 6 find the 2-cycle and then determine its stability.

4. x(n + 1) = 3.5x(n)[1 − x(n)].

5. x(n + 1) = 1 − x2.

6. x(n + 1) = 5 − (6/x(n)).

7. Let f(x) = ax3 − bx + 1, where a, b ∈ R. Find the values of a and b for
which {0, 1} is an attracting 2-cycle.

Consider Baker’s function defined as follows:

B(x) =

⎧⎪⎨⎪⎩
2x for 0 ≤ x ≤ 1

2
,

2x − 1 for
1
2

< x ≤ 1.

Problems 8, 9, and 10 are concerned with Baker’s function B(x) on [0, 1].

*8. (Hard). Draw Baker’s function B(x). Then find the number of
n-periodic points of B.
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9. Sketch the graph of B2 and then find the 2-cycles of Baker’s function
B.

10. (Hard). Show that if m is an odd positive integer, then x = k/m is
periodic, for k = 1, 2, . . . , m − 1.

11. Consider the quadratic map

Q(x) = ax2 + bx + c, a �= 0.

(a) If {d, e} is a 2-cycle such that Q′(d)Q′(e) = −1, prove that it is
asymptotically stable.

(b) If {d, e} is a 2-cycle with Q′(d)Q′(e) = 1, what can you say about
the stability of the cycle?

12. (This exercise generalizes the result in Problem 1.) Let {x(0), x(1), . . . ,
x(k − 1)} be a k-cycle of (1.2.1). Prove that:

(i) if |f ′(x(0))f ′(x(1)), . . . , f ′(x(k − 1))| < 1, then the k-cycle is
asymptotically stable,

(ii) if |f ′(x(0))f ′(x(1)), . . . , f ′(x(k − 1))| > 1, then the k-cycle is
unstable.

13. Give an example of a decreasing function that has a fixed point and a
2-cycle.

14. (i) Can a decreasing map have a k-cycle for k > 1?

(ii) Can an increasing map have a k-cycle for k > 1?

Carvalho’s Lemma. In [18] Carvalho gave a method to find periodic
points of a given function. The method is based on the following lemma.

Lemma 1.23. If k is a positive integer and x(n) is a periodic sequence
of period k, then the following hold true:

(i) If k > 1 is odd and m = k−1
2 , then

x(n) = c0 +
m∑

j=1

[
cj cos

(
2jnπ

k

)
+ dj sin

(
2jnπ

k

)]
,

for all n ≥ 1.

(ii) If k is even and k = 2m, then

x(n) = c0 + (−1)ncm +
m−1∑
j=1

[
cj cos

(
2jnπ

k

)
+ dj sin

(
2jnπ

k

)]
,

for all n ≥ 1.



42 1. Dynamics of First-Order Difference Equations

Example 1.24 [23]. Consider the equation

x(n + 1) = x(n) exp(r(1 − x(n)), (1.6.5)

which describes a population with a propensity to simple exponential
growth at low densities and a tendency to decrease at high densities.
The quantity λ = exp(r(1 − x(n))) could be considered the density-
dependent reproductive rate of the population. This model is plausible
for a single-species population that is regulated by an epidemic disease at
high density.

The nontrivial fixed point of this equation is given by x∗ = 1. Now,
f ′(1) = 1 − r. Hence x∗ = 1 is asymptotically stable if 0 < r ≤ 2 (check
r = 2). At r = 2, x∗ = 1 loses its stability and gives rise to an asymptotically
stable 2-cycle. Carvalho’s lemma implies

x(n) = a + (−1)nb.

Plugging this into equation (1.6.5) yields

a − (−1)nb = (a + (−1)nb) exp r(1 − a − (−1)nb).

The shift n 
→ n + 1 gives

a + (−1)nb = (a − (−1)nb) exp r(1 − a + (−1)nb).

Hence

a2 − b2 = (a2 − b2) exp 2r(1 − a).

Thus either a2 = b2, which gives the trivial solution 0, or a = 1. Hence a
2-periodic solution has the form x(n) = 1 + (−1)nb. Plugging this again
into equation (1.6.5) yields

1 − (−1)nb = (1 + (−1)nb) exp((−1)n+1rb).

Let y = (−1)n+1b.Then

1 + y = (1 − y)ery,

r =
1
y

ln
(

1 + y

1 − y

)
= g(y).

The function g has its minimum at 0, where g(0) = 2. Thus, for r <
2, g(y) = r has no solution, and we have no periodic points, as predicted
earlier. However, each r > 2 determines values ±yr and the corresponding
coefficient (−1)nb. Further analysis may show that this map undergoes
bifurcation similar to that of the logistic map.

Exercises 1.6 (continued).

In Problems 15 through 20, use Carvalho’s lemma (Lemma 1.23).
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15. Consider Ricker’s equation

x(n + 1) = x(n) exp(r(1 − x(n))).

Find the 2-period solution when r > 2.

16. The population of a certain species is modeled by the difference equa-
tion x(n + 1) = µx(n)e−x(n), x(n) ≥ 0, µ > 0. For what values of µ
does the equation have a 2-cycle?

17. Use Carvalho’s lemma to find the values of c for which the map

Qc(x) = x2 + c, c ∈ [−2, 0],

has a 3-cycle and then determine its stability.

18*. (Term Project). Find the values of µ where the logistic equation x(n+
1) = µx(n)[1 − x(n)] has a 3-periodic solution.

19. Use Carvalho’s lemma to find the values of µ where the logistic
equation x(n + 1) = µx(n)[1 − x(n)] has a 2-periodic solution.

20. Find the 3-periodic solutions of the equation x(n + 1) = ax(n), a �= 1.

1.7 The Logistic Equation and Bifurcation

Let us now return to the most important example in this chapter: the
logistic difference equation

x(n + 1) = µx(n)[1 − x(n)], (1.7.1)

which arises from iterating the function

Fµ(x) = µx(1 − x), x ∈ [0, 1], µ > 0. (1.7.2)

1.7.1 Equilibrium Points
To find the equilibrium points (fixed points of Fµ) of (1.7.1) we solve the
equation

Fµ(x*) = x*.

Hence the fixed points are 0, x* = (µ − 1)/µ. Next we investigate the
stability of each equilibrium point separately.

(a) The equilibrium point 0. (See Figures 1.31, 1.32.) Since F ′
µ(0) = µ, it

follows from Theorems 1.13 and 1.15 that:

(i) 0 is an asymptotically stable fixed point for 0 < µ < 1,

(ii) 0 is an unstable fixed point for µ > 1.
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x(n+1)

x0

x(n)

FIGURE 1.31. 0 < µ < 1 : 0 is an asymptotically stable fixed point.

x(n+1)

x0 x*
x(n)

FIGURE 1.32. µ > 1 : 0 is an unstable fixed point, x∗ is an asymptotically fixed
point.

The case where µ = 1 needs special attention, for we have F ′
1(0) = 1

and F ′′(0) = −2 �= 0. By applying Theorem 1.15 we may conclude that
0 is unstable. This is certainly true if we consider negative as well as
positive initial points in the neighborhood of 0. Since negative initial
points are not in the domain of Fµ, we may discard them and consider
only positive initial points. Exercises 1.5, Problem 16 tells us that 0 is
semiasymptotically stable from the right, i.e., x∗ = 0 is asymptotically
stable in the domain [0, 1].

(b) The equilibrium point x* = (µ − 1)/µ, µ �= 1. (See Figures 1.32, 1.33.)

In order to have x* ∈ (0, 1] we require that µ > 1. Now, F ′
µ((µ−1)/µ) = 2−

µ. Thus using Theorems 1.13 and 1.16 we obtain the following conclusions:



1.7 The Logistic Equation and Bifurcation 45

x(n)
x x

x(n+1)

0
*

FIGURE 1.33. µ > 3: x∗ is an unstable fixed point.

(i) x∗ is an asymptotically stable fixed point for 1 < µ ≤ 3 (Figure 1.32).

(ii) x∗ is an unstable fixed point for µ > 3 (Figure 1.33).

1.7.2 2-Cycles
To find the 2-cycles we solve the equation F 2

µ(x) = x (or we solve x2 =
µx1(1 − x1), x1 = µx2(1 − x2)),

µ2x(1 − x)[1 − µx(1 − x)] − x = 0. (1.7.3)

Discarding the equilibrium points 0 and x* = µ−1
µ , one may then divide

(1.7.3) by the factor x(x − (µ − 1)/µ) to obtain the quadratic equation

µ2x2 − µ(µ + 1)x + µ + 1 = 0.

Solving this equation produces the 2-cycle

x(0) =
[
(1 + µ) −

√
(µ − 3)(µ + 1)

] /
2µ,

x(1) =
[
(1 + µ) +

√
(µ − 3)(µ + 1)

] /
2µ. (1.7.4)

Clearly, there are no periodic points of period 2 for 0 < µ ≤ 3, and there
is a 2-cycle for µ > 3. For our reference we let µ0 = 3.

1.7.2.1 Stability of the 2-Cycle {x(0), x(1)} for µ > 3

From Theorem 1.21, this 2-cycle is asymptotically stable if

|F ′
µ(x(0))F ′

µ(x(1))| < 1,

or

−1 < µ2(1 − 2x(0))(1 − 2x(1)) < 1. (1.7.5)

Substituting from (1.7.4) the values of x(0) and x(1) into (1.7.5), we obtain

3 < µ < 1 +
√

6 ≈ 3.44949.
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Conclusion This 2-cycle is attracting if 3 < µ < 3.44949 . . . .

Question What happens when µ = 1 +
√

6?
In this case, [

F 2
µ(x(0))

]′
= F ′

µ(x(0))F ′
µ(x(1)) = −1. (1.7.6)

(Verify in Exercises 1.7, Problem 7.)
Hence we may use Theorem 1.16, part (i), to conclude that the 2-cycle is

also attracting. For later reference, let µ1 = 1 +
√

6. Moreover, the 2-cycle
becomes unstable when µ > µ1 = 1 +

√
6.

1.7.3 22-Cycles
To find the 4-cycles we solve F 4

µ(x) = x. The computation now becomes
unbearable, and one should resort to a computer to do the work. It turns
out that there is a 22-cycle when µ > 1 +

√
6, which is attracting for

1 +
√

6 < µ < 3.544090 . . . . This 22-cycle becomes unstable at µ > µ2 =
3.544090 . . . .

When µ = µ2, the 22-cycle bifurcates into a 23 cycle. The new 23 cycle
is attracting for µ3 < µ ≤ µ4 for some number µ4. This process of double
bifurcation continues indefinitely. Thus we have a sequence {µn}∞

n=0 where
at µn there is a bifurcation from a 2n−1-cycle to a 2n-cycle. (See Figures
1.34, 1.35.) Table 1.4 provides some astonishing patterns.

From Table 1.4 we bring forward the following observations:

(i) The sequence {µn} seems to converge to a number µ∞ = 3.57 . . . .

(ii) The quotient (µn − µn−1)/(µn+1 − µn) seems to tend to a number δ =
4.6692016 . . . . This number is called the Feigenbaum number after its
discoverer, the physicist Mitchell Feigenbaum [56]. In fact, Feigenbaum
made a much more remarkable discovery: The number δ is universal
and is independent of the form of the family of maps fµ. However, the
number µ∞ depends on the family of functions under consideration.

1                                 3         1+      6

µ

1

x

FIGURE 1.34. Partial bifurcation diagram for {Fµ}.
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µ

FIGURE 1.35. The bifurcation diagram of Fµ.

TABLE 1.4. Feigenbaum table.

n µn µn − µn−1
µn − µn−1

µn+1 − µn

0 3 — —
1 3.449499 . . . 0.449499 . . . —
2 3.544090 . . . 0.094591 . . . 4.752027 . . .
3 3.564407 . . . 0.020313 . . . 4.656673 . . .
4 3.568759 . . . 0.004352 . . . 4.667509 . . .
5 3.569692 . . . 0.00093219 . . . 4.668576 . . .
6 3.569891 . . . 0.00019964 . . . 4.669354 . . .

Theorem 1.25 (Feigenbaum [56] (1978)). For sufficiently smooth fam-
ilies of maps (such as Fµ) of an interval into itself, the number δ =
4.6692016 does not in general depend on the family of maps.

1.7.4 The Bifurcation Diagram
Here the horizontal axis represents the µ values, and the vertical axis repre-
sents higher iterates Fn

µ (x). For a fixed x0, the diagram shows the eventual
behavior of Fn

µ (x0). The bifurcation diagram was obtained with the aid of
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a computer for x0 = 1
2 , taking increments of 1

500 for µ ∈ [0, 4] and plotting
all points

(
µ, Fn

µ

( 1
2

))
for 200 ≤ n ≤ 500.

Question What happens when µ > µ∞?
Answer From Figure 1.35 we see that for µ∞ < µ ≤ 4 we have a large
number of small windows where the attracting set is an asymptotically sta-
ble cycle. The largest window appears at approximately µ = 3.828427 . . .,
where we have an attracting 3-cycle. Indeed, there are attracting k-cycles
for all positive integers k, but their windows are so small that they may
not be noticed without sufficient zooming. As in the situation where
µ < µ∞, these k-cycles lose stability and then double bifurcate into at-
tracting 2nk-cycles. We observe that outside these windows the picture
looks chaotic!

Remarks: Our analysis of the logistic map Fµ may be repeated for any
quadratic map Q(x) = ax2 + bx + c. Indeed, the iteration of the quadratic
map Q (with suitably chosen parameters) is equivalent to the iteration of
the logistic map Fµ. In other words, the maps Q and Fµ possess the same
type of qualitative behavior. The reader is asked, in Exercises 1.7, Problem
11, to verify that one can transform the difference equation

y(n + 1) = y2(n) + c (1.7.7)

to

x(n + 1) = µx(n)[1 − x(n)] (1.7.8)

by letting

y(n) = −µx(n) +
µ

2
, c =

µ

2
− µ2

4
. (1.7.9)

Note here that µ = 2 corresponds to c = 0, µ = 3 corresponds to c = −3
4 ,

and µ = 4 corresponds to c = −2. Naturally, we expect to have the same
behavior of the iteration of (1.7.7) and (1.7.8) at these corresponding values
of µ and c.

Comments: We are still plagued by numerous unanswered questions in
connection with periodic orbits (cycles) of the difference equation

x(n + 1) = f(x(n)). (1.7.10)

Question A. Do all points converge to some asymptotically stable periodic
orbit of (1.7.8)?
The answer is definitely no.

If f(x) = 1 − 2x2 in (1.7.10), then there are no asymptotically stable
(attractor) periodic orbits. Can you verify this statement? If you have some
difficulty here, it is not your fault. Obviously, we need some tools to help
us in verifying that there are no periodic attractors.
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Question B. If there is a periodic attractor of (1.7.10), how many points
converge to it?
Once again, we need more machinery to answer this question.

Question C. Can there be several distinct periodic attractors for (1.7.10)?

This question leads us to the Li–Yorke famous result “Period Three Implies
Chaos” [92]. To explain this and more general results requires the intro-
duction of the so-called Schwarzian derivative of f(x). We will come back
to these questions in Chapter 6.

Exercises 1.7

Unless otherwise stated, all the problems here refer to the logistic difference
equation (1.7.1).

1. Use the stair step diagram for F k
4 on [0, 1], k = 1, 2, 3, . . ., to demon-

strate that F4 has at least 2k periodic points of period k (including
periodic points of periods that are divisors of k).

2. Find the exact solution of x(n + 1) = 4x(n)[1 − x(n)].

3. Let x* = (µ − 1)/µ be the equilibrium point of (1.7.1). Show that:

(i) For 1 < µ ≤ 3, x∗ is an attracting fixed point.

(ii) For µ > 3, x∗ is a repelling fixed point.

4. Prove that limn→∞ Fn
2 (x) = 1

2 if 0 < x < 1.

5. Let 1 < µ ≤ 2 and let x* = (µ − 1)/µ be the equilibrium point of
(1.7.1). Show that if x* < x < 1

2 , then limn→∞ Fn
µ (x) = x*.

6. Prove that the 2-cycle given by (1.7.4) is attracting if 3 < µ < 1 +
√

6.

7. Verify formula (1.7.6). Then show that the 2-cycle in (1.7.4) is
attracting when µ = 1 +

√
6.

8. Verify that µ2 ≈ 3.54 using a calculator or a computer.

*9. (Project). Show that the map Hµ(x) = sin µx leads to the same value
for the Feigenbaum number δ.

10. Show that if |µ − µ1| < ε, then |Fµ(x) − Fµ1(x)| < ε for all x ∈ [0, 1].

11. Show that (1.7.7) can be transformed to the logistic equation (1.7.8),
with c = µ

2 − µ2

4 .

12. (a) Find the equilibrium points y*
1 , y*

2 of (1.7.7).

(b) Find the values of c where y*
1 is attracting or unstable.

(c) Find the values of c where y*
2 is attracting or unstable.



50 1. Dynamics of First-Order Difference Equations

13. Find the value of c0 where (1.7.7) double bifurcates for c > c0. Check
your answer using (1.7.9).

*14. (Project). Use a calculator or a computer to develop a bifurcation
diagram, as in Figures 1.34, 1.35, for (1.7.6).

*15. (Project). Develop a bifurcation diagram for the quadratic map
Qλ(x) = 1 − λx2 on the interval [−1, 1], λ ∈ (0, 2].

In Problems 16–19 determine the stability of the fixed points of the
difference equation.

16. x(n + 1) = x(n) + 1
π sin(2πx(n)).

17. x(n + 1) = 0.5 sin(πx(n)).

18. x(n + 1) = 2x(n) exp(−x(n)).

19. A population of birds is modeled by the difference equation

x(n + 1) =

{
3.2x(n) for 0 ≤ x(n) ≤ 1,

0.5x(n) for x(n) > 1,

where x(n) is the number of birds in year n. Find the equilibrium points
and then determine their stability.

1.8 Basin of Attraction and Global Stability
(Optional)

It is customary to call an asymptotically stable fixed point or a cycle an
attractor. This name makes sense since in this case all nearby points tend
to the attractor. The maximal set that is attracted to an attractor M is
called the basin of attraction of M . Our analysis applies to cycles of any
period.

Definition 1.26. Let x∗ be a fixed point of map f . Then the basin of
attraction (or the stable set) W s(x∗) of x∗ is defined as

W s(x∗) = {x : lim
n→∞ fn(x) = x∗}.

In other words, W s(x∗) consists of all points that are forward asymptotic
to x∗.

Observe that if x∗ is an attracting fixed point, W s(x∗) contains an open
interval around x∗. The maximal interval in W s(x∗) that contains x∗ is
called the immediate basin of attraction and is denoted by Bs(x∗).

Example 1.27. The map f(x) = x2 has one attracting fixed point x∗ = 0.
Its basin of attraction W s(0) = (−1, 1). Note that 1 is an unstable fixed
point and –1 is an eventually fixed point that goes to 1 after one iteration.
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1

1

2 3 4 5

2

3

4

5

−1−2−3

−3

−2

−1

FIGURE 1.36. The basin of attraction W s(0) = (−1, 1) and W s(4) = [−2, −1) ∪
(1, 4]. The immediate basin of attraction B(4) = (1, 4].

Example 1.28. Let us now modify the map f . Consider the map g :
[−2, 4] → [−2, 4] defined as

g(x) =

{
x2 if −2 ≤ x ≤ 1,

3
√

x − 2 if 1 < x ≤ 4.

The map g has three fixed points x∗
1 = 0, x∗

2 = 1, x∗
3 = 4. The basin

of attraction of x∗
1 = 0, W s(0) = (−1, 1), while the basin of attraction

of x∗
3 = 4, W s(4) = [−2,−1) ∪ (1, 4]. Moreover, the immediate basin of

attractions of x∗
1 = 0 is B(0) = W s(0) = (−1, 1), while B(4) = (1, 4].

Remark: Observe that in the preceding example, the basins of attraction
of the two fixed points x∗

1 = 0 and x∗
3 = 4 are disjoint. This is no accident

and is, in fact, generally true. This is due to the uniqueness of a limit of
a sequence. In other words, if the lim

n→∞ fn(x) = L1 and lim
n→∞ fn(x) = L2,

then certainly L1 = L2.

It is worth noting here that finding the basin of attraction of a fixed point
is in general a difficult task. But even more difficult is providing a rigorous
proof. The most efficient method to determining the basin of attraction
is the method of Liapunov functions, which will be developed in Chapter
4. In this section, we will develop some of the basic topological properties
of the basin of attractions. Henceforth, all our maps are assumed to be
continuous. We begin our exposition by defining the important notion of
invariance.

Definition 1.29. A set M is positively invariant under a map f if
f(M) ⊆ M . In other words, for every x ∈ M , O(x) ⊆ M . Since we are only
considering forward iterations of f , the prefix “positively” will henceforth
be dropped.
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Clearly an orbit of a point is invariant.
Next we show that the basin of attraction of an attracting fixed point is

invariant and open.

Theorem 1.30. Let f : I → I, I = [a, b], be a continuous map and let
x∗ ∈ [a, b] be a fixed point of f . Then the following statements hold true:

(i) The immediate basin of attraction B(x∗) is an interval containing
x∗, which is either an open interval (c, d) or of the form [a, c)(c, b].
Moreover, B(x∗) is invariant.

(ii) W s(x∗) is invariant. Furthermore, W s(x∗) is the union (maybe an
infinite union) of intervals that are either open intervals or of the form
[a, c) or (d, b].

Proof.

(i) We know that B(x∗) is a maximal interval in W s(x∗) containing x∗.
Assume that B(x∗) = [c, d), c �= a. Now for a given small ε > 0 there
exists m ∈ Z

+ such that fm(c) ∈ (x∗ − ε, x∗ + ε) ⊂ (c, d). Since
fm is continuous, there exists δ > 0 such that if x0 ∈ (c − δ, c +
δ), then fm(x0) ∈ (x∗ − ε, x∗ + ε) ⊂ B(x∗). Then x0 ∈ B(x∗) and
hence (c − δ, d) ⊂ W s(x∗) which violates the maximality of B(x∗).
Hence B(x∗) �= [c, a), a contradiction. Analogously, one may show that
W s(x∗) �= (c, d] if d �= b.

To prove the invariance of B(x∗), assume that there exists y ∈ B(x∗)
such that fr(y) /∈ B(x∗) for some r ∈ Z

+. Since B(x∗) is an interval,
it follows by the Intermediate Value Theorem that fr(B(x∗)) is also
an interval. Moreover, this interval fr(B(x∗)) must contain x∗ since
fr(x∗) = x∗. Thus fr(B(x∗))∩B(x∗) �= 0, and hence B(x∗)∪fr(B(x∗))
is an interval in W s(x∗), which violates the maximality of B(x∗).

(ii) The proof of this part is analogous to the proof of part (a) and will be
left to the reader to verify. �

There are several (popular) maps such as the logistic map and Ricker’s
map in which the basin of attraction, for the attractive fixed point, is the
entire space with the exception of one or two points (fixed or eventually
fixed). For the logistic map Fµ(x) = µx(1 − x) and 1 < µ < 3, the basin of
attraction W s(x∗) = (0, 1) for the fixed point x∗ = µ−1

µ . And for Ricker’s
map Rp(x) = xep−x, 0 < p < 2, the basin of attraction W s(x∗) = (0,∞),
for x∗ = p. Here we will consider only the logistic map and leave it to the
reader to prove the statement concerning Ricker’s map.

Notice that |F ′
µ(x)| = |µ−2µx| < 1 if and only if −1 < µ−2µx < 1. This

implies that µ−1
2µ < x < µ+1

2µ . Hence |F ′
µ(x)| < 1 for all x ∈

(
µ−1
2µ , µ+1

2µ

)
.

Observe that x∗ = µ−1
µ ∈

(
µ−1
2µ , µ+1

2µ

)
if and only if 1 < µ < 3. Now
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Fµ

(
µ+1
2µ

)
= Fµ

(
µ−1
2µ

)
= 1

2

[
(µ−1)(µ+1)

2µ

]
. Notice that since 1 < µ < 3,

µ−1
2µ < 1

2 · (µ−1)(µ+1)
2µ < µ+1

2µ . Hence
[

µ−1
2µ , µ+1

2µ

]
⊂ W s(x∗).

If z ∈
(
0, µ−1

2µ

)
, then F ′

µ(z) > 1. By the Mean Value Theorem,
Fµ(z)−Fµ(0)

z−0 = F ′
µ(γ), for some γ with 0 < γ < z. Hence

Fµ(z) − Fµ(0) = Fµ(z) ≥ βz

for some β > 1. Then for some r ∈ Z
+, F r

µ(z) ≥ βrz > µ−1
2µ and F r−1

µ (z) <

µ−1
2µ . Moreover, since F is increasing on

[
0, µ−1

2µ

]
, F r

µ(z) < Fµ

(
µ−1
2µ

)
=

µ
(

µ−1
2µ

)(
1 − µ−1

2µ

)
= µ−1

µ

(
µ+1

4

) ≤ x∗. Thus z ∈ W s(x∗). On the other

hand, Fµ

(
µ+1
2µ , 1

)
⊂ (0, x∗) and hence

(
µ+1
2µ , 1

)
⊂ W s(x∗). This shows

that W s(x∗) = (0, 1).
To summarize

Lemma 1.31. For the logistic map Fµ(x) = µx(1 − x), 1 < µ < 3,
W s(x∗) = (0, 1) for x∗ = µ−1

µ .

We now turn our attention to periodic points. If x̄ is a periodic point
of period k under the map f , then its basin of attraction W s(x̄) is its
basin of attraction as a fixed point under the map fk. Hence W s(x̄) =
{x : lim

n→∞(fk)n(x) = lim
n→∞ fkn(x) = x̄}. Let {x̄1, x̄2, . . . , x̄k} be a k-cycle

of a map f . Then clearly for i �= j, W s(x̄i) ∩ W s(x̄j) = ∅. (Why?) More
generally, if x is a periodic point of period r and y �= x is a periodic point
of period s, then W s(x) ∩ W s(y) = ∅ (Exercises 1.8, Problem 6).

Example 1.32. Consider the function f(x) = −x
1
3 . Then x∗ = 0 is the

only fixed point. There is a 2-cycle {−1, 1} with f(−1) = 1, f2(−1) = −1.
The cobweb diagram (Figure 1.37) shows that W s(1) = (0,∞), W s(−1) =
(−∞, 0).

1−1

FIGURE 1.37.
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Exercises 1.8

1. Investigate the basin of attraction of the fixed points of the map

f(x) =

{
x2 if −3 ≤ x ≤ 1,

4
√

x − 3 if 1 < x ≤ 9.

2. Let f(x) = |x − 1|. Find W s( 1
2 ).

3. Suppose that f : I → I is a continuous and onto map on an interval I.
Let x̄ be an asymptotically stable periodic point of period k ≥ 2. Show
that W s(f(x̄)) = f(W s(x̄)).

4. Describe the basin of attraction of all fixed and periodic points of the
maps:

(i) f(x) = x2,

(ii) g(x) = x3,

(iii) h(x) = 2xe−x,

(iv) q(x) = − 4
π arctanx.

5. Investigate the basin of attraction of the origin for the map

f(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x

2
if 0 ≤ x ≤ 0.2,

3x − 1
2

if 0.2 < x ≤ 1
2
,

2 − 2x if
1
2

< x ≤ 1.

6. Let f be a continuous map that has two periodic points x and y, x �= y,
with periods r and t, r �= t, respectively. Prove that W s(x)∩W s(y) = ∅.

7*. Suppose that a set M is invariant under a one-to-one continuous map
f . A point x ∈ M is said to be an interior point if (x − δ, x + δ) ⊂ M
for some δ > 0. Prove that the set of all interior points of M , denoted
by int(M), is invariant.

8. Let x∗ be an attracting fixed point under a continuous map f . If the
immediate basin of attraction B(x∗) = (a, b), show that the set {a, b}
is invariant. Then conclude that there are only three scenarios in this
case: (1) both a and b are fixed points, or (2) a or b is fixed and the
other is an eventually fixed point, or (3) {a, b} is a 2-cycle.

9. Show that for Ricker’s map

Rp(x) = xep−x, 0 < p < 2,

W s(x∗) = (0,∞), where x∗ = p.

10. (Term Project). Consider the logistic map Fµ(x) = µx(1 − x) with
3 < µ < 1 +

√
6. Let c = {x̄1, x̄2} be the attracting 2-cycle. Show that
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W s(c) = W s(x̄1) ∪ W s(x̄2) is all the points in (0, 1) except the set of
eventually fixed points (including the fixed point µ−1

µ ).



2
Linear Difference Equations
of Higher Order

In this chapter we examine linear difference equations of high order, namely,
those involving a single dependent variable.1 Such equations arise in almost
every field of scientific inquiry, from population dynamics (the study of a
single species) to economics (the study of a single commodity) to physics
(the study of the motion of a single body). We will become acquainted
with some of these applications in this chapter. We start this chapter by
introducing some rudiments of difference calculus that are essential in the
study of linear equations.

2.1 Difference Calculus

Difference calculus is the discrete analogue of the familiar differential and
integral calculus. In this section we introduce some very basic properties of
two operators that are essential in the study of difference equations. These
are the difference operator (Section 1.2)

∆x(n) = x(n + 1) − x(n)

and the shift operator

Ex(n) = x(n + 1).

1Difference equations that involve more than one dependent variable are called
systems of difference equations; we will inspect these equations in Chapter 3.

57
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It is easy to see that

Ekx(n) = x(n + k).

However, ∆kx(n) is not so apparent. Let I be the identity operator, i.e.,
Ix = x. Then, one may write ∆ = E − I and E = ∆ + I.

Hence,

∆kx(n) = (E − I)kx(n)

=
k∑

i=0

(−1)i

(
k

i

)
Ek−ix(n),

∆kx(n) =
k∑

i=0

(−1)i

(
k

i

)
x(n + k − i). (2.1.1)

Similarly, one may show that

Ekx(n) =
k∑

i=0

(
k

i

)
∆k−ix(n). (2.1.2)

We should point out here that the operator ∆ is the counterpart of the
derivative operator D in calculus. Both operators E and ∆ share one of
the helpful features of the derivative operator D, namely, the property of
linearity.

“Linearity” simply means that ∆[ax(n)+by(n)] = a∆x(n)+b∆y(n) and
E[ax(n) + by(n)] = aEx(n) + bEy(n), for all a and b ∈ R. In Exercises
2.1, Problem 1, the reader is allowed to show that both ∆ and E are linear
operators.

Another interesting difference, parallel to differential calculus, is the
discrete analogue of the fundamental theorem of calculus. 2

Lemma 2.1. The following statements hold:

(i)

n−1∑
k=n0

∆x(k) = x(n) − x(n0), (2.1.3)

2The fundamental theorem of calculus states that:

(i)
∫ b

a
df(x) = f(b) − f(a),

(ii) d
(∫ x

a
f(t) dt

)
= f(x).
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(ii)

∆

(
n−1∑
k=n0

x(k)

)
= x(n). (2.1.4)

Proof. The proof remains as Exercises 2.1, Problem 3. �

We would now like to introduce a third property that the operator ∆
has in common with the derivative operator D.

Let

p(n) = a0n
k + a1n

k−1 + · · · + ak

be a polynomial of degree k. Then

∆p(n) =
[
a0(n + 1)k + a1(n + 1)k−1 + · · · + ak

]
− [a0n

k + a1n
k−1 + · · · + ak

]
= a0knk−1 + terms of degree lower than (k − 1).

Similarly, one may show that

∆2p(n) = a0k(k − 1)nk−2 + terms of degree lower than (k − 2).

Carrying out this process k times, one obtains

∆kp(n) = a0k!. (2.1.5)

Thus,

∆k+ip(n) = 0 for i ≥ 1. (2.1.6)

2.1.1 The Power Shift
We now discuss the action of a polynomial of degree k in the shift operator
E on the term bn, for any constant b.

Let

p(E) = a0E
k + a1E

k−1 + · · · + akI (2.1.7)

be a polynomial of degree k in E.
Then

p(E)bn = a0b
n+k + a1b

n+k−1 + · · · + akbn

= (a0b
k + a1b

k−1 + · · · + ak)bn

= p(b)bn. (2.1.8)

A generalization of formula (2.1.8) now follows.
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Lemma 2.2. Let p(E) be the polynomial in (2.1.7) and let g(n) be any
discrete function. Then

p(E)(bng(n)) = bnp(bE)g(n). (2.1.9)

Proof. This is left to the reader as Exercises 2.1, Problem 4. �

2.1.2 Factorial Polynomials
One of the most interesting functions in difference calculus is the factorial
polynomial x(k) defined as follows. Let x ∈ R. Then the kth factorial of x
is given by

x(k) = x(x − 1) · · · (x − k + 1), k ∈ Z
+.

Thus if x = n ∈ Z
+ and n ≥ k, then

n(k) =
n!

(n − k)!

and

n(n) = n!.

The function x(k) plays the same role here as that played by the poly-
nomial xk in differential calculus. The following Lemma 2.3 demonstrates
this fact.

So far, we have defined the operators ∆ and E on sequences f(n). One
may extend the definitions of ∆ and E to continuous functions f(t), t ∈ R,
by simply letting ∆f(t) = f(t + 1) − f(t) and Ef(t) = f(t + 1). This
extension enables us to define ∆f(x) and Ef(x) where f(x) = x(k) by

∆x(k) = (x + 1)(k) − x(k) and Ex(k) = (x + 1)(k).

Using this definition one may establish the following result.

Lemma 2.3. For fixed k ∈ Z
+ and x ∈ R, the following statements hold:

(i)

∆x(k) = kx(k−1); (2.1.10)

(ii)

∆nx(k) = k(k − 1), . . . , (k − n + 1)x(k−n); (2.1.11)

(iii)

∆kx(k) = k!. (2.1.12)
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Proof. (i)

∆x(k) = (x + 1)(k) − x(k)

= (x + 1)x(x − 1) · · · (x − k + 2) − x(x − 1)
· · · (x − k + 2)(x − k + 1)

= x(x − 1) · · · (x − k + 2) · k

= kx(k−1).

The proofs of parts (ii) and (iii) are left to the reader as Exercises 2.1,
Problem 5. �

If we define, for k ∈ Z
+,

x(−k) =
1

x(x + 1) · · · (x + k − 1)
(2.1.13)

and x(0) = 1, then one may extend Lemma 2.3 to hold for all k ∈ Z. In other
words, parts (i), (ii), and (iii) of Lemma 2.3 hold for all k ∈ Z (Exercises
2.1, Problem 6).

The reader may wonder whether the product and quotient rules of the
differential calculus have discrete counterparts. The answer is affirmative,
as may be shown by the following two formulas, where proofs are left to
the reader as Exercises 2.1, Problem 7.
Product Rule:

∆[x(n)y(n)] = Ex(n)∆y(n) + y(n)∆x(n). (2.1.14)

Quotient Rule:

∆
[
x(n)
y(n)

]
=

y(n)∆x(n) − x(n)∆y(n)
y(n)Ey(n)

. (2.1.15)

2.1.3 The Antidifference Operator
The discrete analogue of the indefinite integral in calculus is the antidif-
ference operator ∆−1, defined as follows. If ∆F (n) = 0, then ∆−1(0) =
F (n) = c for some arbitrary constant c. Moreover, if ∆F (n) = f(n), then
∆−1f(n) = F (n) + c, for some arbitrary constant c. Hence

∆∆−1f(n) = f(n),

∆−1∆F (n) = F (n) + c,

and

∆∆−1 = I but ∆−1∆ �= I.
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Using formula (2.1.4) one may readily obtain

∆−1f(n) =
n−1∑
i=0

f(i) + c. (2.1.16)

Formula (2.1.16) is very useful in proving that the operator ∆−1 is linear.

Theorem 2.4. The operator ∆−1 is linear.

Proof. We need to show that for a, b ∈ R, ∆−1[ax(n) + by(n)] =
a∆−1x(n) + b∆−1y(n). Now, from formula (2.1.16) we have

∆−1[ax(n) + by(n)] =
n−1∑
i=0

ax(i) + by(i) + c

= a

n−1∑
i=0

x(i) + b

n−1∑
i=0

y(i) + c

= a∆−1x(n) + b∆−1y(n). �

Next we derive the antidifference of some basic functions.

Lemma 2.5. The following statements hold:

(i)

∆−k0 = c1n
k−1 + c2n

k−2 + · · · + ck. (2.1.17)

(ii)

∆−k1 =
nk

k!
+ c1n

k−1 + c2n
k−2 + · · · + ck. (2.1.18)

(iii)

∆−1n(k) =
n(k+1)

k + 1
+ c, k �= −1. (2.1.19)

Proof. The proofs of parts (i) and (ii) follow by applying ∆k to the
right-hand side of formulas (2.1.17) and (2.1.18) and then applying formulas
(2.1.6) and (2.1.5), respectively. The proof of part (iii) follows from formula
(2.1.10).

Finally, we give the discrete analogue of the integration by parts formula,
namely, the summation by parts formula:

n−1∑
k=0

y(k)∆x(k) = x(n)y(n) −
n−1∑
k=0

x(k + 1)∆y(k) + c. (2.1.20)

To prove formula (2.1.20) we use formula (2.1.14) to obtain

y(n)∆x(n) = ∆(x(n)y(n)) − x(n + 1)∆y(n).
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Applying ∆−1 to both sides and using formula (2.1.16), we get
n−1∑
k=0

y(k)∆x(k) = x(n)y(n) −
n−1∑
k=0

x(k + 1)∆y(k) + c. �

Exercises 2.1

1. Show that the operators ∆ and E are linear.

2. Show that Ekx(n) =
k∑

i=0

(
k

i

)
∆k−ix(n).

3. Verify formulas (2.1.3) and (2.1.4).

4. Verify formula (2.1.9).

5. Verify formulas (2.1.11) and (2.1.12).

6. Show that Lemma 2.3 holds for k ∈ Z.

7. Verify the product and quotient rules (2.1.14) and (2.1.15).

8. (Abel’s Summation Formula). Prove that

n∑
k=1

x(k)y(k) = x(n + 1)
n∑

k=1

y(k) −
n∑

k=1

(
∆x(k)

k∑
r=1

y(r)

)
.

9. (Newton’s Theorem). If f(n) is a polynomial of degree k, show that

f(n) = f(0) +
n(1)

1!
∆f(0) +

n(2)

2!
∆2f(0) + · · · +

n(k)

k!
∆(k)f(0).

10. (The Discrete Taylor Formula). Verify that

f(n) =
k−1∑
i=0

(
n

i

)
∆if(0) +

n−k∑
s=0

(
n − s − 1

k − 1

)
∆kf(s).

11. (The Stirling Numbers). The Stirling numbers of the second kind si(k)
are defined by the difference equation si(m + 1) = si−1(m) + isi(m)
with si(i) = s1(i) = 1 and 1 ≤ i ≤ m, s1(k) = 0 for 1 > k. Prove that

xm =
m∑

i=1

si(m)x(i). (2.1.21)

12. Use (2.1.21) to verify Table 2.1 which gives the Stirling numbers si(k)
for 1 ≤ i, k ≤ 7.

13. Use Table 2.1 and formula (2.1.21) to write x3, x4, and x5 in terms of
the factorial polynomials x(k) (e.g., x2 = x(1) + x(2)).

14. Use Problem 13 to find
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TABLE 2.1. Stirling numbers si(k).

i\k 1 2 3 4 5 6 7
1 1 1 1 1 1 1 1
2 1 3 7 15 31 63
3 1 6 25 90 301
4 1 10 65 350
5 1 15 140
6 1 21
7 1

(i) ∆−1(n3 + 1).

(ii) ∆−1
(

5
n(n + 3)

)
.

15. Use Problem 13 to solve the difference equation y(n + 1) = y(n) + n3.

16. Use Problem 13 to solve the difference equation y(n+1) = y(n)−5n2.

17. Consider the difference equation3

y(n + 1) = a(n)y(n) + g(n). (2.1.22)

(a) Put y(n) =
(∏n−1

i=0 a(i)
)

u(n) in (2.1.22). Then show that

∆u(n) = g(n)/
∏n

i=0 a(i).

(b) Prove that

y(n) =

(
n−1∏
i=0

a(i)

)
y0 +

n−1∑
r=0

(
n−1∏

i=r+1

a(i)

)
g(r), y0 = y(0).

(Compare with Section 1.2.)

2.2 General Theory of Linear Difference Equations

The normal form of a kth-order nonhomogeneous linear difference equation
is given by

y(n + k) + p1(n) y(n + k − 1) + · · · + pk(n) y(n) = g(n), (2.2.1)

where pi(n) and g(n) are real-valued functions defined for n ≥ n0 and
pk(n) �= 0 for all n ≥ n0. If g(n) is identically zero, then (2.2.1) is said to
be a homogeneous equation. Equation (2.2.1) may be written in the form

y(n + k) = −p1(n) y(n + k − 1) − · · · − pk(n) y(n) + g(n). (2.2.2)

3This method of solving a nonhomogeneous equation is called the method of
variation of constants.
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By letting n = 0 in (2.2.2), we obtain y(k) in terms of y(k − 1), y(k −
2), · · · , y(0). Explicitly, we have

y(k) = −p1(0)y(k − 1) − p2(0)y(k − 2) − · · · − pk(0)y(0) + g(0).

Once y(k) is computed, we can go to the next step and evaluate y(k + 1)
by letting n = 1 in (2.2.2). This yields

y(k + 1) = −p1(1)y(k) − p2(1)y(k − 1) − · · · − pk(1)y(1) + g(1).

By repeating the above process, it is possible to evaluate all y(n) for n ≥ k.
Let us now illustrate the above procedure by an example.

Example 2.6. Consider the third-order difference equation

y(n + 3) − n

n + 1
y(n + 2) + ny(n + 1) − 3y(n) = n, (2.2.3)

where y(1) = 0, y(2) = −1, and y(3) = 1. Find the values of y(4), y(5),
y(6), and y(7).

Solution First we rewrite (2.2.3) in the convenient form

y(n + 3) =
n

n + 1
y(n + 2) − ny(n + 1) + 3y(n) + n. (2.2.4)

Letting n = 1 in (2.2.4), we have

y(4) =
1
2
y(3) − y(2) + 3y(1) + 1 =

5
2
.

For n = 2,

y(5) =
2
3
y(4) − 2y(3) + 3y(2) + 2 = −4

3
.

For n = 3,

y(6) =
3
4
y(5) − 3y(4) + 3y(3) + 3 = −3

2
.

For n = 4,

y(7) =
4
5
y(6) − 4y(5) + 3y(4) + 4 = 20.9.

Now let us go back to (2.2.1) and formally define its solution. A sequence
{y(n)}∞

n0
or simply y(n) is said to be a solution of (2.2.1) if it satisfies the

equation. Observe that if we specify the initial data of the equation, we are
led to the corresponding initial value problem

y(k + n) + p1(n)y(n + k − 1) + · · · + pk(n)y(n) = g(n), (2.2.5)
y(n0) = a0, y(n0 + 1) = a1, . . . , y(n0 + k − 1) = ak−1, (2.2.6)

where the ai’s are real numbers. In view of the above discussion, we
conclude with the following result.
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Theorem 2.7. The initial value problems (2.2.5) and (2.2.6) have a
unique solution y(n).

Proof. The proof follows by using (2.2.5) for n = n0, n0 + 1, n0 + 2, . . . .
Notice that any n ≥ n0 + k may be written in the form n = n0 + k +
(n − n0 − k). By uniqueness of the solution y(n) we mean that if there is
another solution ỹ(n) of the initial value problems (2.2.5) and (2.2.6), then
ỹ(n) must be identical to y(n). This is again easy to see from (2.2.5). �

The question still remains whether we can find a closed-form solution
for (2.2.1) or (2.2.5) and (2.2.6). Unlike our amiable first-order equations,
obtaining a closed-form solution of (2.2.1) is a formidable task. However, if
the coefficients pi in (2.2.1) are constants, then a solution of the equation
may be easily obtained, as we see in the next section.

In this section we are going to develop the general theory of kth-order
linear homogeneous difference equations of the form

x(n + k) + p1(n)x(n + k − 1) + · · · + pk(n)x(n) = 0. (2.2.7)

We start our exposition by introducing three important definitions.

Definition 2.8. The functions f1(n), f2(n), . . . , fr(n) are said to be lin-
early dependent for n ≥ n0 if there are constants a1, a2, . . . , ar, not all zero,
such that

a1f1(n) + a2f2(n) + · · · + arfr(n) = 0, n ≥ n0.

If aj �= 0, then we may divide (2.2.7) by aj to obtain

fj(n) = −a1

aj
f1(n) − a2

aj
f2(n) · · · − ar

aj
fr(n)

= −
∑
i�=j

ai

aj
fi(n). (2.2.8)

Equation (2.2.8) simply says that each fj with nonzero coefficient is a
linear combination of the other fi’s. Thus two functions f1(n) and f2(n)
are linearly dependent if one is a multiple of the other, i.e., f1(n) = af2(n),
for some constant a.

The negation of linear dependence is linear independence. Explicitly put,
the functions f1(n), f2(n), . . . , fr(n) are said to be linearly independent for
n ≥ n0 if whenever

a1f1(n) + a2f2(n) + · · · + arfr(n) = 0

for all n ≥ n0, then we must have a1 = a2 = · · · = ar = 0.

Let us illustrate this new concept by an example.

Example 2.9. Show that the functions 3n, n3n, and n23n are linearly
independent on n ≥ 1.
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Solution Suppose that for constants a1, a2, and a3 we have

a13n + a2n3n + a3n
23n = 0, for all n ≥ 1.

Then by dividing by 3n we get

a1 + a2n + a3n
2 = 0, for all n ≥ 1.

This is impossible unless a3 = 0, since a second-degree equation in n pos-
sesses at most two solutions n ≥ 1. Hence a1 = a2 = a3 = 0. Similarly,
a2 = 0, whence a1 = 0, which establishes the linear independence of our
functions.

Definition 2.10. A set of k linearly independent solutions of (2.2.7) is
called a fundamental set of solutions.

As you may have noticed from Example 2.9, it is not practical to check the
linear independence of a set of solutions using the definition. Fortunately,
there is a simple method to check the linear independence of solutions using
the so-called Casoratian W (n), which we now define for the eager reader.

Definition 2.11. The Casoratian4 W (n) of the solutions x1(n), x2(n), . . . ,
xr(n) is given by

W (n) = det

⎛⎜⎜⎜⎜⎝
x1(n) x2(n) . . . xr(n)

x1(n + 1) x2(n + 1) . . . xr(n + 1)
...

x1(n + r − 1) x2(n + r − 1) . . . xr(n + r − 1)

⎞⎟⎟⎟⎟⎠ .

(2.2.9)

Example 2.12. Consider the difference equation

x(n + 3) − 7x(n + 1) + 6x(n) = 0.

(a) Show that the sequences 1, (−3)n, and 2n are solutions of the equation.

(b) Find the Casoratian of the sequences in part (a).

Solution

(a) Note that x(n) = 1 is a solution, since 1 − 7 + 6 = 0. Furthermore,
x(n) = (−3)n is a solution, since

(−3)n+3 − 7(−3)n+1 + 6(−3)n = (−3)n[−27 + 21 + 6] = 0.

Finally, x(n) = 2n is a solution, since

(2)n+3 − 7(2)n+1 + 6(2)n = 2n[8 − 14 + 6] = 0.

4This is the discrete analogue of the Wronskian in differential equations.
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(b) Now,

W (n) = det

⎛⎜⎝1 (−3)n 2n

1 (−3)n+1 2n+1

1 (−3)n+2 2n+2

⎞⎟⎠
=

∣∣∣∣∣(−3)n+1 (2)n+1

(−3)n+2 (2)n+2

∣∣∣∣∣− (−3)n

∣∣∣∣∣1 (2)n+1

1 (2)n+2

∣∣∣∣∣
+ (2)n

∣∣∣∣∣1 (−3)n+1

1 (−3)n+2

∣∣∣∣∣
= (2)n+2(−3)n+1 − (2)n+1(−3)n+2 − (−3)n((2)n+2 − (2)n+1)

+ (2)n((−3)n+2 − (−3)n+1)
= −12(2)n(−3)n − 18(2)n(−3)n − 4(2)n(−3)n

+ 2(2)n(−3)n + 9(2)n(−3)n + 3(2)n(−3)n

= −20(2)n(−3)n.

Next we give a formula, called Abel’s formula, to compute the Caso-
ratian W (n). The significance of Abel’s formula is its effectiveness in the
verification of the linear independence of solutions.

Lemma 2.13 (Abel’s Lemma). Let x1(n), x2(n), . . . , xk(n) be so-
lutions of (2.2.7) and let W (n) be their Casoratian. Then, for n ≥
n0,

W (n) = (−1)k(n−n0)

(
n−1∏
i=n0

pk(i)

)
W (n0). (2.2.10)

Proof. We will prove the lemma for k = 3, since the general case may
be established in a similar fashion. So let x1(n), x2(n), and x3(n) be three
independent solutions of (2.2.7). Then from formula (2.2.9) we have

W (n + 1) = det

⎛⎜⎝x1(n + 1) x2(n + 1) x3(n + 1)
x1(n + 2) x2(n + 2) x3(n + 2)
x1(n + 3) x2(n + 3) x3(n + 3)

⎞⎟⎠ . (2.2.11)

From (2.2.7) we have, for 1 ≤ i ≤ 3,

xi(n + 3) = −p3(n)xi(n) − [p1(n)xi(n + 2) + p2(n)xi(n + 1)] . (2.2.12)



2.2 General Theory of Linear Difference Equations 69

Now, if we use formula (2.2.12) to substitute for x1(n + 3), x2(n + 3),
and x3(n + 3) in the last row of formula (2.2.11), we obtain

W (n + 1) = det

⎛⎜⎜⎜⎜⎜⎜⎝
x1(n + 1) x2(n + 1) x3(n + 1)
x1(n + 2) x2(n + 2) x3(n + 2)
−p3x1(n) −p3x2(n) −p3x3(n)

−(p2x1(n + 1) −(p2x2(n + 1) −(p2x3(n + 1)
+p1x1(n + 2)

)
+p1x2(n + 2)

)
+p1x3(n + 2)

)

⎞⎟⎟⎟⎟⎟⎟⎠ .

(2.2.13)
Using the properties of determinants, it follows from (2.2.13) that

W (n + 1) = det

⎛⎜⎝ x1(n + 1) x2(n + 1) x3(n + 1)
x1(n + 2) x2(n + 2) x3(n + 2)

−p3(n)x1(n) −p3(n)x2(n) −p3(n)x3(n)

⎞⎟⎠ (2.2.14)

= −p3(n) det

⎛⎜⎝x1(n + 1) x2(n + 1) x3(n + 1)
x1(n + 2) x2(n + 2) x3(n2)

x1(n) x2(n) x3(n)

⎞⎟⎠
= −p3(n)(−1)2 det

⎛⎜⎝ x1(n) x2(n) x3(n)
x1(n + 2) x2(n + 2) x3(n + 2)
x1(n + 1) x2(n + 1) x3(n + 1)

⎞⎟⎠ .

Thus

W (n + 1) = (−1)3p3(n)W (n). (2.2.15)

Using formula (1.2.3), the solution of (2.2.15) is given by

W (n) =

[
n−1∏
i=n0

(−1)3p3(i)

]
W (n0) = (−1)3(n−n0)

n−1∏
i=n0

p3(i)W (n0).

�

This completes the proof of the lemma for k = 3. The general case is left
to the reader as Exercises 2.2, Problem 6.

We now examine and treat one of the special cases that arises as we try
to apply this Casoratian. For example, if (2.2.7) has constant coefficients
p1, p2, . . . , pk, then we have

W (n) = (−1)k(n−n0)p
(n−n0)
k W (n0). (2.2.16)

Formula (2.2.10) has the following important correspondence.

Corollary 2.14. Suppose that pk(n) �= 0 for all n ≥ n0. Then the
Casoratian W (n) �= 0 for all n ≥ n0 if and only if W (n0) �= 0.

Proof. This corollary follows immediately from formula (2.2.10) (Exer-
cises 2.2, Problem 7). �
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Let us have a close look at Corollary 2.14 and examine what it really says.
The main point in the corollary is that either the Casoratian is identically
zero (i.e., zero for all n ≥ n0, for some n0) or never zero for any n ≥ n0.
Thus to check whether W (n) �= 0 for all n ∈ Z

+, we need only to check
whether W (0) �= 0. Note that we can always choose the most suitable n0
and compute W (n0) there.

Next we examine the relationship between the linear independence of
solutions and their Casoratian. Basically, we will show that a set of k so-
lutions is a fundamental set (i.e., linearly independent) if their Casoratian
W (n) is never zero.

To determine the preceding statement we contemplate k solutions
x1(n), x2(n), . . . , xk(n) of (2.2.7). Suppose that for some constants a1,
a2, . . . , ak and n0 ∈ Z

+,

a1x1(n) + a2x2(n) + · · · + ak(n) xk(n) = 0, for all n ≥ n0.

Then we can generate the following k − 1 equations:

a1x1(n + 1) + a2x2(n + 1) + · · · + akxk(n + 1) = 0,
...

a1x1(n + k − 1) + a2x2(n + k − 1) + · · · + akxk(n + k − 1) = 0.

This assemblage may be transcribed as

X(n)ξ = 0, (2.2.17)

where

X(n) =

⎛⎜⎜⎜⎜⎝
x1(n) x2(n) . . . xk(n)

x1(n + 1) x2(n + 1) . . . xk(n + 1)
...

...
...

x1(n + k − 1) x2(n + k − 1) . . . xk(n + k − 1)

⎞⎟⎟⎟⎟⎠ ,

ξ =

⎛⎜⎜⎜⎜⎝
a1

a2

...
ak

⎞⎟⎟⎟⎟⎠ .

Observe that W (n) = detX(n).
Linear algebra tells us that the vector (2.2.17) has only the trivial (or

zero) solution (i.e., a1 = a2 = · · · = ak = 0) if and only if the matrix X(n)
is nonsingular (invertible) (i.e., det X(n) = W (n) �= 0 for all n ≥ n0). This
deduction leads us to the following conclusion.
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Theorem 2.15. The set of solutions x1(n), x2(n), . . . , xk(n) of (2.2.7)
is a fundamental set if and only if for some n0 ∈ Z+, the Casoratian
W (n0) �= 0.

Proof. Exercises 2.2, Problem 8. �

Example 2.16. Verify that {n, 2n} is a fundamental set of solutions of
the equation

x(n + 2) − 3n − 2
n − 1

x(n + 1) +
2n

n − 1
x(n) = 0.

Solution We leave it to the reader to verify that n and 2n are solutions of
the equation. Now, the Casoratian of the solutions n, 2n is given by

W (n) = det

(
n 2n

n + 1 2n+1

)
.

Thus

W (0) = det

(
0 1
1 2

)
= −1 �= 0.

Hence by Theorem 2.15, the solutions n, 2n are linearly independent and
thus form a fundamental set.

Example 2.17. Consider the third-order difference equation

x(n + 3) + 3x(n + 2) − 4x(n + 1) − 12x(n) = 0.

Show that the functions 2n, (−2)n, and (−3)n form a fundamental set of
solutions of the equation.

Solution

(i) Let us verify that 2n is a legitimate solution by substituting x(n) = 2n

into the equation:

2n+3 + (3)(2n+1) − (4)(2n+1) − (12)(2n) = 2n[8 + 12 − 8 − 12] = 0.

We leave it to the reader to verify that (−2)n and (−3)n are solutions
of the equation.

(ii) To affirm the linear independence of these solutions we construct the
Casoratian

W (n) = det

⎛⎜⎝ 2n (−2)n (−3)n

2n+1 (−2)n+1 (−3)n+1

2n+2 (−2)n+2 (−3)n+2

⎞⎟⎠ .
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Thus

W (0) = det

⎛⎜⎝1 1 1
2 −2 3
4 4 9

⎞⎟⎠ = −20 �= 0.

By Theorem 2.15, the solutions 2n, (−2)n, and 3n are linearly independent,
and thus form a fundamental set.

We are now ready to discuss the fundamental theorem of homogeneous
linear difference equations.

Theorem 2.18 (The Fundamental Theorem). If pk(n) �= 0 for all
n ≥ n0, then (2.2.7) has a fundamental set of solutions for n ≥ n0.

Proof. By Theorem 2.7, there are solutions x1(n), x2(n), . . . , xk(n) such
that xi(n0 + i−1) = 1, xi(n0) = xi(n0 +1) = · · · = xi(n0 + i−2) = xi(n0 +
i) = · · · = xi(n0 + k − 1) = 0, 1 ≤ i ≤ k. Hence x1(n0) = 1, x2(n0 + 1) =
1, x3(n0 +2) = 1, . . . , xk(n0 +k−1) = 1. It follows that W (n0) = det I = 1.
This implies by Theorem 2.15 that the set {x1(n), x2(n), . . . , xk(n)} is a
fundamental set of solutions of (2.2.7). �

We remark that there are infinitely many fundamental sets of solutions
of (2.2.7). The next result presents a method of generating fundamental
sets starting from a known set.

Lemma 2.19. Let x1(n) and x2(n) be two solutions of (2.2.7). Then the
following statements hold:

(i) x(n) = x1(n) + x2(n) is a solution of (2.2.7).

(ii) x̃(n) = ax1(n) is a solution of (2.2.7) for any constant a.

Proof. (Exercises 2.2, Problem 9.) �

From the preceding lemma we conclude the following principle.

Superposition Principle. If x1(n), x2(n), . . . , xr(n) are solutions of
(2.2.7), then

x(n) = a1x1(n) + a2x2(n) + · · · + arxr(n)

is also a solution of (2.2.7) (Exercises 2.2, Problem 12).
Now let {x1(n), x2(n), . . . , xk(n)} be a fundamental set of solutions of

(2.2.7) and let x(n) be any given solution of (2.2.7). Then there are con-
stants a1, a2, . . . , ak such that x(n) =

∑k
i=1 aixi(n). To show this we use

the notation (2.2.17) to write X(n)ξ = x̂(n), where

x̂(n) =

⎛⎜⎜⎜⎜⎝
x(n)

x(n + 1)
...

x(n + k − 1)

⎞⎟⎟⎟⎟⎠ .
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Since X(n) is invertible (Why?), it follows that

ξ = X−1(n)x̂(n),

and, for n = n0,

ξ = X−1(n0)x̂(n0).

The above discussion leads us to define the general solution of (2.2.7).

Definition 2.20. Let {x1(n), x2(n), . . . , xk(n)} be a fundamental set of
solutions of (2.2.7). Then the general solution of (2.2.7) is given by x(n) =∑k

i=1 aixi(n), for arbitrary constants ai.

It is worth noting that any solution of (2.2.7) may be obtained from the
general solution by a suitable choice of the constants ai.

The preceding results may be restated using the elegant language of
linear algebra as follows: Let S be the set of all solutions of (2.2.7) with
the operations +, · defined as follows:

(i) (x + y)(n) = x(n) + y(n), for x, y ∈ S, n ∈ Z+,

(ii) (ax)(n) = ax(n), for x ∈ S, a constant.

Equipped with linear algebra we now summarize the results of this section
in a compact form.

Theorem 2.21. The space (S, +, ·) is a linear (vector) space of dimension
k.

Proof. Use Lemma 2.19. To construct a basis of S we can use the
fundamental set in Theorem 2.18 (Exercises 2.2, Problem 11). �

Exercises 2.2

1. Find the Casoratian of the following functions and determine whether
they are linearly dependent or independent:

(a) 5n, 3 · 5n+2, en.

(b) 5n, n 5n, n2 5n.

(c) (−2)n, 2n, 3.

(d) 0, 3n, 7n.

2. Find the Casoratian W (n) of the solutions of the difference equations:

(a) x(n + 3) − 10x(n + 2) + 31x(n + 1) − 30x(n) = 0, if W (0) = 6.

(b) x(n + 3) − 3x(n + 2) + 4x(n + 1) − 12x(n) = 0, if W (0) = 26.

3. For the following difference equations and their accompanied solutions:

(i) determine whether these solutions are linearly independent, and



74 2. Linear Difference Equations of Higher Order

(ii) find, if possible, using only the given solutions, the general
solution:
(a) x(n + 3) − 3x(n + 2) + 3x(n + 1) − x(n) = 0; 1, n, n2,

(b) x(n + 2) + x(n) = 0; cos
(nπ

2

)
, sin
(nπ

2

)
,

(c) x(n+3)+x(n+2)−8x(n+1)−12x(n) = 0; 3n, (−2)n, (−2)n+3,
(d) x(n + 4) − 16x(n) = 0; 2n, n2n, n22n.

4. Verify formula (2.2.10) for the general case.

5. Show that the Casoratian W (n) in formula (2.2.9) may be given by
the formula

W (n) = det

⎛⎜⎜⎜⎜⎝
x1(n) x2(n) . . . xk(n)

∆x1(n) ∆x2(n) . . . ∆xk(n)
...

...
...

∆k−1x1(n) ∆k−1x2(n) . . . ∆k−1xk(n)

⎞⎟⎟⎟⎟⎠ .

6. Verify formula (2.2.16).

7. Prove Corollary 2.14.

8. Prove Theorem 2.15.

9. Prove Lemma 2.19.

10. Prove the superposition principle: If x1(n), x2(n), . . . , xr are solutions
of (2.2.7), then any linear combination of them is also a solution of
(2.2.7).

11. Prove Theorem 2.21.

12. Suppose that for some integer m ≥ n0, pk(m) = 0 in (2.2.1).

(a) What is the value of the Casoratian for n ≥ m?

(b) Does Corollary 2.14 still hold? (Why?)

*13. Show that the equation ∆2y(n) = p(n)y(n + 1) has a fundamental set
of solutions whose Casoratian W (n) = −1.

14. Contemplate the second-order difference equation u(n+2)+p1(n)u(n+
1) + p2(n)u(n) = 0. If u1(n) and u2(n) are solutions of the equation
and W (n) is their Casoratian, prove that

u2(n) = u1(n)

[
n−1∑
r=0

W (r)/u1(r)u1(r + 1)

]
. (2.2.18)

15. Contemplate the second-order difference equation u(n+2)− (n+3)
(n+2)u(n+

1) + 2
(n+2)u(n) = 0.
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(a) Verify that u1(n) = 2n

n! is a solution of the equation.

(b) Use formula (2.2.18) to find another solution u2(n) of the
equation.

16. Show that u(n) = (n+1) is a solution of the equation u(n+2)−u(n+
1)− 1/(n+1)u(n) = 0 and then find a second solution of the equation
by using the method of Exercises 2.2, Problem 15.

2.3 Linear Homogeneous Equations
with Constant Coefficients

Consider the kth-order difference equation

x(n + k) + p1x(n + k − 1) + p2x(n + k − 2) + · · · + pkx(n) = 0, (2.3.1)

where the pi’s are constants and pk �= 0. Our objective now is to find
a fundamental set of solutions and, consequently, the general solution of
(2.3.1). The procedure is rather simple. We suppose that solutions of (2.3.1)
are in the form λn, where λ is a complex number. Substituting this value
into (2.3.1), we obtain

λk + p1λ
k−1 + · · · + pk = 0. (2.3.2)

This is called the characteristic equation of (2.3.1), and its roots λ are called
the characteristic roots. Notice that since pk �= 0, none of the characteristic
roots is equal to zero. (Why?) (Exercises 2.3, Problem 19.)

We have two situations to contemplate:

Case (a). Suppose that the characteristic roots λ1, λ2, . . . , λk are distinct.
We are now going to show that the set {λn

1 , λn
2 , . . . , λn

k} is a fundamental
set of solutions. To prove this, by virtue of Theorem 2.15 it suffices to show
that W (0) �= 0, where W (n) is the Casoratian of the solutions. That is,

W (0) = det

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1
λ1 λ2 . . . λk

λ2
1 λ2

2 . . . λ2
k

...
...

...

λk−1
1 λk−1

2 . . . λk−1
k

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (2.3.3)

This determinant is called the Vandermonde determinant.
It may be shown by mathematical induction that

W (0) =
∏

1≤i<j≤k

(λj − λi). (2.3.4)

The reader will prove this conclusion in Exercises 2.3, Problem 20.
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Since all the λi’s are distinct, it follows from (2.3.4) that W (0) �= 0.
This fact proves that {λn

1 , λn
2 , . . . , λn

k} is a fundamental set of solutions of
(2.3.1). Consequently, the general solution of (2.3.1) is

x(n) =
k∑

i=1

aiλ
n
i , ai a complex number. (2.3.5)

Case (b). Suppose that the distinct characteristic roots are λ1, λ2, . . . , λr

with multiplicities m1, m2, . . . , mr with
∑r

i=1 mi = k, respectively. In this
case, (2.3.1) may be written as

(E − λ1)m1(E − λ2)m2 · · · (E − λr)mrx(n) = 0. (2.3.6)

A vital observation here is that if ψ1(n), ψ2(n), . . . , ψmi
(n) are solutions of

(E − λi)mix(n) = 0, (2.3.7)

then they are also solutions of (2.3.6). For if Ψs(n) is a solution of (2.3.7),
then (E − λi)miΨs(n) = 0. Now

(E − λ1)m1 · · · (E − λi)mi · · · (E − λr)mrΨs(n)
= (E − λ1)m1 · · · (E − λi−1)mi−1(E − λi+1)mi+1 · · ·
(E − λr)mr (E − λi)miΨs(n) = 0.

Suppose we are able to find a fundamental set of solutions for each (2.3.7),
1 ≤ i ≤ r. It is not unreasonable to expect, then, that the union of these
r fundamental sets would be a fundamental set of solutions of (2.3.6). In
the following lemma we will show that this is indeed the case.

Lemma 2.22. The set Gi =
{

λn
i ,
(
n
1

)
λn−1

i ,
(
n
2

)
λn−2

2 , . . . ,
(

n
mi−1

)
λn−mi+1

i

}
is a fundamental set of solutions of (2.3.7) where

(
n
1

)
= n,

(
n
2

)
=

n(n−1)
2! , . . . ,

(
n
r

)
= n(n−1)···(n−r+1)

r! .

Proof. To show that Gi is a fundamental set of solutions of (2.3.7), it
suffices, by virtue of Corollary 2.14, to show that W (0) �= 0. But

W (0) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0
λi 1 . . . 0

λ2
i 2λi . . . 0
...

...
...

λmi−1
i

(mi − 1)
1!

λmi−2
i . . .

1
2!3! · · · (mi − 2)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Hence

W (0) =
1

(2!3! . . . (mi − 2)!
�= 0.
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It remains to show that
(
n
r

)
λn−r

i is a solution of (2.3.7). From equation
(2.1.9) it follows that

(E − λi)mi

(
n

r

)
λn−r

i = λn−r
i (λiE − λi)mi

(
n

r

)
= λn+mi−r

i (E − I)mi

(
n

r

)
= λn+mi−r

i ∆mi

(
n

r

)
= 0 using (2.1.6). �

Now we are finally able to find a fundamental set of solutions.

Theorem 2.23. The set G =
⋃r

i=1 Gi is a fundamental set of solutions
of (2.3.6).

Proof. By Lemma 2.22, the functions in G are solutions of (2.3.6). Now

W (0) = det

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 1 0 . . .

λ1 1 . . . λr 1 . . .

λ2
1 2λ1 . . . λ2

r 2λr . . .

...
...

...
...

λk−1
1 (k − 1)λk−2

1 . . . λk−1
r (k − 1)λk−2

r . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

(2.3.8)
This determinant is called the generalized Vandermonde determinant. (See
Appendix B.) It may be shown [76] that

W (0) =
∏

1≤i<j≤k

(λj − λi)mjmi . (2.3.9)

As λi �= λj , W (0) �= 0. Hence by Corollary 2.14 the Casoratian W (n) �=
0 for all n ≥ 0. Thus by Theorem 2.15, G is a fundamental set of
solutions. �

Corollary 2.24. The general solution of (2.3.6) is given by

x(n) =
r∑

i=1

λn
i

(
ai0 + ai1n + ai2n

2 + · · · + ai,mi−1n
mi−1) . (2.3.10)

Proof. Use Lemma 2.22 and Theorem 2.23. �

Example 2.25. Solve the equation

x(n + 3) − 7x(n + 2) + 16x(n + 1) − 12x(n) = 0,
x(0) = 0, x(1) = 1, x(2) = 1.



78 2. Linear Difference Equations of Higher Order

Solution The characteristic equation is

r3 − 7r2 + 16r − 12 = 0.

Thus, the characteristic roots are λ1 = 2 = λ2, λ3 = 3.
The characteristic roots give us the general solution

x(n) = a02n + a1n2n + b13n.

To find the constants a0, a1, and b1, we use the initial data

x(0) = a0 + b1 = 0,

x(1) = 2a0 + 2a1 + 3b1 = 1,

x(2) = 4a0 + 8a1 + 9b1 = 1.

Finally, after solving the above system of equations, we obtain

a0 = 3, a1 = 2, b1 = −3.

Hence the solution of the equation is given by x(n) = 3(2n)+2n(2n)−3n+1.

Example 2.26. Complex Characteristic Roots

Suppose that the equation x(n + 2) + p1x(n + 1) + p2x(n) = 0 has the
complex roots λ1 = α + iβ, λ2 = α − iβ. Its general solution would then be

x(n) = c1(α + iβ)n + c2(α − iβ)n.

Recall that the point (α, β) in the complex plane corresponds to the
complex number α + iβ. In polar coordinates,

α = r cos θ, β = r sin θ, r =
√

α2 + β2, θ = tan−1
(

β

α

)
.

Hence,5

x(n) = c1(r cos θ + ir sin θ)n + c2(r cos θ − ir sin θ)n

= rn[(c1 + c2) cos(nθ) + i(c1 − c2) sin(nθ)]
= rn[a1 cos(nθ) + a2 sin(nθ)], (2.3.11)

where a1 = c1 + c2 and a2 = i(c1 − c2).
Let

cos ω =
a1√

a2
1 + a2

2

, sinω =
a2√

a2
1 + a2

2

, ω = tan−1
(

a2

a1

)
.

5We used De Moivre’s Theorem: [r(cos θ + i sin θ)]n = rn(cos nθ + i sin nθ).
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Then (2.3.11) becomes

x(n) = rn
√

a2
1 + a2

2[cos ω cos(nθ) + sin ω sin(nθ)]

= rn
√

a2
1 + a2

2 cos(nθ − ω),

x(n) = Arn cos(nθ − ω). (2.3.12)

Example 2.27. The Fibonacci Sequence (The Rabbit Problem)

This problem first appeared in 1202, in Liber abaci, a book about the
abacus, written by the famous Italian mathematician Leonardo di Pisa,
better known as Fibonacci. The problem may be stated as follows: How
many pairs of rabbits will there be after one year if starting with one
pair of mature rabbits, if each pair of rabbits gives birth to a new pair
each month starting when it reaches its maturity age of two months? (See
Figure 2.1.)

Table 2.2 shows the number of pairs of rabbits at the end of each month.
The first pair has offspring at the end of the first month, and thus we have
two pairs. At the end of the second month only the first pair has offspring,
and thus we have three pairs. At the end of the third month, the first and
second pairs will have offspring, and hence we have five pairs. Continuing
this procedure, we arrive at Table 2.2. If F (n) is the number of pairs of
rabbits at the end of n months, then the recurrence relation that represents
this model is given by the second-order linear difference equation

F (n + 2) = F (n + 1) + F (n), F (0) = 1, F (1) = 2, 0 ≤ n ≤ 10.

This example is a special case of the Fibonacci sequence, given by

F (n + 2) = F (n + 1) + F (n), F (0) = 0, F (1) = 1, n ≥ 0.
(2.3.13)

The first 14 terms are given by 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,
and 377, as already noted in the rabbit problem.

Month 0 Month 1 Month2

FIGURE 2.1.

TABLE 2.2. Rabbits’ population size.

Month 0 1 2 3 4 5 6 7 8 9 10 11 12
Pairs 1 2 3 5 8 13 21 34 55 89 144 233 377
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The characteristic equation of (2.3.13) is

λ2 − λ − 1 = 0.

Hence the characteristic roots are α = 1+
√

5
2 and β = 1−√

5
2 .

The general solution of (2.3.13) is

F (n) = a1

(
1 +

√
5

2

)n

+ a2

(
1 − √

5
2

)n

, n ≥ 1. (2.3.14)

Using the initial values F (1) = 1 and F (2) = 1, one obtains

a1 =
1√
5
, a2 = − 1√

5
.

Consequently,

F (n) =
1√
5

[(
1 +

√
5

2

)n

−
(

1 − √
5

2

)n]
=

1√
5
(αn − βn). (2.3.15)

It is interesting to note that limn→∞
F (n+1)

F (n) = α ≈ 1.618 (Exercises 2.3,
Problem 15). This number is called the golden mean, which supposedly
represents the ratio of the sides of a rectangle that is most pleasing to the
eye. This Fibonacci sequence is very interesting to mathematicians; in fact,
an entire publication, The Fibonacci Quarterly, dwells on the intricacies of
this fascinating sequence.

Exercises 2.3

1. Find homogeneous difference equations whose solutions are:

(a) 2n−1 − 5n+1.

(b) 3 cos
(nπ

2

)
− sin

(nπ

2

)
.

(c) (n + 2)5n sin
(nπ

4

)
.

(d) (c1 + c2n + c3n
2)7n.

(e) 1 + 3n − 5n2 + 6n3.

2. Find a second-order linear homogeneous difference equation that gen-
erates the sequence 1, 2, 5, 12, 29, . . . ; then write the solution of the
obtained equation.

In each of Problems 3 through 8, write the general solution of the difference
equation.

3. x(n + 2) − 16x(n) = 0.

4. x(n + 2) + 16x(n) = 0.

5. (E − 3)2(E2 + 4)x(n) = 0.
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6. ∆3x(n) = 0.

7. (E2 + 2)2x(n) = 0.

8. x(n + 2) − 6x(n + 1) + 14x(n) = 0.

9. Consider Example 2.26. Verify that x1(n) = rn cos nθ and x2(n) =
rn sinnθ are two linearly independent solutions of the given equation.

10. Consider the integral defined by

Ik(ϕ) =
∫ π

0

cos(kθ) − cos(kϕ)
cos θ − cos ϕ

dθ, k = 0, 1, 2, . . . , ϕ ∈ R.

(a) Show that Ik(ϕ) satisfies the difference equation

In+2(ϕ)−2 cos ϕIn+1(ϕ)+In(ϕ) = 0, I0(ϕ) = 0, I1(ϕ) = π.

(b) Solve the difference equation in part (a) to find In(ϕ).

11. The Chebyshev polynomials of the first and second kinds are defined,
respectively, as follows:

Tn(x) = cos(n cos−1(x)), Un(x) =
1√

1 − x2
sin[(n + 1) cos−1(x)],

for |x| < 1.

(a) Show that Tn(x) obeys the difference equation

Tn+2(x) − 2xTn+1(x) + Tn(x) = 0, T0(x) = 1, T1(x) = x.

(b) Solve the difference equation in part (a) to find Tn(x).

(c) Show that Un(x) satisfies the difference equation

Un+2(x)−2xUn+1(x)+Un(x) = 0, U0(x) = 1, U1(x) = 2x.

(d) Write down the first three terms of Tn(x) and Un(x).

(e) Show that Tn(cos θ) = cos nθ and that

Un(cos θ) = (sin[(n + 1)θ])/ sin θ.

12. Show that the general solution of

x(n + 2) − 2sx(n + 1) + x(n) = 0, |s| < 1,

is given by

x(n) = c1Tn(s) + c2Un(s).

13. Show that the general solution of x(n + 2) + p1x(n + 1) + p2x(n) =
0, p2 > 0, p2

1 < 4p2, is given by x(n) = rn[c1Tn(s)+c2Un−1(s)], where
r =

√
p2 and s = P1/(2

√
p2).
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14. The Lucas numbers Ln are defined by the difference equation

Ln+2 = Ln+1 + Ln, n ≥ 0, L0 = 2, L1 = 1.

Solve the difference equation to find Ln.

15. Show that limn→∞(F (n + 1))/F (n) = α, where α = (1 +
√

5)/2.

16. Prove that consecutive Fibonacci numbers F (n) and F (n + 1) are
relatively prime.

17. (a) Prove that F (n) is the nearest integer to 1/
√

5((1 +
√

5)/2)n.

(b) Find F (17), F (18), and F (19), applying part (a).

*18. Define x = a mod p if x = mp + a. Let p be a prime number with
p > 5.

(a) Show that F (p) = 5(p−1)/2 mod p.

(b) Show that F (p) = ±1 mod p.

19. Show that if pk �= 0 in (2.3.1), then none of its characteristic roots is
equal to zero.

20. Show that the Vandermonde determinant (2.3.3) is equal to∏
1≤i<j≤k

(λj − λi).

21. Find the value of the n × n tridiagonal determinant

D(n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b a 0 . . . 0 0
a b a . . . 0 0
0 a b . . . 0 0
...

...
...

0 0 0 . . . b a

0 0 0 . . . a b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

22. Find the value of the n × n tridiagonal determinant

D(n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a b 0 . . . 0 0
c a b . . . 0 0
0 c a . . . 0 0
...

...
...

...
...

0 0 0 . . . a b

0 0 0 . . . c a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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2.4 Linear Nonhomogeneous Equations: Method
of Undetermined Coefficients

In the last two sections we developed the theory of linear homogeneous
difference equations. Moreover, in the case of equations with constant co-
efficients we have shown how to construct their solutions. In this section
we focus our attention on solving the kth-order linear nonhomogeneous
equation

y(n + k) + p1(n)y(n + k − 1) + · · · + pk(n)y(n) = g(n), (2.4.1)

where pk(n) �= 0 for all n ≥ n0. The sequence g(n) is called the forcing
term, the external force, the control, or the input of the system. As we will
discuss later in Chapter 6, equation (2.4.1) represents a physical system in
which g(n) is the input and y(n) is the output (Figure 2.2). Thus solving
(2.4.1) amounts to determining the output y(n) given the input g(n). We
may look at g(n) as a control term that the designing engineer uses to force
the system to behave in a specified way.

Before proceeding to present general results concerning (2.4.1) we would
like to raise the following question: Do solutions of (2.4.1) form a vector
space? In other words, is the sum of two solutions of (2.4.1) a solution of
(2.4.1)? And is a multiple of a solution of (2.4.1) a solution of (2.4.1)? Let
us answer these questions through the following example.

Example 2.28. Contemplate the equation

y(n + 2) − y(n + 1) − 6y(n) = 5(3n).

(a) Show that y1(n) = n(3n−1) and y2(n) = (1 + n)3n−1 are solutions of
the equation.

(b) Show that y(n) = y2(n) − y1(n) is not a solution of the equation.

(c) Show that ϕ(n) = cn(3n−1) is not a solution of the equation, where c
is a constant.

Solution

(a) The verification that y1 and y2 are solutions is left to the reader.

(b) y(n) = y2(n)−y1(n) = 3n−1. Substituting this into the equation yields

3n+1 − 3n − 63n−1 = 3n[3 − 1 − 2] = 0 �= 5(3n).

(c) By substituting for ϕ(n) into the equation we see easily that ϕ(n) is
not a solution.

output  y(n)input  g(n) system

FIGURE 2.2. Input–output system.
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Conclusion

(i) From the above example we conclude that in contrast to the situation
for homogeneous equations, solutions of the nonhomogeneous equa-
tion (2.4.1) do not form a vector space. In particular, neither the sum
(difference) of two solutions nor a multiple of a solution is a solution.

(ii) From part (b) in Example 2.28 we found that the difference of the
solutions y2(n) and y1(n) of the nonhomogeneous equation is actually
a solution of the associated homogeneous equation. This is indeed true
for the general nth-order equation, as demonstrated by the following
result.

Theorem 2.29. If y1(n) and y2(n) are solutions of (2.4.1), then x(n) =
y1(n) − y2(n) is a solution of the corresponding homogeneous equation

x(n + k) + p1(n)x(n + k − 1) + · · · + pk(n)x(n) = 0. (2.4.2)

Proof. The reader will undertake the justification of this theorem in
Exercises 2.4, Problem 12. �

It is customary to refer to the general solution of the homogeneous equa-
tion (2.4.2) as the complementary solution of the nonhomogeneous equation
(2.4.1), and it will be denoted by yc(n). A solution of the nonhomoge-
neous equation (2.4.1) is called a particular solution and will be denoted
by yp(n). The next result gives us an algorithm to generate all solutions of
the nonhomogeneous equation (2.4.1).

Theorem 2.30. Any solution y(n) of (2.4.1) may be written as

y(n) = yp(n) +
k∑

i=1

aixi(n),

where {x1(n), x2(n), . . . , xk(n)} is a fundamental set of solutions of the
homogeneous equation (2.4.2).

Proof. Observe that according to Theorem 2.29, y(n) − yp(n) is a
solution of the homogeneous equation (2.4.2). Thus y(n) − yp(n) =∑k

i=1 aixi(n), for some constants ai.
The preceding theorem leads to the definition of the general solution of

the nonhomogeneous equation (2.4.1) as

y(n) = yc(n) + yp(n). (2.4.3)
�

We now turn our attention to finding a particular solution yp of
nonhomogeneous equations with constant coefficients such as

y(n + k) + p1y(n + k − 1) + · · · + pky(n) = g(n). (2.4.4)
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Because of its simplicity, we use the method of undetermined coefficients
to compute yp.

Basically, the method consists in making an intelligent guess as to the
form of the particular solution and then substituting this function into the
difference equation. For a completely arbitrary nonhomogeneous term g(n),
this method is not effective. However, definite rules can be established for
the determination of a particular solution by this method if g(n) is a linear
combination of terms, each having one of the forms

an, sin(bn), cos(bn), or nk, (2.4.5)

or products of these forms such as

an sin(bn), annk, annk cos(bn), . . . . (2.4.6)

Definition 2.31. A polynomial operator N(E), where E is the shift
operator, is said to be an annihilator of g(n) if

N(E)g(n) = 0. (2.4.7)

In other words, N(E) is an annihilator of g(n) if g(n) is a solution of
(2.4.7). For example, an annihilator of g(n) = 3n is N(E) = E − 3, since
(E − 3)y(n) = 0 has a solution y(n) = 3n. An annihilator of g(n) = cos nπ

2
is N(E) = E2 + 1, since (E2 + 1)y(n) = 0 has a solution y(n) = cos nπ

2 .
Let us now rewrite (2.4.4) using the shift operator E as

p(E)y(n) = g(n), (2.4.8)

where p(E) = Ek + p1E
k−1 + p2E

k−2 + · · · + pkI.
Assume now that N(E) is an annihilator of g(n) in (2.4.8). Applying

N(E) on both sides of (2.4.8) yields

N(E)p(E)y(n) = 0. (2.4.9)

Let λ1, λ2, . . . , λk be the characteristic roots of the homogeneous equation

p(E)y(n) = 0, (2.4.10)

and let µ1, µ2, . . . , µk be the characteristic roots of

N(E)y(n) = 0. (2.4.11)

We must consider two separate cases.

Case 1. None of the λi’s equals any of the µi’s. In this case, write yp(n) as
the general solution of (2.4.11) with undetermined constants. Substituting
back this “guesstimated” particular solution into (2.4.4), we find the values
of the constants. Table 2.3 contains several types of functions g(n) and their
corresponding particular solutions.

Case 2. λi = µj for some i, j. In this case, the set of characteristic roots
of (2.4.9) is equal to the union of the sets {λi}, {µj} and, consequently,
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TABLE 2.3. Particular solutions yp(n).

g(n) yp(n)
an c1a

n

nk c0 + c1n + · · · + cknk

nkan c0a
n + c1nan + · · · + cknkan

sin bn, cos bn c1 sin bn + c2 cos bn
an sin bn, an cos bn (c1 sin bn + c2 cos bn)an

annk sin bn, annk cos bn (c0 + c1n + · · · + cknk)an sin(bn)
+ (d0 + d1n + · · · dknk)an cos(bn)

contains roots of higher multiplicity than the two individual sets of char-
acteristic roots. To determine a particular solution yp(n), we first find the
general solution of (2.4.9) and then drop all the terms that appear in yc(n).
Then proceed as in Case 1 to evaluate the constants.

Example 2.32. Solve the difference equation

y(n + 2) + y(n + 1) − 12y(n) = n2n. (2.4.12)

Solution The characteristic roots of the homogeneous equation are λ1 = 3
and λ2 = −4.

Hence,

yc(n) = c13n + c2(−4)n.

Since the annihilator of g(n) = n2n is given by N(E) = (E − 2)2 (Why?),
we know that µ1 = µ2 = 2. This equation falls in the realm of Case 1, since
λi �= µj , for any i, j. So we let

yp(n) = a12n + a2n2n.

Substituting this relation into equation (2.4.12) gives

a12n+2 + a2(n + 2)2n+2 + a12n+1 + a2(n + 1)2n+1 − 12a12n − 12a2n2n = n2n,

(10a2 − 6a1)2n − 6a2n2n = n2n.

Hence

10a2 − 6a1 = 0 and − 6a2 = 1,

or

a1 =
−5
18

, a2 =
−1
6

.

The particular solution is

yp(n) =
−5
18

2n − 1
6
n2n,

and the general solution is

y(n) = c13n + c2(−4)n − 5
18

2n − 1
6
n2n.
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Example 2.33. Solve the difference equation

(E − 3)(E + 2)y(n) = 5(3n). (2.4.13)

Solution The annihilator of 5(3n) is N(E) = (E − 3). Hence, µ1 = 3. The
characteristic roots of the homogeneous equation are λ1 = 3 and λ2 = −2.
Since λ1 = µ1, we apply the procedure for Case 2.

Thus,

(E − 3)2(E + 2)y(n) = 0. (2.4.14)

Now yc(n) = c13n + c2(−2)n.
We now know that the general solution of (2.4.14) is given by

ỹ(n) = (a1 + a2n)3n + a3(−2)n.

Omitting from ỹ(n) the terms 3n and (−2)n that appeared in yc(n), we set
yp(n) = a2n3n. Substituting this yp(n) into (2.4.13) gives

a2(n + 2)3n+2 − a2(n + 1)3n+1 + 6a2n3n = 5.3n,

or

a2 =
1
3
.

Thus yp(n) = n3n−1, and the general solution of (2.4.13) is

y(n) = c13n + c2(−2)n + n3n−1.

Example 2.34. Solve the difference equation

y(n + 2) + 4y(n) = 8(2n) cos
(nπ

2

)
. (2.4.15)

Solution The characteristic equation of the homogeneous equation is

λ2 + 4 = 0.

The characteristic roots are

λ1 = 2i, λ2 = −2i.

Thus r = 2, θ = π/2, and

yc(n) = 2n
(
c1 cos

(nπ

2

)
+ c2 sin

(nπ

2

))
.

Notice that g(n) = 2n cos
(

nπ
2

)
appears in yc(n). Using Table 2.3, we set

yp(n) = 2n
(
an cos

(nπ

2

)
+ bn sin

(nπ

2

))
. (2.4.16)

Substituting (2.4.16) into (2.4.15) gives

2n+2
[
a(n + 2) cos

(nπ

2
+ π
)

+ b(n + 2) sin
(nπ

2
+ π
)]

+ (4)2n
[
an cos

(nπ

2

)
+ bn sin

(nπ

2

)]
= 8(2n) cos

(nπ

2

)
.
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Replacing cos((nπ)/2 + π) by –cos((nπ)/2), and sin((nπ)/2 + π) by
–sin((nπ)/2) and then comparing the coefficients of the cosine terms leads
us to a = −1. Then by comparing the coefficients of the sine terms, we
realize that b = 0.

By substituting these values back into (2.4.16), we know that

yp(n) = −2nn cos
(nπ

2

)
,

and the general solution of (2.4.15), arrived at by adding yc(n) and yp(n),
is

y(n) = 2n
(
c1 cos

nπ

2
+ c2 sin

(nπ

2

)
− n cos

(nπ

2

))
.

Exercises 2.4.

For Problems 1 through 6, find a particular solution of the difference
equation.

1. y(n + 2) − 5y(n + 1) + 6y(n) = 1 + n.

2. y(n + 2) + 8y(n + 1) + 12y(n) = en.

3. y(n + 2) − 5y(n + 1) + 4y(n) = 4n − n2.

4. y(n + 2) + 8y(n + 1) + 7y(n) = nen.

5. y(n + 2) − y(n) = n cos
(nπ

2

)
.

6. (E2 + 9)2y(n) = sin
(nπ

2

)
− cos

(nπ

2

)
.

For Problems 7 through 9 find the solution of the difference equation.

7. ∆2y(n) = 16, y(0) = 2, y(1) = 3.

8. ∆2y(n) + 7y(n) = 2 sin
(nπ

4

)
, y(0) = 0, y(1) = 1.

9. (E − 3)(E2 + 1)y(n) = 3n, y(0) = 0, y(1) = 1, y(2) = 3.

For Problems 10 and 11 find the general solution of the difference equation.

10. y(n + 2) − y(n) = n2n sin
(nπ

2

)
.

11. y(n + 2) + 8y(n + 1) + 7y(n) = n2n.

12. Prove Theorem 2.29.

13. Consider the difference equation y(n+2)+p1y(n+1)+p2y(n) = g(n),
where p2

1 < 4p2 and 0 < p2 < 1. Show that if y1 and y2 are two
solutions of the equation, then y1(n) − y2(n) → 0 as n → ∞.

14. Determine the general solution of y(n+2)+λ2y(n) =
∑N

m=1 am sin(mπn),
where λ > 0 and λ �= mπ, m = 1, 2, . . . , N .
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15. Solve the difference equation

y(n + 2) + y(n) =

{
1 if 0 ≤ n ≤ 2,

−1 if n > 2,

with y(0) = 0 and y(1) = 1.

2.4.1 The Method of Variation of Constants (Parameters)
Contemplate the second-order nonhomogeneous difference equation

y(n + 2) + p1(n)y(n + 1) + p2(n)y(n) = g(n) (2.4.17)

and the corresponding homogeneous difference equation

y(n + 2) + p1(n)y(n + 1) + p2(n)y(n) = 0. (2.4.18)

The method of variation of constants is commonly used to find a particular
solution yp(n) of (2.4.17) when the coefficients p1(n) and p2(n) are not
constants. The method assumes that a particular solution of (2.4.17) may
be written in the form

y(n) = u1(n)y1(n) + u2(n)y2(n), (2.4.19)

where y1(n) and y2(n) are two linearly independent solutions of the homo-
geneous equation (2.4.18), and u1(n), u2(n) are sequences to be determined
later.

16. (a) Show that

y(n + 1) = u1(n)y1(n + 1) + u2(n)y2(n + 1)
+ ∆u1(n)y1(n + 1) + ∆u2(n)y2(n + 1). (2.4.20)

(b) The method stipulates that

∆u1(n)y1(n + 1) + ∆u2(n)y2(n + 1) = 0. (2.4.21)

Use (2.4.20) and (2.4.21) to show that

y(n + 2) = u1(n)y1(n + 2) + u2(n)y2(n + 2)
+ ∆u1(n)y1(n + 2) + ∆u2(n)y2(n + 2).

(c) By substituting the above expressions for y(n), y(n+1), and y(n+
2) into (2.4.17), show that

∆u1(n)y1(n + 2) + ∆u2(n)y2(n + 2) = g(n). (2.4.22)

(d) Using expressions (2.4.21) and (2.4.22), show that

∆u1(n) =
−g(n)y2(n + 1)

W (n + 1)
, u1(n) =

n−1∑
r=0

−g(r)y2(r + 1)
W (r + 1)

,

(2.4.23)
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∆u2(n) =
g(n)y1(n + 1)

W (n + 1)
, u2(n) =

n−1∑
r=0

g(r)y1(r + 1)
W (r + 1)

,

(2.4.24)
where W (n) is the Casoratian of y1(n) and y2(n).

17. Use formulas (2.4.23) and (2.4.24) to solve the equation

y(n + 2) − 7y(n + 1) + 6y(n) = n.

18. Use the variation of constants method to solve the initial value problem

y(n + 2) − 5y(n + 1) + 6y(n) = 2n, y(1) = y(2) = 0.

19. Use Problem 16(d) to show that the unique solution of (2.4.17) with
y(0) = y(1) = 0 is given by

y(n) =
n−1∑
r=0

y1(r + 1)y2(n) − y2(r + 1)y1(n)
W (r + 1)

.

20. Consider the equation

x(n + 1) = ax(n) + f(n). (2.4.25)

(a) Show that

x(n) = an

[
x(0) +

f(0)
a

+
f(1)
a2 + · · · +

f(n − 1)
an

]
(2.4.26)

is a solution of (2.4.25).

(b) Show that if |a| < 1 and {f(n)} is a bounded sequence, i.e.,
|f(n)| ≤ M , for some M > 0, n ∈ Z

+, then all solutions of
(2.4.25) are bounded.

(c) Suppose that a > 1 and {f(n)} is bounded on Z
+. Show that if

we choose

x(0) = −
(

f(0)
a

+
f(1)
a2 + · · · +

f(n)
an+1 + · · ·

)
= −

∞∑
i=0

f(i)
ai+1 ,

(2.4.27)
then the solution x(n) given by (2.4.26) is bounded on Z

+. Give
an explicit expression for x(n) in this case.

(d) Under the assumptions of part (c), show that for any choice
of x(0), excepting that value given by (2.4.27), the solution of
(2.4.25) is unbounded.
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2.5 Limiting Behavior of Solutions

To simplify our exposition we restrict our discussion to the second-order
difference equation

y(n + 2) + p1y(n + 1) + p2y(n) = 0. (2.5.1)

Suppose that λ1 and λ2 are the characteristic roots of the equation. Then
we have the following three cases:

(a) λ1 and λ2 are distinct real roots. Then y1(n) = λn
1 and y2(n) = λn

2 are
two linearly independent solutions of (2.5.1). If |λ1| > |λ2|, then we
call y1(n) the dominant solution, and λ1 the dominant characteristic
root. Otherwise, y2(n) is the dominant solution, and λ2 is the dominant
characteristic root. We will now show that the limiting behavior of the
general solution y(n) = a1λ

n
1 + a2λ

n
2 is determined by the behavior

of the dominant solution. So assume, without loss of generality, that
|λ1| > |λ2|. Then

y(n) = λn
1

[
a1 + a2

(
λ2

λ1

)n]
.

Since ∣∣∣∣λ2

λ1

∣∣∣∣ < 1,

it follows that (
λ2

λ1

)n

→ 0 as n → ∞.

Consequently, limn→∞ y(n) = limn→∞ a1λ
n
1 . There are six different

situations that may arise here depending on the value of λ1 (see Figure
2.3).

1. λ1 > 1: The sequence {a1λ
n
1} diverges to ∞ (unstable system).

2. λ1 = 1: The sequence {a1λ
n
1} is a constant sequence.

3. 0 < λ1 < 1: The sequence {a1λ
n
1} is monotonically decreasing to

zero (stable system).

4. −1 < λ1 < 0: The sequence {a1λ
n
1} is oscillating around zero (i.e.,

alternating in sign) and converging to zero (stable system).

5. λ1 = −1: The sequence {a1λ
n
1} is oscillating between two values

a1 and −a1.

6. λ1 < −1: The sequence {a1λ
n
1} is oscillating but increasing in

magnitude (unstable system).
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FIGURE 2.3. (n, y(n)) diagrams for real roots.
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(b) λ1 = λ2 = λ.
The general solution of (2.5.1) is given by y(n) = (a1+a2n)λn. Clearly,
if |λ| ≥ 1, the solution y(n) diverges either monotonically if λ ≥ 1 or by
oscillating if λ ≤ −1. However, if |λ| < 1, then the solution converges
to zero, since limn→∞ nλn = 0 (Why?).

(c) Complex roots: λ1 = α + iβ and λ2 = α − iβ, where β �= 0.
As we have seen in Section 2.3, formula (2.3.12), the solution of (2.5.1)
is given by y(n) = arn cos(nθ − ω), where

r =
√

α2 + β2, θ = tan−1
(

β

α

)
.

The solution y(n) clearly oscillates, since the cosine function oscillates.
However, y(n) oscillates in three different ways depending on the lo-
cation of the conjugate characteristic roots, as may be seen in Figure
2.4.

1. r > 1: Here λ1 and λ2 = λ1 are outside the unit circle. Hence y(n)
is oscillating but increasing in magnitude (unstable system).

2. r = 1: Here λ1 and λ2 = λ1 lie on the unit circle. In this case y(n)
is oscillating but constant in magnitude.

3. r < 1: Here λ1 and λ2 = λ1 lie inside the unit disk. The solution
y(n) oscillates but converges to zero as n → ∞ (stable system).

Finally, we summarize the above discussion in the following theorem.
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Theorem 2.35. The following statements hold:

(i) All solutions of (2.5.1) oscillate (about zero) if and only if the
characteristic equation has no positive real roots.

(ii) All solutions of (2.5.1) converge to zero (i.e., the zero solution is
asymptotically stable) if and only if max{|λ1|, |λ2|} < 1.

Next we consider nonhomogeneous difference equations in which the
input is constant, that is, equations of the form

y(n + 2) + p1y(n + 1) + p2y(n) = M, (2.5.2)

where M is a nonzero constant input or forcing term. Unlike (2.5.1), the
zero sequence y(n) = 0 for all n ∈ Z

+ is not a solution of (2.5.2). Instead,
we have the equilibrium point or solution y(n) = y*. From (2.5.2) we have

y* + p1y* + p2y* = M,

or

y* =
M

1 + p1 + p2
. (2.5.3)

Thus yp(n) = y* is a particular solution of (2.5.2). Consequently, the
general solution of (2.5.2) is given by

y(n) = y* + yc(n). (2.5.4)

It is clear that y(n) → y* if and only if yc(n) → 0 as n → ∞. Furthermore,
y(n) oscillates6 about y* if and only if yc(n) oscillates about zero. These
observations are summarized in the following theorem.

Theorem 2.36. The following statements hold:

(i) All solutions of the nonhomogeneous equation (2.5.2) oscillate about
the equilibrium solution y* if and only if none of the characteristic
roots of the homogeneous equation (2.5.1) is a positive real number.

(ii) All solutions of (2.5.2) converge to y* as n → ∞ if and only if
max{|λ1|, |λ2|} < 1, where λ1 and λ2 are the characteristic roots of
the homogeneous equation (2.5.1).

Theorems 2.35 and 2.36 give necessary and sufficient conditions under
which a second-order difference equation is asymptotically stable. In many
applications, however, one needs to have explicit criteria for stability based
on the values of the coefficients p1 and p2 of (2.5.2) or (2.5.1). The following
result provides us with such needed criteria.

6We say y(n) oscillates about y* if y(n)−y* alternates sign, i.e., if y(n) > y*,
then y(n + 1) < y*.
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Theorem 2.37. The conditions

1 + p1 + p2 > 0, 1 − p1 + p2 > 0, 1 − p2 > 0 (2.5.5)

are necessary and sufficient for the equilibrium point (solution) of equations
(2.5.1) and (2.5.2) to be asymptotically stable (i.e., all solutions converge
to y*).

Proof. Assume that the equilibrium point of (2.5.1) or (2.5.2) is asymp-
totically stable. In virtue of Theorems 2.35 and 2.36, the roots λ1, λ2 of
the characteristic equation λ2 + p1λ + p2 = 0 lie inside the unit disk, i.e.,
|λ1| < 1 and |λ2| < 1. By the quadratic formula, we have

λ1 =
−p1 +

√
p2
1 − 4p2

2
and λ2 =

−p1 −
√

p2
1 − 4p2

2
. (2.5.6)

Then we have two cases to consider.

Case 1. λ1, λ2 are real roots, i.e., p2
1 − 4p2 ≥ 0. From formula (2.5.6) we

have

−2 < −p1 +
√

p2
1 − 4p2 < 2,

or

−2 + p1 <
√

p2
1 − 4p2 < 2 + p1. (2.5.7)

Similarly, one obtains

−2 + p1 < −
√

p2
1 − 4p2 < 2 + p1. (2.5.8)

Squaring the second inequality in expression (2.5.7) yields

1 + p1 + p2 > 0. (2.5.9)

Similarly, if we square the first inequality in expression (2.5.8) we obtain

1 − p1 + p2 > 0. (2.5.10)

Now from the second inequality of (2.5.7) and the first inequality of (2.5.8)
we obtain

2 + p1 > 0 and 2 − p1 > 0 or |p1| < 2

since p2
1 − 4p2 ≥ 0, p2 ≤ p2

1/4 < 1. This completes the proof of (2.5.5) in
this case.

Case 2. λ1 and λ2 are complex conjugates, i.e., p2
1 − 4p2 < 0. In this case

we have

λ1,2 =
−p1

2
± i

2

√
4p2 − p2

1.

Moreover, since p2
1 < 4p2, it follows that −2

√
p2 < p1 < 2

√
p2. Now |λ1|2 =

p2
1
4 + 4p2

4 − p2
1
4 = p2. Since |λ1| < 1, it follows that 0 < p2 < 1.
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Hence to show that the first two inequalities of (2.5.5) hold we need to
show that the function f(x) = 1 + x − 2

√
x > 0 for x ∈ (0, 1). Observe

that f(0) = 1, and f ′(x) = 1 − 1√
x
. Thus x = 1 is a local minimum as f(x)

decreases for x ∈ (0, 1). Hence f(x) > 0 for all x ∈ (0, 1).
This completes the proof of the necessary conditions. The converse is left

to the reader as Exercises 2.5, Problem 8. �

Example 2.38. Find conditions under which the solutions of the equation

y(n + 2) − α(1 + β)y(n + 1) + αβy(n) = 1, α, β > 0,

(a) converge to the equilibrium point y*, and

(b) oscillate about y*.

Solution Let us first find the equilibrium point y*. Be letting y(n) = y* in
the equation, we obtain

y* =
1

1 − α
, α �= 1.

(a) Applying condition (2.5.5) to our equation yields

α < 1, 1 + α + 2αβ > 0, αβ < 1.

Clearly, the second inequality 1+α+2αβ > 0 is always satisfied, since
α, β are both positive numbers.

(b) The solutions are oscillatory about y* if either λ1, λ2 are negative real
numbers or complex conjugates. In the first case we have

α2(1 + β)2 > 4αβ, or α >
4β

(1 + β)2
,

and

α(1 + β) < 0,

which is impossible. Thus if α > 4β/(1 + β)2, we have no oscillatory
solutions.

Now, λ1 and λ2 are complex conjugates if

α2(1 + β)2 < 4αβ or α <
4β

(1 + β)2
.

Hence all solutions are oscillatory if

α <
4β

(1 + β)2
.

For the treatment of the general kth-order scalar difference equations, the
reader is referred to Chapter 4, on stability, and Chapter 8, on oscillation.
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Exercises 2.5.

In Problems 1 through 4:

(a) Determine the stability of the equilibrium point by using Theorem 2.35
or Theorem 2.36.

(b) Determine the oscillatory behavior of the solutions of the equation.

1. y(n + 2) − 2y(n + 1) + 2y(n) = 0.

2. y(n + 2) + 1
4y(n) = 5

4 .

3. y(n + 2) + y(n + 1) +
1
2
y(n) = −5.

4. y(n + 2) − 5y(n + 1) + 6y(n) = 0.

5. Determine the stability of the equilibrium point of the equations
in Problems 1 through 4 by using Theorem 2.37.

6. Show that the stability conditions (2.5.5) for the equation y(n +
2) − αy(n + 1) + βy(n) = 0, where α, β are constants, may be
written as

−1 − β < α < 1 + β, β < 1.

7. Contemplate the equation y(n+2)−p1y(n+1)−p2y(n) = 0. Show
that if |p1| + |p2| < 1, then all solutions of the equation converge
to zero.

8. Prove that conditions (2.5.5) imply that all solutions of (2.5.2)
converge to the equilibrium point y*.

9. Determine conditions under which all solutions of the difference
equation in Problem 7 oscillate.

10. Determine conditions under which all solutions of the difference
equation in Problem 6 oscillate.

11. Suppose that p is a real number. Prove that every solution of the
difference equation y(n + 2) − y(n + 1) + py(n) = 0 oscillates if
and only if p > 1

4 .

*12. Prove that a necessary and sufficient condition for the asymptotic
stability of the zero solution of the equation

y(n + 2) + p1y(n + 1) + p2y(n) = 0

is

|p1| < 1 + p2 < 2.
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13. Determine the limiting behavior of solutions of the equation

y(n + 2) = αc + αβ(y(n + 1) − y(n))

if:

(i) αβ = 1,

(ii) αβ = 2,

(iii) αβ =
1
2
,

provided that α, β, and c are positive constants.

14. If p1 > 0 and p2 > 0, show that all solutions of the equation

y(n + 2) + p1y(n + 1) + p2y(n) = 0

are oscillatory.

15. Determine the limiting behavior of solutions of the equation

y(n + 2) − β

α
y(n + 1) +

β

α
y(n) = 0,

where α and β are constants, if:

(i) β > 4α,

(ii) β < 4α.

2.6 Nonlinear Equations Transformable
to Linear Equations

In general, most nonlinear difference equations cannot be solved explic-
itly. However, a few types of nonlinear equations can be solved, usually by
transforming them into linear equations. In this section we discuss some
tricks of the trade.

Type I. Equations of Riccati type:

x(n + 1)x(n) + p(n)x(n + 1) + q(n)x(n) = 0. (2.6.1)

To solve the Riccati equation, we let

z(n) =
1

x(n)

in (2.6.1) to give us

q(n)z(n + 1) + p(n)z(n) + 1 = 0. (2.6.2)

The nonhomogeneous equation requires a different transformation

y(n + 1)y(n) + p(n)y(n + 1) + q(n)y(n) = g(n). (2.6.3)
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If we let y(n) = (z(n + 1)/z(n)) − p(n) in (2.6.3) we obtain

z(n + 2) + (q(n) − p(n + 1))z(n + 1) − (g(n) + p(n)q(n))z(n) = 0.

Example 2.39. The Pielou Logistic Equation

The most popular continuous model of the growth of a population is the
well-known Verhulst–Pearl equation given by

x′(t) = x(t)[a − bx(t)], a, b > 0, (2.6.4)

where x(t) is the size of the population at time t; a is the rate of the growth
of the population if the resources were unlimited and the individuals did
not affect one another, and −bx2(t) represents the negative effect on the
growth due to crowdedness and limited resources. The solution of (2.6.4)
is given by

x(t) =
a/b

1 + (e−at/cb)
.

Now,

x(t + 1) =
a/b

1 +
(
e−a(t+1)/cb

)
=

ea(a/b)
1 + (e−at/cb) + (ea − 1)

.

Dividing by [1 + (e−at/cb)], we obtain

x(t + 1) =
eax(t)[

1 + b
a (ea − 1)x(t)

] ,
or

x(n + 1) =
αx(n)

[1 + βx(n)]
, (2.6.5)

where α = ea and β = b
a (ea − 1).

This equation is titled the Pielou logistic equation.

Equation (2.6.5) is of Riccati type and may be solved by letting x(n) =
1/z(n). This gives us the equation

z(n + 1) =
1
α

z(n) +
β

α
,

whose solution is given by

z(n) =

⎧⎪⎨⎪⎩
[
c − β

α − 1

]
α−n + (β/(α − 1)) if α �= 1,

c + βn if α = 1.
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x(n+1)

x(n)
0.5

FIGURE 2.5. Asymptotically stable equilibrium points.

Thus

x(n) =

⎧⎨⎩
αn(α − 1)/[βαn + c(α − 1) − β] if α �= 1,

1
c + βn

if α = 1.

Hence

lim
n→∞ x(n) =

{
(α − 1)/β if α �= 1,

0 if α = 1.

This conclusion shows that the equilibrium point (α − 1)/β is globally
asymptotically stable if α �= 1. Figure 2.5 illustrates this for α = 3, β = 1,
and x(0) = 0.5.

Type II. Equations of general Riccati type:

x(n + 1) =
a(n)x(n) + b(n)
c(n)x(n) + d(n)

(2.6.6)

such that c(n) �= 0, a(n)d(n) − b(n)c(n) �= 0 for all n ≥ 0.

To solve this equation we let

c(n)x(n) + d(n) =
y(n + 1)

y(n)
. (2.6.7)

Then by substituting

x(n) =
y(n + 1)
c(n)y(n)

− d(n)
c(n)
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into (2.6.6) we obtain

y(n + 2)
c(n + 1)y(n + 1)

− d(n + 1)
c(n + 1)

=
a(n)

[
y(n + 1)
c(n)y(n)

− d(n)
c(n)

]
+ b(n)

y(n + 1)
y(n)

.

This equation simplifies to

y(n + 2) + p1(n)y(n + 1) + p2(n)y(n) = 0,
y(0) = 1, y(1) = c(0)x(0) + d(0), (2.6.8)

where

p1(n) = −c(n)d(n + 1) + a(n)c(n + 1)
c(n)

,

p2(n) = (a(n)d(n) − b(n)c(n))
c(n + 1)

c(n)
.

Example 2.40. Solve the difference equation

x(n + 1) =
2x(n) + 3
3x(n) + 2

.

Solution Here a = 2, b = 3, c = 3, and d = 2. Hence ad − bc �= 0. Using the
transformation

3x(n) + 2 =
y(n + 1)

y(n)
, (2.6.9)

we obtain, as in (2.6.8),

y(n + 2) − 4y(n + 1) − 5y(n) = 0, y(0) = 1, y(1) = 3x(0) + 2,

with characteristic roots λ1 = 5, λ2 = −1.
Hence

y(n) = c15n + c2(−1)n. (2.6.10)

From formula (2.6.9) we have

x(n) =
1
3

y(n + 1)
y(n)

− 2
3

=
1
3

c15n+1 + c2(−1)n+1

c15n + c2(−1)n
− 2

3

=
(c15n − c2(−1)n)
(c15n + c2(−1)n)

=
5n − c(−1)n

5n + c(−1)n
,

where

c =
c1

c2
.

Type III. Homogeneous difference equations of the type

f

(
x(n + 1)

x(n)
, n

)
= 0.
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Use the transformation z(n) = x(n+1)
x(n) to convert such an equation to a

linear equation in z(n), thus allowing it to be solved.

Example 2.41. Solve the difference equation

x2(n + 1) − 3x(n + 1)x(n) + 2x2(n) = 0. (2.6.11)

Solution Dividing by x2(n), equation (2.6.11) becomes[
x(n + 1)

x(n)

]2
− 3
[
x(n + 1)

x(n)

]
+ 2 = 0, (2.6.12)

which is of Type III.
Letting z(n) = x(n+1)

x(n) in (2.6.12) creates

z2(n) − 3z(n) + 2 = 0.

We can factor this down to

[z(n) − 2][z(n) − 1] = 0,

and thus either z(n) = 2 or z(n) = 1.
This leads to

x(n + 1) = 2x(n) or x(n + 1) = x(n).

Starting with x(0) = x0, there are infinitely many solutions x(n) of (2.6.11)
of the form

x0, . . . , x0; 2x0, . . . , 2x0; 22x0, . . . , 22x0; . . . .7

Type IV. Consider the difference equation of the form

(y(n + k))r1 (y(n + k − 1))r2 · · · (y(n))rk+1 = g(n). (2.6.13)

Let z(n) = ln y(n), and rearrange to obtain

r1z(n + k) + r2z(n + k − 1) + · · · + rk+1z(n) = ln g(n). (2.6.14)

Example 2.42. Solve the difference equation

x(n + 2) =
x2(n + 1)

x2(n)
. (2.6.15)

Solution Let z(n) = lnx(n) in (2.6.15). Then as in (2.6.12) we obtain

z(n + 2) − 2z(n + 1) + 2z(n) = 0.

The characteristic roots are λ1 = 1 + i, λ2 = 1 − i.
Thus,

z(n) = (2)n/2
[
c1 cos

(nπ

4

)
+ c2 sin

(nπ

4

)]
.

7This solution was given by Sebastian Pancratz of the Technical University of
Munich.
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Therefore,

x(n) = exp
[
(2)n/2

{
c1 cos

(nπ

4

)
+ c2 sin

(nπ

4

)}]
.

Exercises 2.6

1. Find the general solution of the difference equation

y2(n + 1) − 2y(n + 1)y(n) − 3y2(n) = 0.

2. Solve the difference equation

y2(n + 1) − (2 + n)y(n + 1)y(n) + 2ny2(n) = 0.

3. Solve y(n + 1)y(n) − y(n + 1) + y(n) = 0.

4. Solve y(n + 1)y(n) − 2
3
y(n + 1) +

1
6
y(n) =

5
18

.

5. Solve y(n + 1) = 5 − 6
y(n)

.

6. Solve x(n + 1) =
x(n) + a

x(n) + 1
, 1 �= a > 0.

7. Solve x(n + 1) = x2(n).

8. Solve the logistic difference equation

x(n + 1) = 2x(n)(1 − x(n)).

9. Solve the logistic equation

x(n + 1) = 4x(n)[1 − x(n)].

10. Solve x(n + 1) =
1
2

(
x(n) − a

x(n)

)
, a > 0.

11. Solve y(n + 2) = y3(n + 1)/y2(n).

12. Solve x(n + 1) =
2x(n) + 4
x(n) − 1

.

13. Solve y(n + 1) =
2 − y2(n)

2(1 − y(n))
.

14. Solve x(n + 1) =
2x(n)

x(n) + 3
.

15. Solve y(n + 1) = 2y(n)
√

1 − y2(n).

16. The “regular falsi” method for finding the roots of f(x) = 0 is given
by

x(n + 1) =
x(n − 1)f(x(n)) − x(n)f(x(n − 1))

f(x(n)) − f(x(n − 1))
.
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(a) Show that for f(x) = x2, this difference equation becomes

x(n + 1) =
x(n − 1)x(n)

x(n − 1) + x(n)
.

(b) Let x(1) = 1, x(2) = 1 for the equation in part (a). Show that the
solution of the equation is x(n) = 1/F (n), where F (n) is the nth
Fibonacci number.

2.7 Applications

2.7.1 Propagation of Annual Plants
The material of this section comes from Edelstein–Keshet [37] of plant
propagation. Our objective here is to develop a mathematical model that
describes the number of plants in any desired generation. It is known that
plants produce seeds at the end of their growth season (say August), after
which they die. Furthermore, only a fraction of these seeds survive the
winter, and those that survive germinate at the beginning of the season
(say May), giving rise to a new generation of plants.

Let

γ = number of seeds produced per plant in August,
α = fraction of one-year-old seeds that germinate in May,

β = fraction of two-year-old seeds that germinate in May,

σ = fraction of seeds that survive a given winter.

If p(n) denotes the number of plants in generation n, then

p(n) =

(
plants from

one-year-old seeds

)
+

(
plants from

two-year-old seeds

)
,

p(n) = αs1(n) + βs2(n), (2.7.1)

where s1(n) (respectively, s2(n)) is the number of one-year-old (two-year-
old) seeds in April (before germination). Observe that the number of seeds
left after germination may be written as

seeds left =

(
fraction

not germinated

)
×
(

original number
of seeds in April

)
.

This gives rise to two equations:

s̃1(n) = (1 − α)s1(n), (2.7.2)

s̃2(n) = (1 − β)s2(n), (2.7.3)
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Year k=n Year k=n+1 Year k=n+2

April-May August Winter April-May August Winter April-May August

γ

s0(n)

σ

α

α

s1(n+1) s1(n+1)
β

γ

s0(n+1)

p(n+2) s0(n+2)

s1(n+1)

p(n+1)p(n)

s0(n+2)

σ σ

FIGURE 2.6. Propogation of annual plants.

where s̃1(n) (respectively, s̃2(n)) is the number of one-year (two-year-old)
seeds left in May after some have germinated. New seeds s0(n) (0-year-old)
are produced in August (Figure 2.6) at the rate of γ per plant,

s0(n) = γp(n). (2.7.4)

After winter, seeds s0(n) that were new in generation n will be one year
old in the next generation n+1, and a fraction σs0(n) of them will survive.
Hence

s1(n + 1) = σs0(n),

or, by using formula (2.7.4), we have

s1(n + 1) = σγp(n). (2.7.5)

Similarly,

s2(n + 1) = σs̃1(n),

which yields, by formula (2.7.2),

s2(n + 1) = σ(1 − α)s1(n),
s2(n + 1) = σ2γ(1 − α)p(n − 1). (2.7.6)
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Substituting for s1(n + 1), s2(n + 1) in expressions (2.7.5) and (2.7.6) into
formula (2.7.1) gives

p(n + 1) = αγσp(n) + βγσ2(1 − α)p(n − 1),

or

p(n + 2) = αγσp(n + 1) + βγσ2(1 − α)p(n). (2.7.7)

The characteristic equation (2.7.7) is given by

λ2 − αγσλ − βγσ2(1 − α) = 0

with characteristic roots

λ1 =
αγσ

2

[
1 +

√
1 +

4β

γα2 (1 − α)

]
,

λ2 =
αγσ

2

[
1 −
√

1 +
4β

γα2 (1 − α)

]
.

Observe that λ1 and λ2 are real roots, since 1 − α > 0. Furthermore,
λ1 > 0 and λ2 < 0. To ensure propagation (i.e., p(n) increases indefinitely
as n → ∞) we need to have λ1 > 1. We are not going to do the same with
λ2, since it is negative and leads to undesired fluctuation (oscillation) in
the size of the plant population. Hence

αγσ

2

[
1 +

√
1 +

4β

γα2 (1 − α)

]
> 1,

or

αγσ

2

√
1 +

4β(1 − α)
γα2 > 1 − αγσ

2
.

Squaring both sides and simplifying yields

γ >
1

ασ + βσ2(1 − α)
. (2.7.8)

If β = 0, that is, if no two-year-old seeds germinate in May, then condition
(2.7.8) becomes

γ >
1

ασ
. (2.7.9)

Condition (2.7.9) says that plant propagation occurs if the product of the
fraction of seeds produced per plant in August, the fraction of one-year-old
seeds that germinate in May, and the fraction of seeds that survive a given
winter exceeds 1.
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2.7.2 Gambler’s Ruin
A gambler plays a sequence of games against an adversary in which the
probability that the gambler wins $1.00 in any given game is a known
value q, and the probability of his losing $1.00 is 1 − q, where 0 ≤ q ≤ 1.
He quits gambling if he either loses all his money or reaches his goal of
acquiring N dollars. If the gambler runs out of money first, we say that the
gambler has been ruined. Let p(n) denote the probability that the gambler
will be ruined if he possesses n dollars. He may be ruined in two ways. First,
winning the next game; the probability of this event is q; then his fortune
will be n + 1, and the probability of being ruined will become p(n + 1).
Second, losing the next game; the probability of this event is 1 − q, and
the probability of being ruined is p(n − 1). Hence applying the theorem of
total probabilities, we have

p(n) = qp(n + 1) + (1 − q)p(n − 1).

Replacing n by n + 1, we get

p(n + 2) − 1
q
p(n + 1) +

(1 − q)
q

p(n) = 0, n = 0, 1, . . . , N, (2.7.10)

with p(0) = 1 and p(N) = 0. The characteristic equation is given by

λ2 − 1
q
λ +

1 − q

q
= 0,

and the characteristic roots are given by

λ1 =
1
2q

+
1 − 2q

2q
=

1 − q

q
,

λ2 =
1
2q

− 1 − 2q

2q
= 1.

Hence the general solution may be written as

p(n) = c1 + c2

(
1 − q

q

)n

, if q �= 1
2
.

Now using the initial conditions p(0) = 1, P (N) = 0 we obtain

c1 + c2 = 1, c1 + c2

(
1 − q

q

)N

= 0,

which gives

c1 =
−
(

1 − q

q

)N

1 −
(

1 − q

q

)N
, c2 =

1

1 −
(

1 − q

q

)N
.
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Thus

p(n) =

(
1 − q

q

)n

−
(

1 − q

q

)N

1 −
(

1 − q

q

)N
. (2.7.11)

The special case q = 1
2 must be treated separately, since in this case we

have repeated roots λ1 = λ2 = 1. This is certainly the case when we have
a fair game. The general solution in this case may be given by

p(n) = a1 + a2n,

which with the initial conditions yields

p(n) = 1 − n

N
=

N − n

N
. (2.7.12)

For example, suppose you start with $4, the probability that you win a
dollar is 0.3, and you will quit if you run out of money or have a total of
$10. Then n = 4, q = 0.3, and N = 10, and the probability of being ruined
is given by

p(4) =

(
7
3

)4

−
(

7
3

)10

1 −
(

7
3

)10 = 0.994.

On the other hand, if q = 0.5, N = $100.00, and n = 20, then from formula
(2.7.12) we have

p(20) = 1 − 20
100

= 0.8.

Observe that if q ≤ 0.5 and N → ∞, p(n) tends to 1 in both formulas
(2.7.11) and (2.7.12), and the gambler’s ruin is certain.

The probability that the gambler wins is given by

p̃(n) = 1 − p(n) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 −
(

1 − q

q

)n

1 −
(

1 − q

q

)N
, if q �= 0.5,

n

N
, if q = 0.5.

(2.7.13)

2.7.3 National Income
In a capitalist country the national income Y (n) in a given period n may
be written as

Y (n) = C(n) + I(n) + G(n), (2.7.14)
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where

C(n) = consumer expenditure for purchase of consumer goods,
I(n) = induced private investment for buying capital equipment, and
G(n) = government expenditure,

where n is usually measured in years.
We now make some assumptions that are widely accepted by economists

(see, for example, Samuelson [129]).

(a) Consumer expenditure C(n) is proportional to the national income
Y (n − 1) in the preceding year n − 1, that is,

C(n) = αY (n − 1), (2.7.15)

where α > 0 is commonly called the marginal propensity to consume.

(b) Induced private investment I(n) is proportional to the increase in
consumption C(n) − C(n − 1), that is,

I(n) = β[C(n) − C(n − 1)], (2.7.16)

where β > 0 is called the relation.

(c) Finally, the government expenditure G(n) is constant over the years,
and we may choose our units such that

G(n) = 1. (2.7.17)

Employing formulas (2.7.15), (2.7.16), and (2.7.17) in formula (2.7.14)
produces the second-order difference equation

Y (n + 2) − α(1 + β)Y (n + 1) + αβY (n) = 1, n ∈ Z
+. (2.7.18)

Observe that this is the same equation we have already studied, in
detail, in Example 2.38. As we have seen there, the equilibrium state
of the national income Y * = 1/(1−α) is asymptotically stable (or just
stable in the theory of economics) if and only if the following conditions
hold:

α < 1, 1 + α + 2αβ > 0, αβ < 1. (2.7.19)

Furthermore, the national income Y (n) fluctuates (oscillates) around
the equilibrium state Y * if and only if

α <
4β

(1 + β)2
. (2.7.20)

Now consider a concrete example where α = 1
2 , β = 1. Then Y * = 2, i.e.,

Y * = twice the government expenditure. Then clearly, conditions (2.7.19)
and (2.7.12) are satisfied. Hence the national income Y (n) always converges
in an oscillatory fashion to Y * = 2, regardless of what the initial national
income Y (0) and Y (1) are. (See Figure 2.7.)
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1 2 3 4 5 6 7 8 9 10
n

3
2
1

Y(n)

FIGURE 2.7. Solution of Y (n + 2) − Y (n + 1) + Y (n) = 1, Y (0) = 1, Y (1) = 2.

The actual solution may be given by

Y (n) = A

(
1√
2

)n

cos
(nπ

4
− ω
)

+ 2.

Figure 2.7 depicts the solution Y (n) if Y (0) = 1 and Y (1) = 2. Here we
find that A = −√

2 and ω = π/4 and, consequently, the solution is

Y (n) = −
(

1√
2

)n−1

cos
[
(n + 1)

4
π

]
+ 2.

Finally, Figure 2.8 depicts the parameter diagram (β − α), which shows
regions of stability and regions of instability.

2.7.4 The Transmission of Information
Suppose that a signaling system has two signals s1 and s2 such as dots and
dashes in telegraphy. Messages are transmitted by first encoding them into
a string, or sequence, of these two signals. Suppose that s1 requires exactly
n1 units of time, and s2 exactly n2 units of time, to be transmitted. Let
M(n) be the number of possible message sequences of duration n. Now, a
signal of duration time n either ends with an s1 signal or with an s2 signal.

β

α

1

Real roots
unstable

Real roots
stable

Imaginary
roots
stable

Imaginary roots
unstable

1

FIGURE 2.8. Parametric diagram (β − α).
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...

... ; M(n–n1) possible message

; M(n–n2) possible message

FIGURE 2.9. Two signals, one ends with s1 and the other with s2.

If the message ends with s1, the last signal must start at n − n1 (since
s1 takes n1 units of time). Hence there are M(n−n1) possible messages to
which the last s1 may be appended. Hence there are M(n − n1) messages
of duration n that end with s1. By a similar argument, one may conclude
that there are M(n − n2) messages of duration n that end with s2. (See
Figure 2.9.) Consequently, the total number of messages x(n) of duration
n may be given by

M(n) = M(n − n1) + M(n − n2).

If n1 ≥ n2, then the above equation may be written in the familiar form
of an n1th-order equation

M(n + n1) − M(n + n1 − n2) − M(n) = 0. (2.7.21)

On the other hand, if n1 ≤ n2, then we obtain the n2th-order equation

M(n + n2) − M(n + n2 − n1) − M(n) = 0. (2.7.22)

An interesting special case is that in which n1 = 1 and n2 = 2. In this case
we have

M(n + 2) − M(n + 1) − M(n) = 0,

or

M(n + 2) = M(n + 1) + M(n),

which is nothing but our Fibonacci sequence {0, 1, 1, 2, 3, 5, 8, . . .}, which we
encountered in Example 2.27. The general solution (see formula (2.3.14))
is given by

M(n) = a1

(
1 +

√
5

2

)n

+ a2

(
1 − √

5
2

)n

, n = 0, 1, 2, . . . . (2.7.23)

To find a1 and a2 we need to specify M(0) and M(1). Here a sensible
assumption is to let M(0) = 0 and M(1) = 1. Using these initial data in
(2.7.23) yields

a1 =
1√
5
, a2 = − 1√

5
,

and the solution of our problem now becomes

M(n) =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1 − √

5
2

)n

. (2.7.24)
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In information theory, the capacity C of the channel is defined as

C = lim
n→∞

log2 M(n)
n

, (2.7.25)

where log2 denotes the logarithm base 2.
From (2.7.24) we have

C = lim
n→∞

log2
1√
5

n
+ lim

n→∞
1
n

log2

[(
1 +

√
5

2

)
−
(

1 − √
5

2

)n]
.

(2.7.26)

Since
(

1−√
5

2

)
≈ 0.6 < 1, it follows that

(
1−√

5
2

)n

→ 0 as n → ∞.
Observe also that the first term on the right-hand side of (2.7.26) goes

to zero as n → ∞.
Thus

C = lim
n→∞

1
n

log2

(
1 +

√
5

2

)n

,

C = log2

(
1 +

√
5

2

)
≈ 0.7. (2.7.27)

Exercises 2.7

1. The model for annual plants was given by (2.7.7) in terms of the plant
population p(n).

(a) Write the model in terms of s1(n).

(b) Let α = β = 0.01 and σ = 1. How big should γ be to ensure that
the plant population increases in size?

2. An alternative formulation for the annual plant model is that in which
we define the beginning of a generation as the time when seeds are
produced. Figure 2.10 shows the new method.

Write the difference equation in p(n) that represents this model. Then
find conditions on γ under which plant propagation occurs.

3. A planted seed produces a flower with one seed at the end of the first
year and a flower with two seeds at the end of two years and each year
thereafter. Suppose that each seed is planted as soon as it is produced.

(a) Write the difference equation that describes the number of flowers
F (n) at the end of the nth year.

(b) Compute the number of flowers at the end of 3, 4, and 5 years.

4. Suppose that the probability of winning any particular bet is 0.49.
If you start with $50 and will quit when you have $100, what is the
probability of ruin (i.e., losing all your money):
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(i) if you make $1 bets?

(ii) if you make $10 bets?

(iii) if you make $50 bets?

5. John has m chips and Robert has (N − m) chips. Suppose that John
has a probability p of winning each game, where one chip is bet on in
each play. If G(m) is the expected value of the number of games that
will be played before either John or Robert is ruined:

(a) Show that G(m) satisfies the second-order equation

G(m + 2) + pG(m + 1) + (1 − p)G(m) = 0. (2.7.28)

(b) What are the values of G(0) and G(N)?

(c) Solve the difference equation (2.7.28) with the boundary condi-
tions in part (b).

6. Suppose that in a game we have the following situation: On each play,
the probability that you will win $2 is 0.1, the probability that you
will win $1 is 0.3, and the probability that you will lose $1 is 0.6.
Suppose you quit when either you are broke or when you have at least
N dollars. Write a third-order difference equation that describes the
probability p(n) of eventually going broke if you have n dollars. Then
find the solution of the equation.

7. Suppose that Becky plays a roulette wheel that has 37 divisions: 18
are red, 18 are black, and one is green. Becky can bet on either the
red or black, and she wins a sum equal to her bet if the outcome is a
division of that color; otherwise, she loses the bet. If the bank has one

σ σ

σ

α

α

γ

s0(n)

p(n)

s0(n+1)

p(n+1)

β

FIGURE 2.10. Annual plant model.
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million dollars and she has $5000, what is the probability that Becky
can break the bank, assuming that she bets $100 on either red or black
for each spin of the wheel?

8. In the national income model (2.7.14), assume that the government
expenditure G(n) is proportional to the national income Y (n − 2) two
periods past, i.e., G(n) = γY (n − 2), 0 < γ < 1. Derive the difference
equation for the national income Y (n). Find the conditions for stability
and oscillations of solutions.

9. Determine the behavior (stability, oscillations) of solutions of (2.7.18)
for the cases:

(a) α =
4β

(1 + β)2
.

(b) α >
4β

(1 + β)2
.

10. Modify the national income model such that instead of the government
having fixed expenditures, it increases its expenditures by 5% each time
period, that is, G(n) = (1.05)n.

(a) Write down the second-order difference equation that describes
this model.

(b) Find the equilibrium value.

(c) If α = 0.5, β = 1, find the general solution of the equation.

11. Suppose that in the national income we make the following assump-
tions:

(i) Y (n) = C(n) + I(n), i.e., there is no government expenditure.

(ii) C(n) = a1Y (n − 1) + a2Y (n − 2) + K, i.e., consumption in any
period is a linear combination of the incomes of the two preceding
periods, where a1, a2, and K are constants.

(iii) I(n + 1) = I(n) + h, i.e., investment increases by a fixed amount
h > 0 each period.

(a) Write down a third-order difference equation that models the
national income Y (n).

(b) Find the general solution if a1 =
1
2
, a2 =

1
4
.

(c) Show that Y (n) is asymptotic to the equilibrium Y * = α+βn.

12. (Inventory Analysis). Let S(n) be the number of units of consumer
goods produced for sale in period n, and let T (n) be the number of
units of consumer goods produced for inventories in period n. Assume
that there is a constant noninduced net investment V0 in each period.
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Then the total income Y (n) produced in time n is given by Y (n) =
T (n) + S(n) + V0.

(a) Develop a difference equation that models the total income Y (n),
under the assumptions:

(i) S(n) = βY (n − 1),

(ii) T (n) = βY (n − 1) − βY (n − 2).

(b) Obtain conditions under which:

(i) solutions converge to the equilibrium,

(ii) solutions are oscillatory.

(c) Interpret your results in part (b).

13. Let I(n) denote the level of inventories at the close of period n.

(a) Show that I(n) = I(n − 1) + S(n) + T (n) − βY (n) where
S(n), T (n), Y (n) are as in Problem 12.

(b) Assuming that S(n) = 0 (passive inventory adjustment), show
that

I(n) − I(n − 1) = (1 − β)Y (n) − V0

where V0 is as in Problem 12.

(c) Suppose as in part (b) that s(n) = 0. Show that

I(n + 2) − (β + 1)I(n + 1) + βI(n) = 0.

(d) With β �= 1, show that

I(n) =
(

I(0) − c

1 − β

)
βn +

c

1 − β
,

where (E − β)I(n) = c.

14. Consider (2.7.21) with n1 = n2 = 2 (i.e., both signals s1 and s2 take
two units of time for transmission).

(a) Solve the obtained difference equation with the initial conditions
M(2) = M(3) = 2.

(b) Find the channel capacity c.

15. Consider (2.7.21) with n1 = n2 = 1 (i.e., both signals take one unit of
time for transmission).

(a) Solve the obtained difference equation.

(b) Find the channel capacity c.



116 2. Linear Difference Equations of Higher Order

16. (Euler’s method for solving a second-order differential equation.) Re-
call from Section 1.4.1 that one may approximate x′(t) by (x(n +
1) − x(n))/h, where h is the step size of the approximation and
x(n) = x(t0 + nh).

(a) Show that x′′(t) may be approximated by

x(n + 2) − 2x(n + 1) + x(n)
h2 .

(b) Write down the corresponding difference equation of the differen-
tial equation

x′′(t) = f(x(t), x′(t)).

17. Use Euler’s method described in Problem 16 to write the corresponding
difference equation of

x′′(t) − 4x(t) = 0, x(0) = 0, x′(0) = 1.

Solve both differential and difference equations and compare the
results.

18. (The Midpoint Method). The midpoint method stipulates that one
may approximate x′(t) by (x(n + 1) − x(n − 1))/h, where h is the step
size of the approximation and t = t0 + nh.

(a) Use the method to write the corresponding difference equation of
the differential equation x′(t) = g(t, x(t)).

(b) Use the method to write the corresponding difference equation of
x′(t) = 0.7x2 + 0.7, x(0) = 1, t ∈ [0, 1]. Then solve the obtained
difference equation.

(c) Compare your findings in part (b) with the results in Section 1.4.1.
Determine which of the two methods, Euler or midpoint, is more
accurate.



3
Systems of Linear Difference Equations

In the last chapter we concerned ourselves with linear difference equations,
namely, those equations with only one independent and one dependent
variable. Since not every situation that we will encounter will be this simple,
we must be prepared to deal with systems of more than one dependent
variable.

Thus, in this chapter we deal with those equations of two or more depen-
dent variables known as first-order difference equations. These equations
naturally apply to various fields of scientific endeavor, like biology (the
study of competitive species in population dynamics), physics (the study
of the motions of interacting bodies), the study of control systems, neurol-
ogy, and electricity. Furthermore, we will also transform those high-order
linear difference equations that we investigated in Chapter 2 into systems
of first-order equations. This transformation will probably prove to be of
little practical use in the realm of boundary value problems and oscilla-
tions, but will be substantiated as an immensely helpful tool in the study
of stability theory later on, see [3], [79], [87].

3.1 Autonomous (Time-Invariant) Systems

In this section we are interested in finding solutions of the following system
of k linear equations:

x1(n + 1) = a11x1(n) + a12x2(n) + · · · + a1kxk(n),
x2(n + 1) = a21x1(n) + a22x2(n) + · · · + a2kxk(n),

117
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...
...

...
...

xk(n + 1) = ak1x1(n) + ak2x2(n) + · · · + akkxk(n).

This system may be written in the vector form

x(n + 1) = Ax(n), (3.1.1)

where x(n) = (x1(n), x2(n), . . . , xk(n))T ∈ R
k, and A = (aij) is a k × k

real nonsingular matrix. Here T indicates the transpose of a vector. Sys-
tem (3.1.1) is considered autonomous, or time-invariant, since the values
of A are all constants. Nonautonomous, or time-variant, systems will be
considered later in Section 3.3.

If for some n0 ≥ 0, x(n0) = x0 is specified, then system (3.1.1) is called
an initial value problem. Furthermore, by simple iteration (or by direct
substitution into the equation), one may show that the solution is given by

x(n, n0, x0) = An−n0x0, (3.1.2)

where A0 = I, the k × k identity matrix. Notice that x(n0, n0, x0) = x0. If
n0 = 0, then the solution in formula (3.1.2) may be written as x(n, x0), or
simply x(n). We now show that we may assume that n0 = 0 without loss
of generality.

Let y(n − n0) = x(n). Then (3.1.1) becomes

y(n + 1) = Ay(n), (3.1.3)

with y(0) = x(n0) and

y(n) = Any(0). (3.1.4)

A parallel theory exists for systems of linear differential equations. The
solution of the initial value problem

dx

dt
= Ax(t), x(t0) = x0,

where A is a k × k matrix, x ∈ R
k, is given by

x(t) = eA(t−t0)x0.

3.1.1 The Discrete Analogue of the Putzer Algorithm
In differential equations the Putzer algorithm is used to compute eAt. Here,
we introduce an analogous algorithm to compute An. First, let us review
the rudiments of matrix theory that are vital in the development of this
algorithm. In what follows C denotes the set of complex numbers.

Recall that for a real k × k matrix A = (aij), an eigenvalue of A is a
real or complex number λ such that Aξ = λξ for some nonzero ξ ∈ C

k.
Equivalently, this relation may be written as

(A − λI)ξ = 0. (3.1.5)



3.1 Autonomous (Time-Invariant) Systems 119

Equation (3.1.5) has a nonzero solution if and only if

det(A − λI) = 0,

or

λk + a1λ
k−1 + a2λ

k−2 + · · · + ak−1λ + ak = 0. (3.1.6)

Equation (3.1.6) is called the characteristic equation of A, whose roots λ
are called the eigenvalues of A. If λ1, λ2, . . . , λk are the eigenvalues of A
(some of them may be repeated), then one may write (3.1.6) as

p(λ) =
k∏

j=1

(λ − λj). (3.1.7)

We are now ready to state the Cayley–Hamilton theorem, one of the
fundamental results of matrix theory.

Theorem 3.1. Every matrix satisfies its characteristic equation. That is,

p(A) =
k∏

j=1

(A − λjI) = 0, (3.1.8)

or

Ak + a1A
k−1 + a2A

k−2 + · · · + akI = 0. (3.1.9)

3.1.2 The Development of the Algorithm for An

Let A be a k × k real matrix. We look for a representation of An in the
form

An =
s∑

j=1

uj(n)M(j − 1), (3.1.10)

where the uj(n)’s are scalar functions to be determined later, and

M(j) = (A − λjI)M(j − 1), M(0) = I, (3.1.11)

or

M(j + 1) = (A − λj+1I)M(j), M(0) = I.

By iteration, one may show that

M(n) = (A − λnI)(A − λn−1I) · · · (A − λ1I),

or, in compact form,

M(n) =
n∏

j=1

(A − λjI). (3.1.12)
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Notice that by the Cayley–Hamilton theorem we have

M(k) =
k∏

j=1

(A − λjI) = 0.

Consequently, M(n) = 0 for all n ≥ k. In light of this observation, we may
rewrite formula (3.1.10) as

An =
k∑

j=1

uj(n)M(j − 1). (3.1.13)

If we let n = 0 in formula (3.1.13) we obtain

A0 = I = u1(0)I + u2(0)M(1) + · · · + uk(0)M(k − 1). (3.1.14)

Equation (3.1.14) is satisfied if

u1(0) = 1 and u2(0) = u3(0) = · · · = uk(0) = 0. (3.1.15)

From formula (3.1.13) we have

k∑
j=1

uj(n + 1)M(j − 1) = AAn = A

⎡⎣ k∑
j=1

uj(n)M(j − 1)

⎤⎦
=

k∑
j=1

uj(n)AM(j − 1).

Substituting for AM(j − 1) from (3.1.11) yields

k∑
j=1

uj(n + 1)M(j − 1) =
k∑

j=1

uj(n)[M(j) + λjM(j − 1)]. (3.1.16)

Comparing the coefficients of M(j), 1 ≤ j ≤ k, in (3.1.16), and applying
condition (3.1.15), we obtain

u1(n + 1) = λ1u1(n), u1(0) = 1,

uj(n + 1) = λjuj(n) + uj−1(n), uj(0) = 0, j = 2, 3, . . . , k. (3.1.17)

The solutions of (3.1.17) are given by

u1(n) = λn
1 , uj(n) =

n−1∑
i=0

λn−1−i
j uj−1(i), j = 2, 3, . . . , k. (3.1.18)

Equations (3.1.12) and (3.1.18) together constitute an algorithm for com-
puting An, which henceforth will be called the Putzer algorithm. For more
details and other algorithms, the interested reader may consult the paper
by Elaydi and Harris [46].
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Example 3.2. Find An if

A =

⎛⎜⎝ 0 1 1
−2 3 1
−3 1 4

⎞⎟⎠ .

Solution The eigenvalues of A are obtained by solving the characteristic
equation

det(A − λI) = det

⎛⎜⎝−λ 1 1
−2 3 − λ 1
−3 1 4 − λ

⎞⎟⎠ = 0.

Hence

p(λ) = λ3 − 7λ2 + 16λ − 12

= (λ − 2)2(λ − 3) = 0.

The eigenvalues of A are λ1 = λ2 = 2, λ3 = 3,

M(0) = I, M(1) = A − 2I =

⎛⎜⎝−2 1 1
−2 1 1
−3 1 2

⎞⎟⎠ ,

M(2) = (A − 2I), M(1) = (A − 2I)2 =

⎛⎜⎝−1 0 1
−1 0 1
−2 0 2

⎞⎟⎠ .

Now

u1(n) = 4n,

u2(n) =
n−1∑
i=0

2(n−1−i) · 2i = n2n−1,

u3(n) =
n−1∑
i=0

3(n−1−i)(i2i−1)

=
3n−1

2

n−1∑
i=0

i

(
2
3

)i

=
3n−1

2

[( 2
3 − 1

)n ( 2
3

)n − ( 2
3

)n+1 + 2
3( 2

3 − 1
)2

]
(from Table 1.1)

= −2n + 3n − n2n−1.
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Thus

An =
n∑

j=1

uj(n)M(j − 1)

=

⎛⎜⎝ 2n−1 − 3n − n2n−1 n2n−1 −2n + 3n

2n − 3n − n2n−1 (n + 2)2n−1 −2n + 3n

2n+1 − 2 · 3n − n2n−1 n2n−1 −2n + 2 · 3n

⎞⎟⎠ .

Example 3.3. Find the solution of the difference system x(n + 1) =
Ax(n), where

A =

⎛⎜⎝4 1 2
0 2 −4
0 1 6

⎞⎟⎠ .

Solution The eigenvalues of A may be obtained by solving the characteristic
equation det(A − λI) = 0. Now,

det

⎛⎜⎝4 − λ 1 2
0 2 − λ −4
0 1 6 − λ

⎞⎟⎠ = (4 − λ)(λ − 4)2 = 0.

Hence, the eigenvalues of A are λ1 = λ2 = λ3 = 4. So

M(0) = I, M(1) = A − 4I =

⎛⎜⎝0 1 2
0 −2 −4
0 1 2

⎞⎟⎠ ,

M(2) = (A − 4I)M(1) =

⎛⎜⎝0 0 0
0 0 0
0 0 0

⎞⎟⎠ .

Now,

u1(n) = 4n,

u2(n) =
n−1∑
i=0

(4n−1−i)(4i) = n(4n−1),

u3(n) =
n−1∑
i=0

4n−1−i(i4i−1)

= 4n−2
n−1∑
i=0

i

=
n(n − 1)

2
4n−2.
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Using (3.1.13), we have

An = 4n

⎛⎜⎝1 0 0
0 1 0
0 0 1

⎞⎟⎠+ n4n−1

⎛⎜⎝0 1 2
0 −2 −4
0 1 2

⎞⎟⎠
+

n(n − 1)
2

4n−2

⎛⎜⎝0 0 0
0 0 0
0 0 0

⎞⎟⎠
=

⎛⎜⎝4n n4n−1 2n4n−1

0 4n − 2n4n−1 −n4n

0 n4n−1 4n + 2n4n−1

⎞⎟⎠ .

The solution of the difference equation is given by

x(n) = Anx(0) =

⎛⎜⎝4nx1(0) + n4n−1x2(0) + 2n4n−1x3(0)

(4n − 2n4n−1)x2(0) − n4nx3(0)

n4n−1x2(0) + (4n + 2n4n−1)x3(0)

⎞⎟⎠ ,

where x(0) = (x1(0), x2(0), x3(0))T .

Exercises 3.1

In Problems 1 through 4, use the discrete Putzer algorithm to evaluate An.

1. A =

[
1 1

−2 4

]
.

2. A =

[
−1 2
3 0

]
.

3. A =

⎡⎢⎣1 2 −1
0 1 0
4 −4 5

⎤⎥⎦ .

4. A =

⎡⎢⎣2 1 0
0 2 1
0 0 2

⎤⎥⎦ .

5. Solve the system
x1(n + 1) = −x1(n) + x2(n), x1(0) = 1,
x2(n + 1) = 2x2(n), x2(0) = 2.

6. Solve the system
x1(n + 1) = x2(n),
x2(n + 1) = x3(n),
x3(n + 1) = 2x1(n) − x2(n) + x3(n).
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7. Solve the system

x(n + 1) =

⎡⎢⎣1 −2 −2
0 0 −1
0 2 3

⎤⎥⎦x(n), x(0) =

⎛⎜⎝1
1
0

⎞⎟⎠ .

8. Solve the system

x(n + 1) =

⎛⎜⎜⎜⎝
1 3 0 0
0 2 1 −1
0 0 2 0
0 0 0 3

⎞⎟⎟⎟⎠x(n).

9. Verify that the matrix A =

(
2 −1
1 3

)
satisfies its characteristic

equation (the Cayley Hamilton Theorem).

10. Let ρ(A) = max{|λ| : λ is an eigenvalue of A}. Suppose that ρ(A) =
ρ0 < β.

(a) Show that |uj(n)| ≤ βn

(β − ρ0)
, j = 1, 2, . . . , k.

(b) Show that if ρ0 < 1, then uj(n) → 0 as n → ∞. Conclude that
An → 0 as n → ∞.

(c) If α < min{|λ| : λ is an eigenvalue of A}, establish a lower bound
for |uj(n)|.

11. If a k × k matrix A has distinct eigenvalues λ1, λ2, . . . , λk, then one
may compute An, n ≥ k, using the following method. Let p(λ) be
the characteristic polynomial of A. Divide λn by p(λ) to obtain λn =
p(λ)q(λ) + r)(λ), where the remainder r(λ) is a polynomial of degree
at most (k − 1). Thus one may write An = p(A)q(A) + r(A).

(a) Show that An = r(A) = a0I + a1A + a2A
2 + · · · + ak−1A

k−1.

(b) Show that λn
1 = r(λ1), λn

2 = r(λ2), . . . , λn
k = r(λk).

(c) Use part (b) to find a0, a1, . . . , ak−1.

12. Extend the method of Problem 11 to the case of repeated roots.

13. Apply the method of Problem 12 to find An for:

(i) A =

(
1 1

−2 4

)
.

(ii) A =

⎛⎜⎝1 2 −1
1 0 1
4 −4 5

⎞⎟⎠.
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(0,1)
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(1,0)

FIGURE 3.1.

14. Apply the method of Problem 12 to find An for

A =

⎛⎜⎝4 1 2
0 2 −4
0 1 6

⎞⎟⎠ .

15.1 Consider the right triangle in Figure 3.1 where p(0) = (0, 0), p(1) =( 1
2 , 1

2

)
, and p(2) =

( 1
2 , 0
)
. For p(n) = (x(n), y(n)) with n ≥ 3, we have

x(n + 3) =
1
2
(x(n) + x(n + 1)),

y(n + 3) =
1
2
(y(n) + y(n + 1)).

(a) Write each equation as a system z(n + 1) = Az(n).

(b) Find limn→∞ p(n).

3.2 The Basic Theory

Now contemplate the system

x(n + 1) = A(n)x(n), (3.2.1)

where A(n) = (aij(n)) is a k × k nonsingular matrix function. This is
a homogeneous linear difference system that is nonautonomous, or time-
variant.

The corresponding nonhomogeneous system is given by

y(n + 1) = A(n)y(n) + g(n), (3.2.2)

where g(n) ∈ Rk.
We now establish the existence and uniqueness of solutions of (3.2.1).

1Proposed by C.V. Eynden and solved by Trinity University Problem Solving
Group (1994).
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Theorem 3.4. For each x0 ∈ R
k and n0 ∈ Z

+ there exists a unique
solution x(n, n0, x0) of (3.2.1) with x(n0, n0, x0) = x0.

Proof. From (3.2.1),

x(n0 + 1, n0, x0) = A(n0)x(n0) = A(n0)x0,

x(n0 + 2, n0, x0) = A(n0 + 1)x(n0 + 1) = A(n0 + 1)A(n0)x0.

Inductively, one may conclude that

x(n, n0, x0) =

[
n−1∏
i=n0

A(i)

]
x0, (3.2.3)

where
n−1∏
i=n0

A(i) =

{
A(n − 1)A(n − 2) · · ·A(n0) if n > n0,

I if n = n0.

Formula (3.2.3) gives the unique solution with the desired properties. �

We will now develop the notion of a fundamental matrix, a central
building block in the theory of linear systems.

Definition 3.5. The solutions x1(n), x2(n), . . . , xk(n) of (3.2.1) are said
to be linearly independent for n ≥ n0 ≥ 0 if whenever c1x1(n) + c2x2(n) +
· · · + ckxk(n) = 0 for all n ≥ n0, then ci = 0, 1 ≤ i ≤ k.

Let Φ(n) be a k × k matrix whose columns are solutions of (3.2.1). We
write

Φ(n) = [x1(n), x2(n), . . . , xk(n)].

Now,

Φ(n + 1) = [A(n)x1(n), A(n)x2(n), . . . , A(n)xk(n)]
= A(n)[x1(n), x2(n), . . . , xk(n)]
= A(n)Φ(n).

Hence, Φ(n) satisfies the matrix difference equation

Φ(n + 1) = A(n)Φ(n). (3.2.4)

Furthermore, the solutions x1(n), x2(n), . . . , xk(n) are linearly indepen-
dent for n ≥ n0 if and only if the matrix Φ(n) is nonsingular (det Φ(n) �= 0)
for all n ≥ n0. (Why?) This actually leads to the next definition.

Definition 3.6. If Φ(n) is a matrix that is nonsingular for all n ≥ n0
and satisfies (3.2.4), then it is said to be a fundamental matrix for system
equation (3.2.1).

Note that if Φ(n) is a fundamental matrix and C is any nonsingular
matrix, then Φ(n)C is also a fundamental matrix (Exercises 3.2, Problem
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6). Thus there are infinitely many fundamental matrices for a given system.
However, there is one fundamental matrix that we already know, namely,

Φ(n) =
n−1∏
i=n0

A(i), with Φ(n0) = I

(Exercises 3.2, Problem 5). In the autonomous case when A is a constant
matrix, Φ(n) = An−n0 , and if n0 = 0, then Φ(n) = An. Consequently, it
would be much more suitable to use the Putzer algorithm to compute the
fundamental matrix for an autonomous system.

Theorem 3.7. There is a unique solution Ψ(n) of the matrix (3.2.4) with
Ψ(n0) = I.

Proof. One may think of the matrix difference equation (3.2.4) as a
system of k2 first-order difference equations. Thus, to complete the point,
we may apply the “existence and uniqueness” Theorem 3.4 to obtain a k2-
vector solution ν such that ν(n0) = (1, 0, . . . , 1, 0, . . .)T , where 1’s appear at
the first, (k +2)th, (2k +3)th, . . . slots and 0’s everywhere else. The vector
ν is then converted to the k × k matrix Ψ(n) by grouping the components
into sets of k elements in which each set will be a column. Clearly, Ψ(n0) =
I. �

We may add here that starting with any fundamental matrix Φ(n), the
fundamental matrix Φ(n)Φ−1(n0) is such a matrix. This special fundamen-
tal matrix is denoted by Φ(n, n0) and is referred to as the state transition
matrix.

One may, in general, write Φ(n, m) = Φ(n)Φ−1(m) for any two posi-
tive integers n, m with n ≥ m. The fundamental matrix Φ(n, m) has some
agreeable properties that we ought to list here. Observe first that Φ(n, m)
is a solution of the matrix difference equation Φ(n + 1, m) = A(n)Φ(n, m)
(Exercises 3.2, Problem 2). The reader is asked to prove the following
statements:

(i) Φ−1(n, m) = Φ(m, n) (Exercises 3.2, Problem 3).

(ii) Φ(n, m) = Φ(n, r)Φ(r,m) (Exercises 3.2, Problem 3).

(iii) Φ(n, m) =
∏n−1

i=m A(i) (Exercises 3.2, Problem 3).

Corollary 3.8. The unique solution of x(n, n0, x0) of (3.2.1) with
x(n, n0, x0) = x0 is given by

x(n, n0, x0) = Φ(n, n0)x0. (3.2.5)

Checking the linear independence of a fundamental matrix Φ(n) for n ≥
n0 is a formidable task. We will instead show that it suffices to establish
linear independence at n0.
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Lemma 3.9 Abel’s Formula. For any n ≥ n0 ≥ 0,

det Φ(n) =

(
n−1∏
i=n0

[det A(i)]

)
det Φ(n0). (3.2.6)

Proof. Taking the determinant of both sides of (3.2.4) we obtain the
scalar difference equation

det Φ(n + 1) = det A(n) det Φ(n)

whose solution is given by (3.2.6). �

Corollary 3.10. If in (3.2.1) A is a constant matrix, then

det Φ(n) = [det A]n−n0 det Φ(n0). (3.2.7)

Proof. The proof follows from formula (3.2.6). �

Corollary 3.11. The fundamental matrix Φ(n) is nonsingular for all n ≥
n0 if and only if Φ(n0) is nonsingular.

Proof. This follows from formula (3.2.6), having noted that det A(i) �= 0
for i ≥ n0. �

Corollary 3.12. The solutions x1(n), x2(n), . . . , xk(n) of (3.2.1) are
linearly independent for n ≥ n0 if and only if Φ(n0) is nonsingular.

Proof. This follows immediately from Corollary 3.11. �

The following theorem establishes the existence of k linearly independent
solutions of (3.2.1).

Theorem 3.13. There are k linearly independent solutions of system
(3.2.1) for n ≥ n0.

Proof. For each i = 1, 2, . . . , k, let ei = (0, 0, . . . , 1, . . . , 0)T be the
standard unit vector in Rk where all the components are zero except the
ith component, which is equal to 1. By Theorem 3.4, for each ei, 1 ≤ i ≤ k,
there exists a solution x(n, n0, ei) of (3.2.1) with x(n0, n0, ei) = ei. To prove
that the set {x(n, n0, ei)|1 ≤ i ≤ k} is linearly independent, according to
Corollary 3.11 it suffices to show that Φ(n0) is nonsingular. But this fact is
obvious, since Φ(n0) = I. The proof of the theorem is now complete. �

Linearity Principle. An important feature of the solutions of system
(3.2.1) is that they are closed under addition and scalar multiplication.
That is to say, if x1(n) and x2(n) are solutions of (3.2.1) and c ∈ R, then:

(1) x1(n) + x2(n) is a solution of (3.2.1),
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(2) cx1(n) is a solution of (3.2.1).

This is called the linearity principle.

Proof. Statement (1) can be proved as follows. Let x(n) = x1(n)+x2(n).
Then

x(n + 1) = x1(n + 1) + x2(n + 1)
= Ax1(n) + Ax2(n)
= A[x1(n) + x2(n)]
= Ax(n).

The proof of (2) is similar. �

An immediate consequence of the linearity principle is that if x1(n), x2(n),
. . . , xk(n) are also solutions of system (3.2.1), then so is any linear
combination of the form

x(n) = c1x1(n) + c2x2(n) + · · · + ckxk(n).

This leads to the following definition.

Definition 3.14. Assuming that {xi(n)|1 ≤ i ≤ k} is any linearly inde-
pendent set of solutions of (3.2.1), the general solution of (3.2.1) is defined
to be

x(n) =
k∑

i=1

cixi(n), (3.2.8)

where ci ∈ R and at least one ci �= 0.

Formula (3.2.8) may be written as

x(n) = Φ(n)c, (3.2.9)

where Φ(n) = (x1(n), x2(n), . . . , xk(n)) is a fundamental matrix, and c =
(c1, c2, . . . , ck)T ∈ R

k.

Remark: The set S of all solutions of system (3.2.1) forms a linear
(vector) space under addition and scalar multiplication. Its basis is any
fundamental set of solutions and hence its dimension is k. The basis
{x1(n), x2(n), . . . , xk(n)} spans all solutions of equation (3.2.1). Hence any
solution x(n) of equation (3.2.1) can be written in the form (3.2.8) or
equivalently (3.2.9). This is why we call x(n) in (3.2.8) a general solution.

Let us now focus our attention on the nonhomogeneous system (3.2.2).
We define a particular solution yp(n) of (3.2.2) as any k-vector function
that satisfies the nonhomogeneous difference system. The following result
gives us a mechanism to find the general solution of system (3.2.2).
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Theorem 3.15. Any solution y(n) of (3.2.2) can be written as

y(n) = Φ(n)c + yp(n) (3.2.10)

for an appropriate choice of the constant vector c, and a particular solution
yp(n).

Proof. Let y(n) be a solution of (3.2.2) and let yp(n) be any particular
solution of (3.2.2). If x(n) = y(n) − yp(n), then

x(n + 1) = y(n + 1) − yp(n + 1)
= A(n)y(n) − A(n)yp(n)
= A(n)[y(n) − yp(n)]
= A(n)x(n).

Thus x(n) is a solution of the homogeneous equation (3.2.1). Hence x(n) =
Φ(n)c for some vector constant c. Thus

y(n) − yp(n) = Φ(n)c

which proves (3.2.10). �

We now give a formula to evaluate yp(n).

Lemma 3.16. A particular solution of (3.2.2) may be given by

yp(n) =
n−1∑
r=n0

Φ(n, r + 1)g(r)

with yp(n0) = 0.

Proof.

yp(n + 1) =
n∑

r=n0

Φ(n + 1, r + 1)g(r)

=
n−1∑
r=n0

A(n)Φ(n, r + 1)g(r) + Φ(n + 1, n + 1)g(n)

= A(n)yp(n) + g(n).

Hence, yp(n) is a solution of (3.2.2). Furthermore, yp(n0) = 0. �

Theorem 3.17 (Variation of Constants Formula). The unique
solution of the initial value problem

y(n + 1) = A(n)y(n) + g(n), y(n0) = y0, (3.2.11)

is given by

y(n, n0, y0) = Φ(n, n0)y0 +
n−1∑
r=n0

Φ(n, r + 1)g(r), (3.2.12)
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or, more explicitly, by

y(n, n0, y0) =

(
n−1∏
i=n0

A(i)

)
y0 +

n−1∑
r=n0

(
n−1∏

i=r+1

A(i)

)
g(r). (3.2.13)

Proof. This theorem follows immediately from Theorem 3.15 and
Lemma 3.16. �

Corollary 3.18. For autonomous systems when A is a constant matrix,
the solution of (3.2.11) is given by

y(n, n0, y0) = An−n0y0 +
n−1∑
r=n0

An−r−1g(r). (3.2.14)

Example 3.19. Solve the system y(n + 1) = Ay(n) + g(n), where

A =

(
2 1
0 2

)
, g(n) =

(
n

1

)
, y(0) =

(
1
0

)
.

Solution Using the Putzer algorithm, one may show that

An =

(
2n n2n−1

0 2n

)
.

Hence,

y(n) =

(
2n n2n−1

0 2n

)(
1
0

)

+
n−1∑
r=0

(
2n−r−1 (n − r − 1)2n−r−2

0 2n−r−1

)(
r

1

)

=

(
2n

0

)
+

n−1∑
r=0

(
r2n−r−1 + (n − r − 1)2n−r−2

2n−r−1

)

=

(
2n

0

)
+ 2n

⎛⎜⎜⎜⎜⎝
1
4

n−1∑
r=1

r

(
1
2

)r

+
n − 1

4

n−1∑
r=0

(
1
2

)r

1
2

n−1∑
r=0

(
1
2

)r

⎞⎟⎟⎟⎟⎠
∗

∗
n−1∑
r=1

rar =
a(1 − an) − nan+1(1 − a)

(1 − a)2
.
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=

(
2n

0

)
+ 2n

⎛⎜⎜⎜⎝
1
2

[
1 −
(

1
2

)n]
− n

(
1
2

)n+2

+
n − 1

2

[
1 −
(

1
2

)n]
1 −
(

1
2

)n

⎞⎟⎟⎟⎠

=

(
2n

0

)
+ 2n

⎛⎜⎜⎝−n

4

(
1
2

)n

+
n

2
− n

2

(
1
2

)
1 −
(

1
2

)n

⎞⎟⎟⎠
=

(
2n

0

)
+

⎛⎝n2n−1 − 3
4
n

2n − 1

⎞⎠
=

⎛⎝2n + n2n−1 − 3
4
n

2n − 1

⎞⎠ .

We now revisit scalar equations of order k and demonstrate how to trans-
form them into a k-dimensional system of first-order equations. Consider
again the equation

y(n + k) + p1(n)y(n + k − 1) + · · · + pk(n)y(n) = g(n). (3.2.15)

This relation may be written as a system of first-order equations of
dimension k. We let

z1(n) = y(n),
z2(n) = y(n + 1) = z1(n + 1),
z3(n) = y(n + 2) = z2(n + 1),

...
zk(n) = y(n + k − 1) = zk−1(n + 1).

Let z(n) = (z1(n), z2(n), . . . , zk(n)).
Hence,

z1(n + 1) = z2(n),
z2(n + 1) = z3(n),

...
zk−1(n + 1) = zk(n),

zk(n + 1) = −pk(n)z1(n) − pk−1(n)z2(n), . . . ,
− p1(n)zk(n) + g(n).

In vector notation, we transcribe this system as

z(n + 1) = A(n)z(n) + h(n), (3.2.16)
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where

A(n) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0
...

...
...

...
0 0 0 1

−pk(n) −pk−1(n) −pk−2(n) . . . −p1(n)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.2.17)

and

h(n) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
...

g(n)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

If g(n) = 0, we arrive at the homogeneous system

z(n + 1) = A(n)z(n). (3.2.18)

The matrix A(n) is called the companion matrix of (3.2.15).
Consider now the kth-order homogeneous equation with constant

coefficients

x(n + k) + p1x(n + k − 1) + p2x(n + k − 2) + · · · + pkx(n) = 0, (3.2.19)

which is equivalent to the system where A is the companion matrix defined
in formula (3.2.17) with all pi’s constant,

z(n + 1) = Az(n). (3.2.20)

We first observe that the Casoratian of (3.2.19) is denoted by C(n) =
det Φ(n), where Φ(n) is a fundamental matrix of (3.2.20). (Why?) (Ex-
ercises 3.2, Problem 14.) The characteristic equation of A is given
by

λk + p1λ
k−1 + p2λ

k−2 + · · ·+ pk−1λ+ pk = 0 (Exercises 3.2,Problem 13),

which correlates with (2.3.2). Hence, the eigenvalues of A are the roots of
the characteristic equation of (2.3.1).

Exercises 3.2

1. Let Φ1(n) and Φ2(n) be two fundamental matrices of system (3.2.1).
Prove that Φ1(n)Φ−1

1 (n0) = Φ2(n)Φ−1
2 (n0) for any n0 ≥ 0.
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2. Let Φ(n, m) be a fundamental matrix of (3.2.1). Show that:

(i) Φ(n, m) is a solution of Φ(n + 1, m) = A(n)Φ(n, m).

(ii) Φ(n, m) is a solution of Φ(n, m + 1) = Φ(n, m)A−1(m).

3. Let Φ(n, m) be a fundamental matrix of (3.2.1). Show that:

(a) Φ(n, m) = An−m if A(n) ≡ A is a constant matrix.

(b) Φ(n, m) = Φ(n, r)Φ(r,m).

(c) Φ−1(n, m) = Φ(m, n).

(d) Φ(n, m) =
∏n−1

i=m A(i).

4. Let Φ(n) be a fundamental matrix of (3.2.1). Show that each column
of Φ(n) is a solution of (3.2.1).

5. Show that Φ(n) =
∏n−1

i=n0
A(i) is a fundamental matrix of (3.2.1).

6. Show that if Φ(n) is a fundamental matrix of (3.2.1) and C is any
nonsingular matrix, then Φ(n)C is also a fundamental matrix of
(3.2.1).

7. Show that if Φ1(n),Φ2(n) are two fundamental matrices of (3.2.1),
then there exists a nonsingular matrix C such that Φ2(n) = Φ1(n)C.

8. Solve the system:
y1(n + 1) = y2(n),
y2(n + 1) = y3(n) + 2,
y3(n + 1) = y1(n) + 2y3(n) + n2.

9. Solve the system:
y1(n + 1) = 2y1(n) + 3y2(n) + 1,
y2(n + 1) = y1(n) + 4y2(n),
y1(0) = 0, y2(0) = −1.

10. Solve the system y(n + 1) = Ay(n) + g(n) if

A =

⎛⎜⎝2 2 −2
0 3 1
0 1 3

⎞⎟⎠ , g(n) =

⎛⎜⎝ 1
n

n2

⎞⎟⎠ .

11. For system equation (3.2.18) show that

det A(n) = (−1)kpk(n).

12. If Φ(n) is a fundamental matrix of (3.2.18), prove that

det Φ(n) = (−1)k(n−n0)

(
n−1∏
i=n0

pk(i)

)
det Φ(n0).
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13. Prove by induction that the characteristic equation of

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

0 0 0 . . . 1
−pk −pk−1 −pk−2 . . . −p1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
is

λk + p1λ
k−1 + p2λ

k−2 + · · · + pk−1λ + pk = 0.

14. Let W (n) be the Casoratian of (3.2.15) with g(n) = 0. Prove that
there exists a fundamental matrix Φ(n) of (3.2.18) such that W (n) =
det Φ(n).

Use the methods of systems to solve the difference equation for Problems
15 through 19.

15. x(n + 2) + 8x(n + 1) + 12x(n) = 0.

16. x(n + 2) − 16x(n) = 0.

17. y(n + 2) − 5y(n + 1) + 4y(n) = 4n.

18. ∆2y(n) = 16.

19. ∆2x(n) + ∆x(n) − x(n) = 0.

3.3 The Jordan Form: Autonomous
(Time-Invariant) Systems Revisited

The Jordan form of a matrix is vital for both theoretical and computational
purposes in autonomous systems. In this section we will briefly describe the
Jordan form and derive a new method for computing fundamental matrices.

3.3.1 Diagonalizable Matrices
We say that the two k × k matrices A and B are similar if there exists a
nonsingular matrix P such that P−1AP = B. It may be shown in this case
that A and B have the same eigenvalues and, in fact, the eager student
will prove this supposition in Exercises 3.3, Problem 15. If a matrix A is
similar to a diagonal matrix D = diag(λ1, λ2, . . . , λk), then A is said to
be diagonalizable. Notice here that the diagonal elements of D, namely,
λ1, λ2, . . . , λk, are the eigenvalues of A. We remark here that only special
types of matrices are diagonalizable. For those particular diagonalizable
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matrices, computing An is simple. For if

P−1AP = D = diag[λ1, λ2, . . . , λk],

then

A = PDP−1,

and, consequently,

An = (PDP−1)n = PDnP−1.

Explicitly,

An = P

⎡⎢⎢⎢⎢⎣
λn

1 0
λn

2

. . .

0 λn
k

⎤⎥⎥⎥⎥⎦P−1. (3.3.1)

If we are interested in finding another (but simpler) fundamental matrix of
the equation

x(n + 1) = Ax(n), (3.3.2)

then we let

Φ(n) = AnP = P

⎡⎢⎢⎢⎢⎣
λn

1 0
λn

2

. . .

0 λn
k

⎤⎥⎥⎥⎥⎦ . (3.3.3)

From formula (3.3.3) we have Φ(0) = P and, consequently,

An = Φ(n)Φ−1(0). (3.3.4)

Now, formula (3.3.3) is useful only if one can pinpoint the matrix P .
Fortunately, this is an easy task. We will now reveal how to compute P .

Let P = (ξ1, ξ2, . . . , ξk), where ξi is the ith column of P . Since P−1AP =
D, then AP = PD. This implies that Aξi = λiξi, i = 1, 2, . . . , k (Exercises
3.3, Problem 15). Thus, ξi, 1 ≤ i ≤ k, is the eigenvector of A corresponding
to the eigenvalue λi, and hence the ith column of P is the eigenvector
of A corresponding to the ith eigenvalue λi of A. Since P is nonsingular,
its columns (and hence the eigenvectors ξ1, ξ2, . . . , ξk of A) are linearly
independent. Reversing the above steps, one may show that the converse
of the above statement is true. Namely, if there are k linearly independent
eigenvectors of a k × k matrix A, then it is diagonalizable. The following
theorem summarizes the above discussion.

Theorem 3.20. A k × k matrix is diagonalizable if and only if it has k
linearly independent eigenvectors.



3.3 The Jordan Form: Autonomous (Time-Invariant) Systems Revisited 137

Let us revert back to formula (3.3.3), which gives us a computational
method to find a fundamental matrix Φ(n). Let λ1, λ2, . . . , λk be the eigen-
values of A and let ξ1, ξ2, . . . , ξk be the corresponding linearly independent
eigenvectors of A. Then from formula (3.3.3) we have

Φ(n) = [ξ1, ξ2, . . . , ξk]

⎡⎢⎢⎢⎢⎣
λn

1 0
λn

2

. . .

0 λn
k

⎤⎥⎥⎥⎥⎦
= [λn

1 ξ1, λ
n
2 ξ2, . . . , λ

n
kξk]. (3.3.5)

Notice that since columns of Φ(n) are solutions of (3.3.2), it follows that
for each i, 1 ≤ i ≤ k, x(n) = λn

i ξi is a solution of (3.3.2).
Hence, the general solution of (3.3.2) may be given by

x(n) = c1λ
n
1 ξ1 + c2λ

n
2 ξ2 + · · · + ckλn

kξk. (3.3.6)

The following example illustrates the above method.

Example 3.21. Find the general solution of x(n + 1) = Ax(n), where

A =

⎛⎜⎝2 2 1
1 3 1
1 2 2

⎞⎟⎠ .

Solution The eigenvalues of A may be obtained by solving the
characteristic equation

det(A − λI) = det

⎛⎜⎝2 − λ 2 1
1 3 − λ 1
1 2 2 − λ

⎞⎟⎠ = 0.

This determinant produces (λ − 1)2(λ − 5) = 0. Thus, λ1 = 5, and λ2 =
λ3 = 1. To find the corresponding eigenvectors, we solve the equation
(A − λI)x = 0. Hence, for λ1 = 5,⎛⎜⎝−3 2 1

1 −2 1
1 2 −3

⎞⎟⎠
⎛⎜⎝x1

x2

x3

⎞⎟⎠ =

⎛⎜⎝0
0
0

⎞⎟⎠ .

Solving this system gives us the first eigenvector

ξ1 =

⎛⎜⎝1
1
1

⎞⎟⎠ .
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For λ2 = λ3 = 1, we have⎛⎜⎝1 2 1
1 2 1
1 2 1

⎞⎟⎠
⎛⎜⎝x1

x2

x3

⎞⎟⎠ =

⎛⎜⎝0
0
0

⎞⎟⎠ .

Consequently, x1 + 2x2 + x3 = 0 is the only equation obtained from this
algebraic system. To solve the system, two of the three unknown terms
x1, x2, and x3 must be arbitrarily chosen. So if we let x1 = 1 and x2 = 0,
then x3 = −1, and we obtain the eigenvector

ξ2 =

⎛⎜⎝ 1
0

−1

⎞⎟⎠ .

On the other hand, if we let x1 = 0 and x2 = 1, then x3 = −2, and we
obtain the third eigenvector

ξ3 =

⎛⎜⎝ 0
1

−2

⎞⎟⎠ .

Obviously, there are infinitely many choices for ξ2, ξ3. Using formula (3.3.6),
we see that the general solution is

x(n) = c15n

⎛⎜⎝1
1
1

⎞⎟⎠+ c2

⎛⎜⎝ 1
0

−1

⎞⎟⎠+ c3

⎛⎜⎝ 0
1

−2

⎞⎟⎠ ,

or

x(n) =

⎛⎜⎝ c15n + c2

c15n + c3

c15n − c2 − 2c3

⎞⎟⎠ . (3.3.7)

Suppose that in the above problem we are given an initial value

x(0) =

⎛⎜⎝0
1
0

⎞⎟⎠
and must find the solution x(n) with this initial value. One way of doing this
is by letting n = 0 in the solution given by formula (3.3.7) and evaluating
the constants c1, c2, and c3.

Thus

c1 + c2 = 0,

c1 + c3 = 1,

c1 − c2 − 2c3 = 0.
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Solving this system gives c1 = 1
2 , c2 = − 1

2 , and c3 = 1
2 , leading us to the

solution

x(n) =

⎛⎜⎜⎜⎜⎜⎝
1
2
5n − 1

2
1
2
5n +

1
2

1
2
5n − 1

2

⎞⎟⎟⎟⎟⎟⎠ .

We now introduce yet another method to find the solution. Let

x(n) = Φ(n)Φ−1(0)x(0),

where

Φ(n) = (λn
1 ξ1, λ

n
2 ξ2, λ

n
3 ξ3)

=

⎛⎜⎝5n 1 0
5n 0 1
5n −1 −2

⎞⎟⎠
and

Φ(0) =

⎛⎜⎝1 1 0
1 0 1
1 −1 −2

⎞⎟⎠ .

Thus,

Φ−1(0) =

⎛⎜⎜⎜⎜⎜⎝
1
4

1
2

1
4

3
4

−1
2

−1
4

−1
4

1
2

−1
4

⎞⎟⎟⎟⎟⎟⎠ .

This gives

x(n) =

⎛⎜⎝5n 1 0
5n 0 1
5n −1 −2

⎞⎟⎠
⎛⎜⎜⎜⎜⎜⎝

1
4

1
2

1
4

3
4

−1
2

−1
4

−1
4

1
2

−1
4

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎝0

1
0

⎞⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝
1
2
5n − 1

2
1
2
5n +

1
2

1
2
5n − 1

2

⎞⎟⎟⎟⎟⎟⎠ .
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In the next example we will examine the case where the matrix A has
complex eigenvalues. Notice that if A is a real matrix (which we are assum-
ing here) and if λ = α + iβ is an eigenvalue of A, then λ = α − iβ is also
an eigenvalue of A. Moreover, if ξ is the eigenvector of A corresponding to
the eigenvalue λ = α + iβ, then ξ is the eigenvector of A corresponding
to the eigenvalue λ = α − iβ. Taking advantage of these observations, one
may be able to simplify considerably the computation involved in finding
a fundamental matrix of the system of equations (3.3.2).

Suppose that ξ = ξ1+iξ2. A solution of system (3.3.2) may then be given
by x(n) = (α + iβ)n(ξ1 + iξ2). Also, if

r =
√

α2 + β2,

then

θ = tan−1
(

β

α

)
.

This solution may now be written as

x(n) = [r cos θ + i sin θ)]n(ξ1 + iξ2)
= rn(cos nθ + i sinnθ)(ξ1 + iξ2)
= rn[(cos nθ)ξ1 − (sinnθ)ξ2] + irn[(cos nθ)ξ2 + (sinnθ)ξ1]
= u(n) + i v(n),

where u(n) = rn[(cos nθ)ξ1 − (sinnθ)ξ2] and v(n) = rn[(cos nθ)ξ2 +
(sinnθ)ξ1]. One might show (Exercises 3.3, Problem 7) that u(n) and v(n)
are linearly independent solutions of system (3.3.2). Hence, we do not need
to consider the solution generated by λ and ξ.

Example 3.22. Find a general solution of the system x(n + 1) = Ax(n),
where

A =

(
1 −5
1 −1

)
.

Solution The eigenvalues of A are λ1 = 2i, λ2 = −2i, and the corresponding
eigenvectors are

ξ1 =

⎛⎝1
5

− 2
5
i

1

⎞⎠ , ξ2 =

⎛⎝1
5

+
2
5
i

1

⎞⎠ .

Hence,

x(n) = (2i)n

⎛⎝1
5

− 2
5
i

1

⎞⎠
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is a solution. Since

i = cos
π

2
+ i sin

π

2
,

in = cos
nπ

2
+ i sin

nπ

2
,

this solution may be written as

x(n) = 2n
(
cos
(nπ

2

)
+ i sin

(nπ

2

))⎛⎝1
5

− 2
5
i

1

⎞⎠
= 2n

⎛⎜⎝1
5

cos
(nπ

2

)
+

2
5

sin
nπ

2
cos
(nπ

2

)
⎞⎟⎠

+ i2n

⎛⎜⎝−2
5

cos
(nπ

2

)
+

1
5

sin
(nπ

2

)
sin
(nπ

2

)
⎞⎟⎠ .

Thus,

u(n) = 2n

⎛⎜⎝1
5

cos
(nπ

2

)
+

2
5

sin
(nπ

2

)
cos
(nπ

2

)
⎞⎟⎠

and

v(n) = 2n

⎛⎜⎝−2
5

cos
(nπ

2

)
+

1
5

sin
(nπ

2

)
sin
(nπ

2

)
⎞⎟⎠

are two linearly independent solutions. A general solution may be given as

x(n) = c12n

⎛⎜⎝1
5

cos
(nπ

2

)
+

2
5

sin
(nπ

2

)
cos
(nπ

2

)
⎞⎟⎠

+ c22n

⎛⎜⎝−2
5

cos
(nπ

2

)
+

1
5

sin
(nπ

2

)
sin
(nπ

2

)
⎞⎟⎠

= 2n

⎡⎢⎣
(

1
5
c1 − 2

5
c2

)
cos
(nπ

2

)
+
(

2
5
c1 +

1
5
c2

)
sin
(nπ

2

)
c1 cos

(nπ

2

)
+ c2 sin

(nπ

2

)
⎤⎥⎦ .

So far, we have discussed the solution of system (3.3.2) if the matrix A is
diagonalizable. We remark here that a sufficient condition for a k×k matrix
A to be diagonalizable is that it have k distinct eigenvalues (Exercises 3.3,
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Problem 20). If the matrix A has repeated roots, then it is diagonalizable if
it is normal, that is to say, if AT A = AAT . (For a proof see [111].) Examples
of normal matrices are:

(i) symmetric matrices (AT = A),

(ii) skew symmetric matrices (AT = −A),

(iii) unitary matrices (AT A = AAT = I).

3.3.2 The Jordan Form
We now turn our attention to the general case where the matrix A is not
diagonalizable. This happens when A has repeated eigenvalues, and one is
not able to generate k linearly independent eigenvectors. For example, the
following matrices are not diagonalizable:

[
2 1
0 2

]
,

⎡⎢⎣2 0 0
0 2 1
0 0 2

⎤⎥⎦ ,

⎡⎢⎢⎢⎣
2 0 0 0
0 3 0 0
0 0 4 1
0 0 0 4

⎤⎥⎥⎥⎦ .

If a k × k matrix A is not diagonalizable, then it is akin to the so-called
Jordan form, i.e., P−1AP = J , where

J = diag(J1, J2, . . . , Jr), 1 ≤ r ≤ k, (3.3.8)

and

Ji =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λi 1 0 . . . 0
0 λi 1 0

. . .

0 0
. . . . . .

...
...

...
. . . 1

0 0 λi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.3.9)

The matrix Ji is called a Jordan block.
These remarks are formalized in the following theorem.

Theorem 3.23 (The Jordan Canonical Form). Any k ×k matrix A
is similar to a Jordan form given by the formula (3.3.8), where each Ji is
an si × si matrix of the form (3.3.9), and

∑r
i=1 si = k.

The number of Jordan blocks corresponding to one eigenvalue λ is called
the geometric multiplicity of λ, and this number, in turn, equals the number
of linearly independent eigenvectors corresponding to λ.
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The algebraic multiplicity of an eigenvalue λ is the number of times it
is repeated. If the algebraic multiplicity of λ is 1 (i.e., λ is not repeated),
then we refer to λ as simple. If the geometric multiplicity of λ is equal to
its algebraic multiplicity (i.e., only 1 × 1 Jordan blocks correspond to λ),
then it is called semisimple. For example, the matrix⎡⎢⎢⎢⎢⎢⎢⎣

3 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 5 1
0 0 0 0 5

⎤⎥⎥⎥⎥⎥⎥⎦
has one simple eigenvalue 3, one semisimple eigenvalue 2, and one
eigenvalue 5, which is neither simple nor semisimple.

To illustrate the theorem, we list below the possible Jordan forms of a
3 × 3 matrix with an eigenvalue λ = 5, of multiplicity 3. In the matrix,
different Jordan blocks are indicated by squares.⎛⎜⎜⎜⎝

5 0 0

0 5 0

0 0 5

⎞⎟⎟⎟⎠
(a)

⎛⎜⎜⎝
5 1 0

0 5 0

0 0 5

⎞⎟⎟⎠
(b)

⎛⎜⎜⎝
5 0 0

0 5 1

0 0 5

⎞⎟⎟⎠
(c)

⎛⎜⎜⎝
5 1 0

0 5 1

0 0 5

⎞⎟⎟⎠ .

(d)

Recall that si is the order of the ith Jordan block and r is the number of
Jordan blocks in a Jordan form. In (a) the matrix is diagonalizable, and
we have three Jordan blocks of order 1. Thus, s1 = s2 = s3 = 1, r = 3, and
the geometric multiplicity of λ is 3.

In (b) there are two Jordan blocks with s1 = 2, s2 = 1, r = 2, and the
geometric multiplicity of λ is 2.

In (c) there are also two Jordan blocks with s1 = 1, s2 = 2, r = 2, and
the geometric multiplicity of λ is 2. In (d) there is only one Jordan block
with s1 = 3, r = 1, and the geometric multiplicity of λ is 1. The linearly
independent eigenvectors corresponding to λ = 5 in (a), (b), (c), (d) are,
respectively,⎛⎜⎝ 1

0
0

⎞⎟⎠ ,

⎛⎜⎝ 0
1
0

⎞⎟⎠ ,

⎛⎜⎝ 0
0
1

⎞⎟⎠
︸ ︷︷ ︸

(a)

⎛⎜⎝ 1
0
0

⎞⎟⎠ ,

⎛⎜⎝ 0
0
1

⎞⎟⎠
︸ ︷︷ ︸

(b)

⎛⎜⎝ 1
0
0

⎞⎟⎠ ,

⎛⎜⎝ 0
1
0

⎞⎟⎠
︸ ︷︷ ︸

(c)

⎛⎜⎝ 1
0
0

⎞⎟⎠ .

(d)
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Note that a matrix of the form⎛⎜⎜⎜⎜⎜⎜⎜⎝

λ 1 0 . . . 0
0 λ 1 . . . 0
...

...
...

...
0 0 0 . . . 1
0 0 0 . . . λ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
has only one eigenvector, namely, the unit vector e1 = (1, 0, . . . , 0)T . This
shows us that the linearly independent eigenvectors of the Jordan form J
given by formula (3.3.8) are

e1, es1+1, es1+s2+1, . . . , es1+s2+···+sr−1+1.

Now, since P−1AP = J , then

AP = PJ. (3.3.10)

Let P = (ξ1, ξ2, . . . , ξk). Equating the first s1 columns of both sides in
formula (3.3.10), we obtain

Aξ1 = λ1ξ1, . . . , Aξi = λ1ξi + ξi−1, i = 2, 3, . . . , s1. (3.3.11)

Clearly, ξ1 is the only eigenvector of A in the Jordan chain ξ1, ξ2, . . . , ξs1 .
The other vectors ξ2, ξ3, . . . , ξs1 are called generalized eigenvectors of A,
and they may be obtained by using the difference equation

(A − λ1I)ξi = ξi−1, i = 2, 3, . . . , s1. (3.3.12)

Repeating this process for the remainder of the Jordan blocks, one may
find the generalized eigenvectors corresponding to the mth Jordan block
using the difference equation

(A − λmI)ξmi = ξmi−1, i = 2, 3, . . . , sm. (3.3.13)

Now we know that An = (PJP−1)n = PJnP−1, where

Jn =

⎡⎢⎢⎢⎢⎣
Jn

1 0
Jn

2

. . .

0 Jn
k

⎤⎥⎥⎥⎥⎦ .

Notice that for any Ji, i = 1, 2, . . . , r, we have Ji = λiI + Ni, where

Ni =

⎛⎜⎜⎜⎜⎝
0 1 0 . . . 0
0 0 1 0
...

... 1
0 0 . . . 0

⎞⎟⎟⎟⎟⎠



3.3 The Jordan Form: Autonomous (Time-Invariant) Systems Revisited 145

is an si × si nilpotent matrix (i.e., Nr
i = 0 for all r ≥ si). Hence,

Jn
i = (λiI + Ni)n = λn

i I +

(
n

1

)
λn−1

i Ni

+

(
n

2

)
λn−2

i N2
i + · · · +

(
n

si − 1

)
λn−si+1

i Nsi−1
i

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λn
i

(
n

1

)
λn−1

i

(
n

2

)
λn−2

i . . .

(
n

si − 1

)
λn−si+1

i

0 λn
i

(
n

1

)
λn−1

i . . .

(
n

si − 2

)
λn−si+2

i

...
...

. . .
...(

n

1

)
λn−1

i

0 0 . . . λn
i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(3.3.14)

The lines inside Jn
i indicate that the entries in each diagonal are identical.

We can now substantiate that the general solution of system (3.3.2) is

x(n) = Anc = PJnP−1c,

or

x(n) = PJnĉ, (3.3.15)

where

ĉ = P−1c.

Hence, a fundamental matrix of system (3.3.2) may be given by Φ(n) =
PJn. Also, the state transition matrix may be given by Φ(n, n0) =
PJn−n0P−1 and thus x(n, n0, x0) = PJn−n0P−1x0.

The following corollary arises directly from an immediate consequence
of formula (3.3.14).

Corollary 3.24. Assuming that A is any k×k matrix, then limn→∞ An =
0 if and only if |λ| < 1 for all eigenvalues λ of A.

Proof. (Exercises 3.3, Problem 21.) �

The importance of the preceding corollary lies in the fact that if
limn→∞ An = 0, then limn→∞ xn = limn→∞ Anx(0) = 0. This fact re-
minds us that if |λ| < 1 for all eigenvalues of A, then all solutions x(n) of
(3.3.1) tend toward the zero vector as n → ∞.
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Example 3.25. Find the general solution of x(n + 1) = Ax(n) with

A =

⎛⎜⎝4 1 2
0 2 −4
0 1 6

⎞⎟⎠ .

Solution Note that this example uses conclusions from Example 3.3. The
eigenvalues are λ1 = λ2 = λ3 = 4. To find the eigenvectors, we solve the
equation (A − λI)ξ = 0, or⎛⎜⎝0 1 2

0 −2 −4
0 1 2

⎞⎟⎠
⎛⎜⎝d1

d2

d3

⎞⎟⎠ =

⎛⎜⎝0
0
0

⎞⎟⎠ .

Hence,

d2 + 2d3 = 0,

−2d2 − 4d3 = 0,

d2 + 2d3 = 0.

These equations imply that d2 = −2d3, thus generating two eigenvectors,

ξ1 =

⎛⎜⎝ 0
−2
1

⎞⎟⎠ and ξ2 =

⎛⎜⎝ 1
−2
1

⎞⎟⎠ .

We must now find one generalized eigenvector ξ3. Applying formula
(3.3.11), let us test (A − 4I)ξ3 = ξ1:⎛⎜⎝0 1 2

0 −2 −4
0 1 2

⎞⎟⎠
⎛⎜⎝a1

a2

a3

⎞⎟⎠ =

⎛⎜⎝ 0
−2
1

⎞⎟⎠ .

This system is an inconsistent system that has no solution. The second
attempt will use

(A − 4I)ξ3 = ξ2,

or ⎛⎜⎝0 1 2
0 −2 −4
0 1 2

⎞⎟⎠
⎛⎜⎝a1

a2

a3

⎞⎟⎠ =

⎛⎜⎝ 1
−2
1

⎞⎟⎠ .

Hence, a2 + 2a3 = 1. One may now set

ξ3 =

⎛⎜⎝ 0
−1
1

⎞⎟⎠ .
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Thus,

P =

⎛⎜⎝ 0 1 0
−2 −2 −1
1 1 1

⎞⎟⎠ ,

J =

⎛⎜⎝4 0 0
0 4 1
0 0 4

⎞⎟⎠ ,

and

Jn =

⎛⎜⎝4n 0 0

0 4n n4n−1

0 0 4n

⎞⎟⎠ .

Hence,

x(n) = PJnĉ =

⎛⎜⎝ 0 4n n4n−1

−2 · 4n −2 · 4n −2n4n−1 − 4n

−4n 4n n4n−1 + 4n

⎞⎟⎠
⎛⎜⎝ĉ1

ĉ2

ĉ3

⎞⎟⎠ .

Example 3.26. Solve the system

x(n + 1) = Ax(n), x(0) =

⎛⎜⎝1
1
1

⎞⎟⎠ ,

where

A =

⎛⎜⎝3/2 1/2 1/2
1/2 5/2 −1/2
0 1 2

⎞⎟⎠ .

Solution The eigenvalues of A are λ1 = λ2 = λ3 = 2. We have a sole
eigenvector,

ξ1 =

⎛⎜⎝1
0
1

⎞⎟⎠ .

We now need to compose two generalized eigenvectors, using (3.3.13):

(A − 2I)ξ2 = ξ1 gives ξ2 =

⎛⎜⎝1
1
2

⎞⎟⎠
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and

(A − 2I)ξ3 = ξ2 gives ξ3 =

⎛⎜⎝1
2
1

⎞⎟⎠ .

So

P =

⎛⎜⎝1 1 1
0 1 2
1 2 1

⎞⎟⎠ , J =

⎛⎜⎝2 1 0
0 2 1
0 0 2

⎞⎟⎠ ,

Jn =

⎛⎜⎜⎝2n n2n−1 n(n − 1)
2

2n−2

0 2n n2n−1

0 0 2n

⎞⎟⎟⎠ .

Now,

x(n, x0) = PJnP−1x0

= 2n−4

⎛⎜⎝n2 − 5n + 16 n2 + 3n −n2 + 5n

4n 4n + 16 −4n

n2 − n n2 + 7n −n2 + n + 16

⎞⎟⎠
⎛⎜⎝1

1
1

⎞⎟⎠
= 2n−4

⎛⎜⎝n2 + 3n + 16
4n + 16

n2 + 7n + 16

⎞⎟⎠ .

3.3.3 Block-Diagonal Matrices
In general, the generalized eigenvectors corresponding to an eigenvalue λ
of algebraic multiplicity m are the solutions of the equation

(A − λI)mξ = 0. (3.3.16)

The first eigenvector ξ1 corresponding to λ is obtained by solving the
equation

(A − λI)ξ = 0.

The second eigenvector or generalized eigenvector ξ2 is obtained by solving
the equation

(A − λI)2ξ = 0.

And so on.
Now if J is the Jordan form of A, that is, P−1AP = J or A = PJP−1,

then λ is an eigenvalue of A if and only if it is an eigenvalue of J . Moreover,
if ξ is an eigenvector of A, then ξ̃ = P−1ξ is an eigenvector of J .
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We would like to know the structure of the eigenvectors ξ̃ of J . For this
we appeal to the following simple lemma from Linear Algebra.

Lemma 3.27. Let C =

(
A 0
0 B

)
be a k × k block-diagonal matrix such

that A is an r × r matrix and B is an s × s matrix, with r + s = k. Then
the following statements hold true:

(i) If λ is an eigenvalue of A, then it is an eigenvalue of C. Moreover, the
eigenvector and the generalized eigenvectors corresponding to λ are of
the form ξ = (a1, a2, . . . , ar, 0, . . . , 0)T for some ai ∈ R.

(ii) If λ is an eigenvalue of B, then it is an eigenvalue of C. Moreover, the
eigenvector and the generalized eigenvectors corresponding to λ are of
the form ξ = (0, . . . , 0, ar+1, ar+2, . . . , as) for some ar+i ∈ R.

Proof.

(i) Suppose that λ is an eigenvalue of A, and V = (a1, a2, . . . , ar)T is
the corresponding eigenvector. Define ξ = (a1, . . . , ar, 0, . . . , 0) ∈ R

k.
Then clearly Cξ = λξ, and thus λ is an eigenvalue of C. Let the k × k

identity matrix I be written in the form I =

(
Ir 0
0 Is

)
, where Ir and

Is are, respectively, the r × r and s × s identity matrices. Let λ be an
eigenvalue of A with algebraic multiplicity m. Then

(C − λI)ξ =

(
A − λIr 0

0 B − λIS

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ1

...
ξr

...
ξs

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Hence

(A − λIr)

⎛⎜⎜⎝
ξ1

...
ξr

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
...
0

⎞⎟⎟⎠
has a nontrivial solution

ξ̃ =

⎛⎜⎜⎝
a1

...
ar

⎞⎟⎟⎠ .
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However

(B − λIs)

⎛⎜⎜⎝
ξr+1

...
ξs

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
...
0

⎞⎟⎟⎠
has only the trivial solution ⎛⎜⎜⎝

0
...
0

⎞⎟⎟⎠ .

Then ξ = (a1, . . . , ar, 0, . . . , 0)T is an eigenvector of C corresponding
to λ. The same analysis can be done for generalized eigenvectors by
solving (C − λI)iξ = 0, 1 ≤ i ≤ m.

(ii) The proof of the second part is analogous and will be omitted. �

Exercises 3.3

In Problems 1 through 6, use formula (3.3.6) to find the solution of x(n +
1) = Ax(n), where A is given in the exercise.

1. A =

(
2 −1
0 4

)
, x(0) =

(
1
2

)
.

2. A =

(
1 0
1 2

)
.

3. A =

⎛⎜⎝2 3 0
4 3 0
0 0 6

⎞⎟⎠ , x(0) =

⎛⎜⎝0
1
0

⎞⎟⎠.

4. A =

⎛⎜⎝2 −1 0
0 4 0
2 5 3

⎞⎟⎠.

5. A =

⎛⎜⎝1 0 1
1 2 3
0 0 3

⎞⎟⎠ .

6. A =

⎛⎜⎝ 1 1 0
−1 1 0
1 0 1

⎞⎟⎠ , x(0) =

⎛⎜⎝1
0
1

⎞⎟⎠.
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7. Suppose that x(n) = u(n) + iv(n) is a solution of (3.3.2), where
u(n) and v(n) are real vectors. Prove that u(n) and v(n) are linearly
independent solutions of (3.3.2).

8. Utilize Problem 7 to find a fundamental matrix of x(n + 1) = Ax(n)
with

A =

⎛⎜⎜⎜⎝
1 1 0 1

−1 1 0 1
0 0 2 1
0 0 −1 2

⎞⎟⎟⎟⎠ .

9. Apply Problem 7 to find a fundamental matrix of x(n + 1) = Ax(n)
with

A =

⎛⎜⎝ 1 1 0
−1 1 0
1 0 1

⎞⎟⎠ .

10. Find the eigenvalues and the corresponding eigenvectors and general-
ized eigenvectors for the matrix A.

(a) A =

(
3 1
0 3

)
. (b) A =

⎛⎜⎝2 1 0
0 2 1
0 0 2

⎞⎟⎠ .

(c) A =

⎛⎜⎜⎝
4 2 3

−1
2

2 0

0 0 3

⎞⎟⎟⎠ . (d) A =

⎛⎜⎜⎜⎝
2 0 0 0
0 2 1 0
0 0 2 1
0 0 0 2

⎞⎟⎟⎟⎠ .

11. Find An for the matrices in Problem 10 using the Jordan form.

12. Use the Jordan form to solve x(n + 1) = Ax(n) with

A =

⎛⎜⎝ 3 2 1
−1 3 2
1 −3 −2

⎞⎟⎠ .

13. Use the Jordan form to solve x(n + 1) = Ax(n) with

A =

⎛⎜⎝ 3 2 3
−1/2 1 0

0 0 2

⎞⎟⎠ .
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14. Let A and B be two similar matrices with P−1AP = B.

(i) Show that A and B have the same eigenvalues.

(ii) Show that if ξ is an eigenvector of B, then Pξ is an eigenvector
of A.

15. Suppose that P−1AP = D = diag(λ1, λ2, . . . , λk), where P =
[ξ1, ξ2, . . . , ξk] is a nonsingular k×k matrix. Show that ξ1, ξ2, . . . , ξk are
the eigenvectors of A that correspond to the eigenvalues λ1, λ2, . . . , λk,
respectively.

16. Let A be a 4 × 4 matrix with an eigenvalue λ = 3 of multiplicity 4.
Write all possible Jordan forms of A.

17. Show that (PJP−1)n = PJnP−1.

18. If λ is an eigenvalue of A, and ξ is the corresponding eigenvector of A,
show that λnξ is a solution of (3.3.2).

19. Let

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

λ 1 . . . 0
0 λ . . . 0
...

...
...

0 0 . . . 1
0 0 . . . λ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Then one may write A = λ I + N , where

N =

⎛⎜⎜⎜⎜⎜⎝
0 1 . . . 0

0 0
...

...
... 1

0 0 0

⎞⎟⎟⎟⎟⎟⎠ .

Show that for any α > 0, A is similar to a matrix

B = λ I + αN =

⎛⎜⎜⎜⎜⎝
λ α . . . 0
0 λ

...
... α

0 0 λ

⎞⎟⎟⎟⎟⎠ .

20. Prove that if a k × k matrix A has k distinct eigenvalues, then:

(i) A has k linearly independent eigenvectors.

(ii) A is diagonalizable. (Use mathematical induction.)

21. Prove Corollary 3.24.
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22. Consider the companion matrix A of (3.2.17) with the coefficients pi

constant. Assume that the eigenvalues of A are real and distinct. Let
V denote the Vandermonde matrix

V =

⎛⎜⎜⎜⎜⎝
1 1 . . . 1
λ1 λ2 . . . λk

...
...

...

λk−1
1 λk−1

2 . . . λk−1
k

⎞⎟⎟⎟⎟⎠ .

Show that V −1AV is a diagonal matrix.

23. Consider the companion matrix A (3.3.16) with pi(n) constants. Sup-
pose λ1, λ2, . . . , λr are the distinct eigenvalues of A with multiplicities
m1, m2, . . . , mr and

∑r
i=1 mi = k. Let V be the generalized Vander-

monde matrix (2.3.9). Show that V −1AV = J , where J is in the Jordan
form (3.3.8).

3.4 Linear Periodic Systems

In this section we regard the linear periodic system

x(n + 1) = A(n)x(n), (3.4.1)

where for all n ∈ Z, A(� + N) = A(�), for some positive integer N .
We now show that the study of the periodic system (3.4.1) simplifies

to the study of an associated autonomous system. This inference is the
analogue of Floquet theory in differential equations. But before we prove
that analogue, we need the following theorem.

Lemma 3.28. Let B be a k × k nonsingular matrix and let m be any
positive integer. Then there exists some k ×k matrix C such that Cm = B.

Proof. Let

P−1BP = J =

⎛⎜⎜⎜⎜⎝
J1

J2

. . .

Jr

⎞⎟⎟⎟⎟⎠
be the Jordan form of B. Let us write

Ji = λi

(
Ii +

1
λi

Ni

)
,
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where Ii is the si × si identity matrix and

Ni =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
0 1

. . . . . .

1
0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Observe that

Nsi
i = 0. (3.4.2)

To motivate our construction, we formally write

Hi = exp
[

1
m

ln Ji

]
= exp

[
1
m

{
ln λiIi + ln

(
Ii +

1
λi

Ni

)}]
= exp

[
1
m

{
ln λiIi +

∞∑
s=1

(−1)s+1

s

(
Ni

λi

)s
}]

.

Applying formula (3.4.2), we obtain

Hi = exp

[
1
m

{
ln λiIi +

si−1∑
s=1

(−1)s+1

s

(
Ni

λi

)s
}]

. (3.4.3)

Hence, Hi is a well-defined matrix. Furthermore, Hm
i = Ji. �

Now, if we let

H =

⎛⎜⎜⎜⎜⎝
H1 0

H2

. . .

0 Hr

⎞⎟⎟⎟⎟⎠ ,

where Hi is defined in formula (3.4.3), then

Hm =

⎡⎢⎢⎢⎢⎣
Hm

1 0
Hm

2

. . .

0 Hm
r

⎤⎥⎥⎥⎥⎦ = J.

Define C = PHP−1. Then Cm = PHmP−1 = PJP−1 = B.
Armed with this lemma, we are now prepared to introduce the primary

result for this section.
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Lemma 3.29. For system (3.4.1), the following statements hold:

(i) If Φ(n) is a fundamental matrix, then so is Φ(n + N).

(ii) Φ(n + N) = Φ(n)C, for some nonsingular matrix C.

(iii) Φ(n + N, N) = Φ(n, 0).

Proof.

(i) Let Φ(n) be a fundamental matrix of system (3.4.1). Then Φ(n+1) =
A(n)Φ(n). Now

Φ(n + N + 1) = A(n + N)Φ(n + N)
= A(n)Φ(n + N)

Hence Φ(n + N) is also a fundamental matrix of system (3.4.1).

(ii) Observe that Ψ1(n, n0) = Φ(n + N)Φ−1(n0 + N) and Ψ2(n, n0) =
Φ(n)Φ−1(n0) are fundamental matrices of system (3.4.1) with the
same initial condition Ψ1(n0, n0) = Ψ2(n0, n0) = I. By the unique-
ness of fundamental matrices (Theorem 3.7) Ψ1(n, n0) = Ψ2(n, n0).
This implies that

Φ(n + N) = Φ(n)Φ−1(n0)Φ(n0 + N)
= Φ(n)C

(iii) This is left to the reader as Problem 1. �

There are many consequences of this lemma, including the following
theorem.

Theorem 3.30. For every fundamental matrix Φ(n) of system (3.4.1),
there exists a nonsingular periodic matrix P (n) of period N such that

Φ(n) = P (n)Bn. (3.4.4)

Proof. By Lemma 3.28, there exists some matrix B such that BN = C,
where C is the matrix specifed in Lemma 3.29(ii). Define P (n) = Φ(n)B−n,
where B−n = (Bn)−1. Then

P (n + N) = Φ(n + N)B−NB−n

= Φ(n)CB−NB−n [using part (ii) of Lemma 3.29]

= Φ(n)B−n

= P (n).

We now know that P (n) has period N and is clearly nonsingular. (Why?)
From the definition of P (n) it thus follows that Φ(n) = P (n)Bn. �

Remark: If z(n) is a solution of the system

z(n + 1) = Bz(n), (3.4.5)
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then

x(n) = Φ(n)c = P (n)Bnc,

or

x(n) = P (n)z(n). (3.4.6)

The value of this remark lies in the fact that the qualitative study of the
periodic system of equations (3.4.1) reduces to the study of the autonomous
system (3.4.5).

The matrix C = BN , which may be found using Lemma 3.29 part (ii), is
referred to as a monodromy matrix of (3.4.1). The eigenvalues λ of B are
called the Floquet exponents of (3.4.1); the corresponding eigenvalues λN

of BN are called the Floquet multipliers of (3.4.1). The reason we call λN a
multiplier is that there exists a solution x(n) of (3.4.1) such that x(n+N) =
λNx(n). (See Exercises 3.4, Problem 9.) Notice that the Floquet exponents
(multipliers) do not depend upon the monodromy matrix chosen, that is,
they do not hinge upon the particular fundamental matrix Φ(n) used to
define the monodromy matrix. The following lemma explicitly states this
truth.

Lemma 3.31. If Φ(n) and Ψ(n) are two fundamental matrices of (3.4.1)
such that

Φ(n + N) = Φ(n)C,

Ψ(n + N) = Ψ(n)E,

then C and E are similar (and thus they have the same eigenvalues).

Proof. The reader will prove this lemma in Exercises 3.4, Problem
2. �

Lemma 3.32. A complex number λ is a Floquet exponent of (3.4.1) if
and only if there is a nontrivial solution of (3.4.1) of the form λnq(n),
where q(n) is a vector function with q(n + N) = q(n) for all n.

Proof. First, we assume that λ is a Floquet exponent of (3.4.1). Then,
we also know that det(Bn − λnI) = 0. Now choose x0 ∈ Rk, x0 �= 0, such
that (Bn − λnI)x0 = 0 for all n. (Why?) (See Exercises 3.4, Problem 4.)
Hence, we have the equation Bnx0 = λnx0.

Thus, P (n)Bnx0 = λnP (n)x0, where P (n) is the periodic matrix defined
in formula (3.4.4). By formula (3.4.4) now,

x(n, n0, y0) = Φ(n, n0)x0 = P (n)Bnx0 = λnP (n)x0 = λnq(n),

and we have the desired periodic solution of (3.4.1), where q(n) = P (n)x0.
Conversely, if λnq(n), q(n+N) = q(n) �= 0 is a solution of (3.4.1), Theorem
3.30 then implies that

λnq(n) = P (n)Bnx0 (3.4.7)
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for some nonzero vector x0. This implies that

λn+Nq(n) = P (n)Bn+Nx0. (3.4.8)

But, from (3.4.7),

λn+Nq(n) = λNP (n)Bnx0. (3.4.9)

Equating the right-hand sides of formulas (3.4.8) and (3.4.9), we obtain

P (n)Bn[BN − λNI]x0 = 0,

and thus

det[BN − λNI] = 0.

This manipulation shows that λ is a Floquet exponent of (3.4.1). �

Using the preceding theorem, one may easily conclude the following
results.

Corollary 3.33. The following statements hold:

(i) System (3.4.1) has a periodic solution of period N if and only if it has
a Floquet multiplier equal to 1.

(ii) There is a Floquet multiplier equal to −1 if and only if system (3.4.1)
has a periodic solution of period 2N .

Proof. Use Lemma 3.32 as you prove Corollary 3.33 in Exercises 3.4,
Problem 3. �

Remark: Lemma 3.29, part (ii), gives us a formula to find the monodromy
matrix C = BN , whose eigenvalues happen to be the Floquet multipliers
of (3.4.1). From Lemma 3.29,

C = Φ−1(n)Φ(n + N).

By letting n = 0, we have

C = Φ−1(0)Φ(N). (3.4.10)

If we take Φ(N) = A(N−1)A(N−2) · · ·A(0), then Φ(0) = I. Thus, formula
(3.4.10) becomes

C = Φ(N),

or

C = A(N − 1)A(N − 2) · · ·A(0). (3.4.11)

We now give an example to illustrate the above results.
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Example 3.34. Consider the planar system

x(n + 1) = A(n)x(n),

A(n) =

(
0 (−1)n

(−1)n 0

)
.

Clearly, A(n + 2) = A(n) for all n ∈ Z.
Applying formula (3.4.10),

B2 = C = A(1)A(0) =

(
−1 0
0 −1

)
.

Thus the Floquet multipliers are −1, −1. By virtue of Corollary 3.33, the
system has a 4-periodic solution. Note that since A(n) has the constant
eigenvalues −1, 1, ρ(A(n)) = 1.

The above example may suggest that there is some kind of relationship
between the eigenvalues of A(n) and its Floquet multipliers. To dispel any
such thoughts we offer the following example.

Example 3.35. Consider system (3.2.1) with

A(n) =

⎛⎜⎝ 0
2 + (−1)n

2
2 − (−1)n

2
0

⎞⎟⎠ .

This is a system of period 2. The eigenvalues of A are ±
√

3
2 , and hence

ρ(A) =
√

3
2 < 1. Now,

B2 = C = A(1)A(0) =

⎛⎜⎝1
4

0

0
9
4

⎞⎟⎠ .

Thus, the Floquet multipliers are 1
4 and 9

4 . Hence, ρ(B) = 3
2 .

Exercises 3.4

1. Prove Lemma 3.29 (iii).

2. Prove Lemma 3.31.

3. Prove Corollary 3.33.

4. Suppose that (B − λI)x0 = 0 for some x0 ∈ Rk, x0 �= 0. Prove that
(Bn − λnI)x0 = 0 for all n ∈ Zt.

5. Let a1(n), a2(n) be N -periodic functions and let Ψ1(n),Ψ2(n) be
solutions of

x(n + 2) + a1(n)x(n + 1) + a2(n)x(n) = 0 (3.4.12)
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such that Ψ1(0) = 1,Ψ1(1) = 0,Ψ2(0) = 0, and Ψ2(1) = 1. Show that
the Floquet multipliers satisfy the equation λ2 + bλ + c = 0, where

b = −[Ψ1(N) + Ψ2(N + 1)], c =
N−1∏
i=0

a2(i).

6. In Problem 5, let a2(n) ≡ 1. Show that the product of the Floquet
multipliers is equal to 1.

7. In Problem 5, let a2(n) ≡ 1. Show that if b = 2, there is at least one
solution of period 2N while for b = −2 there is at least one solution of
period N .

8. In Problem 5 it is clear that if λ = 1, then (3.4.12) has a periodic
solution of period N . Show that x(n+2)+a1(n)x(n+1)+a2(n)x(n) = 0
has a periodic solution of period 2N if and only if λ = −1.

9. Show that there exists a solution x(n) of (3.4.1) that satisfies
x(n + N) = λx(n) if and only if λ is a Floquet multiplier.

3.5 Applications

3.5.1 Markov Chains
In 1906 the Russian mathematician A.A. Markov developed the concept
of Markov chains. We can describe a Markov chain as follows: Suppose
that we conduct some experiment with a set of k outcomes, or states,
S = {s1, s2, . . . , sk}. The experiment is repeated such that the probability
(pij) of the state si, 1 ≤ i ≤ k, occurring on the (n+1)th repetition depends
only on the state sj occurring on the nth repetition of the experiment. In
other words, the system has no memory: The future state depends only
on the present state. In probability theory language, pij = p(si|sj) is the
probability of si occurring on the next repetition, given that sj occurred
on the last repetition. Given that sj has occurred in the last repetition, one
of s1, s2, . . . , sk must occur in the next repetition. Thus,

p1j + p2j + p3j + · · · + pkj = 1, 1 ≤ j ≤ k. (3.5.1)

Let pi(n) denote the probability that the state si will occur on the nth
repetition of the experiment, 1 ≤ i ≤ k. Since one of the states si must
occur on the nth repetition, it follows that

p1(n) + p2(n) + · · · + pk(n) = 1. (3.5.2)

To derive a mathematical model of this experiment, we must define pi(n+
1), 1 ≤ i ≤ k, as the probability that the state si occurs on the (n + 1)th
repetition of the experiment. There are k ways that this can happen. The
first case is where repetition n gives us s1, and repetition (n + 1) produces
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si. Since the probability of getting s1 on the nth repetition is p1(n), and
the probability of having si after s1 is pi1, it follows (by the multiplication
principle) that the probability of the first case occurring is pi1p1(n). The
second case is where we get s2 on repetition n and si on repetition (n+1).
The probability of the occurrence of the second case is pi2p2(n). Repeating
this for cases 3, 4, . . . , k, and for i = 1, 2, . . . , k, we obtain the k-dimensional
system

p1(n + 1) = p11p1(n) + p12p2(n) + · · · + p1kpk(n),
p2(n + 1) = p21p1(n) + p22p2(n) + · · · + p2kpk(n),

...
pk(n + 1) = pk1p1(n) + pk2p2(n) + · · · + pkkpk(n),

or, in vector notation,

p(n + 1) = Sp(n), n = 1, 2, 3 . . . , (3.5.3)

where p(n) = (p1(n), p2(n), . . . , pk(n))T is the probability vector and S =
(pij) is a k × k transition matrix.

The matrix S belongs to a special class of matrices called Markov matri-
ces. A matrix A = (aij) is said to be nonnegative (positive) if aij ≥ 0 (> 0)
for all entries aij of A. A nonnegative k × k matrix A is said to be Markov
(or stochastic) if

∑k
i=1 aij = 1 for all j = 1, 2, . . . , k. It follows from Ta-

ble 4.1 that ‖A‖1 = 1, which by inequality (4.1.3) implies that p(A) ≤ 1.
Hence |λ| ≤ 1 for all the eigenvalues λ of a Markov matrix. Furthermore,
λ = 1 is an eigenvalue of a Markov matrix (Exercises 3.5, Problem 3).
Hence p(A) = 1 if A is Markov.

3.5.2 Regular Markov Chains
A regular Markov chain is one in which Sm is positive for some positive
integer m. To give a complete analysis of the eigenvalues of such matrices,
we need the following theorem, due to O. Perron.

Theorem 3.36 (Perron’s Theorem). Let A be a positive k×k matrix.
Then ρ(A) is a simple real eigenvalue (not repeated) of A. If λ is any other
eigenvalue of A, then |λ| < ρ(A). Moreover, an eigenvector associated with
ρ(A) may be assumed to be positive.

Suppose now that S is the transition matrix of a regular Markov chain
with eigenvalues λ1, λ2, . . . , λk. Then ρ(S) = 1. If Sm is positive, then
ρ(Sm) = 1. As a matter of fact, the eigenvalues of Sm are λm

1 , λm
2 , . . . , λm

k .
By Perron’s theorem, 1 is a simple eigenvalue of Sm. Consequently, S has
exactly one simple eigenvalue, say λ1, which equals 1; all other eigenvalues
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satisfy |λi| < 1, i = 2, 3, . . . , k. Hence, the Jordan form of S must be of the

form J =

(
1 0
0 J∗

)
, where the eigenvalues of J∗ are λ2, λ3, . . . , λk.

By Corollary 3.24, Jn
∗ → 0 as n → ∞, so that Jn → diag(1, 0, . . . , 0) as

n → ∞. Therefore, if S = QJQ−1, we have

lim
n→∞ p(n) = lim

n→∞ Snp(0) = lim
n→∞ QJnQ−1p(0) = (ξ1, 0, 0, . . . , 0)η = aξ1,

(3.5.4)
where ξ1 = (ξ11, ξ21, . . . , ξk1)T is the eigenvector of S that corresponds to
the eigenvalue λ1 = 1, and a is the first component of η = Q−1p(0). Since
finding the matrix Q is not a simple task, we will choose instead to devise
a very easy method to find the constant a. Recall that for

p(n) = (p1(n), p2(n), . . . , pk(n))T

we have, from formula (3.5.2),
∑k

i=1 pi(n) = 1. Since limn→∞ p(n) = aξ1,
it follows that

aξ11 + aξ21 + · · · + aξk1 = 1.

Therefore,

a =
1

ξ11 + ξ21 + · · · + ξk1
.

The following example illustrates a regular Markov chain.

Example 3.37. The simplest type of genetic inheritance of traits in ani-
mals occurs when a certain trait is determined by a specific pair of genes,
each of which may be of two types, say G and g. An individual may have
a GG combination, a Gg (which is genetically the same as gG), or a gg
combination. An individual with GG genes is said to be dominant; a gg
individual is referred to as recessive; a hybrid has Gg genes.

In the mating of two animals, the offspring inherits one gene of the pair
from each parent: The basic assumption of genetics is that the selection of
these genes is random.

Let us consider a process of continued matings. We begin with an individ-
ual of known genetic character (GG) and mate it with a hybrid. Assuming
that there is one offspring, we mate that offspring with a hybrid, repeating
this process through a number of generations. In each generation there are
three possible states, s1 = GG, s2 = Gg, and s3 = gg. Let pi(n) represent
the probability that state si occurs in the nth generation and let pij be the
probability that si occurs in the (n+1)th generation given that sj occurred
in the nth generation.
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The difference system that models this Markov chain is denoted by

p1(n + 1) = p11p1(n) + p12p2(n) + p13p3(n),
p2(n + 1) = p21p1(n) + p22p2(n) + p23p3(n),
p3(n + 1) = p31p1(n) + p32p2(n) + p33p3(n).

Now, p11 is the probability of producing an offspring GG by mating GG
and Gg. Clearly, the offspring receives a G gene from his parent GG with
probability 1 and the other G from his parent Gg with probability 1

2 . By
the multiplication principle, p11 = 1 × 1

2 = 1
2 . The probability of creating

an offspring GG from mating a Gg with a Gg is p12. By similar analysis
one may show that p12 = 1

2 × 1
2 = 1

4 . Likewise, p13 is the probability of
generating an offspring GG from mating a gg with a Gg. Obviously, p13 = 0.
One may show by the same process that

p21 =
1
2
, p22 =

1
2
, p23 =

1
2
, p31 = 0, p32 =

1
4
, p33 =

1
2
.

Hence, we have

p(n + 1) = Sp(n)

with

S =

⎛⎜⎝0.5 0.25 0
0.5 0.5 0.5
0 0.25 0.5

⎞⎟⎠ .

Notice that all the entries for S2 are positive, and thus this is a regular
Markov chain. The eigenvalues of S are λ1 = 1, λ2 = 1

2 , and λ3 = 0. Recall
from formula (3.5.4) that

lim
n→∞ p(n) = aξ1.

Now,

ξ1 =

⎛⎜⎝1
2
1

⎞⎟⎠
and

a =
1
4

implies that

lim
n→∞ p(n) =

⎛⎜⎝0.25
0.5
0.25

⎞⎟⎠ .
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This relation dictates that as the number of repetitions approaches infin-
ity, the probability of producing a purely dominant or a purely recessive
offspring is 0.25, and the probability of creating a hybrid offspring is 0.5.

3.5.3 Absorbing Markov Chains
A state si in a Markov chain is said to be absorbing if whenever it occurs
on the nth repetition of the experiment, it then occurs on every subsequent
repetition. In other words, if for some i, pii = 1, then pij = 0 for j �= i. A
Markov chain is said to be absorbing if it has at least one absorbing state
and if from every state it is possible to go to an absorbing state. In an
absorbing Markov chain, a state that is not absorbing is called transient.

Example 3.38. Drunkard’s Walk

A man walks along a four-block stretch. He starts at corner x. With prob-
ability 1

2 he walks one block to the right, and with probability 1
2 he walks

one block to the left. When he comes to the next corner he again randomly
chooses his direction. He continues until he reaches corner 5, which is a bar,
or corner 1, which is his home. (See Figure 3.2.) If he reaches either home
or the bar, he stays there. This is clearly an absorbing Markov chain.

Let us rename the states so that the absorbing states at 1 and 5 are last,
and so we refer to them as s4 and s5. The transient states 2, 3, and 4 will
be called s1, s2, and s3, respectively. Accordingly, p1(n), p2(n), p3(n), p4(n),
and p5(n) will be, respectively, the probabilities of reaching s1, s2, s3, s4,
and s5 after n walks. The difference equation that represents this Markov
chain is p(n + 1) = Sp(n), where the transition matrix is

S =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
2

0 | 0 0

1
2

0
1
2

| 0 0

0
1
2

0 | 0 0

. . . . . . . . . . . . . . . . . .

1
2

0 0 | 1 0

0 0
1
2

| 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

(
T 0
Q I

)
.

Let u(n) = (p1(n), p2(n), p3(n))T and v(n) = (p4(n), p5(n))T . Then(
u(n + 1)
v(n + 1)

)
=

(
T 0
Q I

)(
u(n)
v(n)

)
,
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u(n + 1) = Tu(n), (3.5.5)

v(n + 1) = v(n) + Qu(n). (3.5.6)

Therefore,

u(n) = Tnu(0). (3.5.7)

Substituting from formula (3.5.7) into formula (3.5.6) yields

v(n + 1) = v(n) + QTnu(0). (3.5.8)

By formula (3.2.14), it follows that the solution of (3.5.8) is given by

v(n) = v(0) +
n−1∑
r=0

QT ru(0). (3.5.9)

The eigenvalues of T are

0, −
√

1
2
,

√
1
2
.

Hence, by Corollary 3.24, limn→∞ Tn = 0. In this case one may show that
∞∑

r=0

T r = lim
n→∞

n−1∑
r=0

T r = (I − T )−1

(Exercises 3.5, Problem 5). Using formula (3.5.9), we generate

lim
n→∞ v(n) = v(0) + Q(I − T )−1u(0).

Now,

(I − T )−1 =

⎛⎜⎜⎜⎝
3
2

1
1
2

1 2 1
1
2

1
3
2

⎞⎟⎟⎟⎠ .

BAR

HOME

s1 s2 s3 s4 s5

s4 s1 s2 s3 s5

1
–
2

1
–
2

FIGURE 3.2. Drunkard’s walk.
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Assume that the man starts midway between home and the bar, that is,
at state s2. Then

u(0) =

⎛⎜⎝0
1
0

⎞⎟⎠
and

v(0) =

(
0
0

)
.

In this case

lim
n→∞ v(n) =

⎛⎜⎝1
2

0 0

0 0
1
2

⎞⎟⎠
⎛⎜⎜⎜⎝

3
2

1
1
2

1 2 1
1
2

1
3
2

⎞⎟⎟⎟⎠
⎛⎜⎝0

1
0

⎞⎟⎠ =

⎛⎜⎝1
2
1
2

⎞⎟⎠ .

Thus, the probability that the man ends up at his home is 0.5. The proba-
bility that he ends up at the bar is also 0.5. Common sense could probably
have told us this in the first place, but not every situation will be this
simple.

3.5.4 A Trade Model
Example 3.39. Consider a model of the trade between two countries,
restricted by the following assumptions:

(i) National income = consumption outlays + net investment + exports
− imports.

(ii) Domestic consumption outlays = total consumption − imports.

(iii) Time is divided into periods of equal length, denoted by n = 0, 1, 2, . . . .

Let, for country j = 1, 2,

yj(n) = national income in period n,

cj(n) = total consumption in period n,

ij(n) = net investment in period n,

xj(n) = exports in period n,

mj(n) = imports in period n,

dj(n) = consumption of domestic products in period n.

For country 1 we then have

y1(n) = c1(n) + i1(n) + x1(n) − m1(n),
d1(n) = c1(n) − m1(n),
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which, combining those two equations, gives

y1(n) = d1(n) + x1(n) + i1(n). (3.5.10)

Likewise, for country 2, we have

y2(n) = d2(n) + x2(n) + i2(n). (3.5.11)

We now make the following reasonable assumption: The domestic consump-
tion dj(n) and the imports mj(n) of each country at period (n + 1) are
proportional to the country’s national income yi(n) one time period earlier.
Thus,

d1(n + 1) = a11y1(n), m1(n + 1) = a21y1(n), (3.5.12)
d2(n + 1) = a22y2(n), m2(n + 1) = a12y2(n). (3.5.13)

The constants aij are called marginal propensities. Furthermore, aij > 0,
for i, j = 1, 2. Since we are considering a world with only two countries,
the exports of one must be equal to the imports of the other, i.e.,

m1(n) = x2(n), m2(n) = x1(n). (3.5.14)

Substituting from equations (3.5.12), (3.5.13), and (3.5.14) into (3.5.10)
and (3.5.11) leads to(

y1(n + 1)
y2(n + 1)

)
=

(
a11 a12

a21 a22

)(
y1(n)
y2(n)

)
+

(
i1(n + 1)
i2(n + 1)

)
. (3.5.15)

Let us further assume that the net investments i1(n) = i1 and i2(n) = i2
are constants. Then (3.5.15) becomes(

y1(n + 1)
y2(n + 1)

)
=

(
a11 a12

a21 a22

)(
y1(n)
y2(n)

)
+

(
i1

i2

)
. (3.5.16)

By the variation of constants formula (3.2.14), we obtain

y(n) = Any(0) +
n−1∑
r=0

An−r−1I = Any(0) +
n−1∑
r=0

ArI, (3.5.17)

where I = (i1, i2)T . To have a stable economy, common sense dictates that
the sum of the domestic consumption dj(n+1) and the imports mj(n+1)
in period (n + 1) must be less than the national income yj(n) in period n;
that is,

dj(n + 1) + mj(n + 1) < yj(n), j = 1, 2,

or

a11 + a21 < 1, a12 + a22 < 1. (3.5.18)

Under conditions (3.5.18), one may show that for all the eigenvalues λ of
A, |λ| < 1 (Exercises 3.5, Problem 4).
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This implies from Corollary 3.24 that An → 0 as n → ∞. This fact fur-
ther generates the so-called Neumann’s expansion (Exercises 3.5, Problem
4):

lim
n→∞

n−1∑
r=0

Ar =
∞∑

r=0

Ar = (I − A)−1. (3.5.19)

It follows from formula (3.5.17) that

lim
n→∞ y(n) = (I − A)−1i.

This equation says that the national incomes of countries 1 and 2 approach
equilibrium values independent of the initial values of the national incomes
y1(0), y2(0).

However, as we all know, international economics involves many more
factors than we can account for here. But in Exercises 3.5, Problem 11,
the student will be allowed to create a model for the economic interaction
among three countries.

3.5.5 The Heat Equation
Example 3.40. Consider the distribution of heat through a thin bar
composed of a homogeneous material. Let x1, x2, . . . , xk be k equidistant
points on the bar. Let Ti(n) be the temperature at time tn = (∆t)n at the
point xi, 1 ≤ i ≤ k. Denote the temperatures at the left and the right ends
of the bar at time tn by T0(n), Tk+1(n), respectively. (See Figure 3.3.)

Assume that the sides of the bar are sufficiently well insulated that no
heat energy is lost through them. The only thing, then, that affects the
temperature at the point xi is the temperature of the points next to it,
which are xi−1, xi+1. Assume that the left end of the bar is kept at b
degrees Celsius and the right end of the bar at c degrees Celsius. These
conditions imply that x0(n) = b and xk+1(n) = c, for n ≥ 0.

We assume that the temperature at a given point xi is determined only
by the temperature at the nearby points xi−1 and xi+1. Then according to
Newton’s law of cooling, the change in temperature Ti(n + 1) − Ti(n) at a
point xi from time n to n + 1 is directly proportional to the temperature
difference between the point xi and the nearby points xi−1 and xi+1. In

... ... x
k+1

x0

x1 x2 x3 xi
xk-2 xk-1 xk

FIGURE 3.3. Heat transfer.
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other words

Ti(n + 1) − Ti(n) = α([Ti−1(n) − Ti(n)] + [Ti+1(n) − Ti(n)])
= α[Ti+1(n) − 2Ti(n) + Ti−1(n)], (3.5.20)

or

Ti(n + 1) = αTi−1(n) + (1 − 2α)Ti(n) + αTi+1(n), i = 2, 3, . . . , k − 1.

Similarly, one may also derive the following two equations:

T1(n + 1) = (1 − 2α)T1(n) + αT2(n) + αb,

Tk(n + 1) = αTk−1(n) + (1 − 2α)Tk(n) + αc.

This correlation may be written in the compact form

T (n + 1) = AT (n) + g,

where

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 − 2α) α 0 . . . 0

α (1 − 2α) α
...

0 α (1 − 2α)
. . .

...
...

...
. . . α

0 0 0 α (1 − 2α)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, g =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

αb

0
0
...

αc

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

This is a tridiagonal Toeplitz matrix.2 Its eigenvalues may be found by the
formula [111]

λn = (1 − 2α) + α cos
(

nπ

k + 1

)
, n = 1, 2, . . . , k.

Hence |λ| < 1 for all eigenvalues λ of A. Corollary 3.24 then implies that

lim
n→∞ An = 0.

From the variation of constants formula (3.2.12), it follows that

T (n) = AnT (0) +
n−1∑
r=0

Arg.

2A is a Toeplitz if it is of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 a1 a2 . . . ak−1

a−1 a0 a1
...

a−2 a−1 a0 a2

...
... a1

a−k+1 . . . a−2 a−1 a0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Thus, limn→∞ T (n) = (I − A)−1g. Finally, this equation points out that
the temperature at the point xi, 1 ≤ i ≤ k, approaches the ith component
of the vector (I − A)−1g, regardless of the initial temperature at the point
xi.

Consider the above problem with k = 3, α = 0.4, T0(n) = 10◦ C , T4(n) =
20◦ C.

Then

A =

⎛⎜⎝lll0.2 0.4 0
0.4 0.2 0.4
0 0.4 0.2

⎞⎟⎠ , g =

⎛⎜⎝4
0
8

⎞⎟⎠ ,

(I − A)−1 =

⎛⎜⎝ 0.8 −0.4 0
−0.4 0.8 −0.4

0 −0.4 0.8

⎞⎟⎠
−1

=

⎛⎜⎜⎜⎜⎜⎝
15
8

5
4

5
8

5
4

5
2

5
4

13
8

5
4

15
8

⎞⎟⎟⎟⎟⎟⎠ .

Hence

lim
n→∞ T (n) =

⎛⎜⎜⎜⎜⎜⎝
15
8

5
4

5
8

5
4

5
2

5
4

13
8

5
4

15
8

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎝4

0
8

⎞⎟⎠ =

⎛⎜⎜⎜⎝
25
2
15
43
2

⎞⎟⎟⎟⎠ .

Remark: Let ∆x = xi − xi−1 and ∆t = ti−1 − ti. If we assume that the
constant of proportionality α depends on both ∆t and ∆x, then we may
write

α =
[

∆t

(∆x)2

]
β, (3.5.21)

where β is a constant that depends on the material of the bar. Formula
(3.5.21) simply states that the smaller the value of ∆t, the smaller should be
the change in the temperature at a given point. Moreover, the smaller the
separation of points, the larger should be their influence on the temperature
changes in nearby points. Using formula (3.5.21) in (3.5.20) yields

Ti(n + 1) − Ti(n)
∆t

= β

[
Ti+1(n) − 2Ti(n) + Ti−1(n)

(∆x)2

]
. (3.5.22)

If we let ∆t → 0,∆x → 0 as n → ∞ and i → ∞, xi = (∆x)i = x, and
ti = (∆t)i = t, then (3.5.22) gives the partial differential equation

∂T (x, t)
∂t

= β
∂2T (x, t)

∂x2 . (3.5.23)

Equation (3.5.23) is known as the heat equation [137].
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Exercises 3.5

1. Consider the difference system

P (n + 1) = RP (n)

where

R =

⎛⎜⎝0.2 0.1 0.3
0.3 0.5 0.1
0.5 0.4 0.6

⎞⎟⎠ .

(a) Show that R is a Markov matrix.

(b) Find limn→∞ P (n).

2. Consider the difference system

P (n + 1) = RP (n)

where

R =

⎛⎜⎜⎜⎝
1 0 0.3 0.1
0 1 0.1 0.2
0 0 0.4 0.3
0 0 0.2 0.4

⎞⎟⎟⎟⎠ .

(a) Show that R is an absorbing Markov matrix.

(b) Find limn→∞ P (n).

3. Show that if A is a k × k Markov matrix, then it has an eigenvalue
equal to 1.

4. Let A = (aij) be a k × k positive matrix such that
∑k

j=1 aij < 1 for
i = 1, 2, . . . , k. Show that |λ| < 1 for all eigenvalues λ of A.

5. Let A be a k × k matrix with |λ| < 1 for all eigenvalues λ of A. Show
that:

(i) (I − A) is nonsingular.

(ii)
∑∞

i=0 Ai = (I − A)−1.

6. Modify Example 3.37 by first mating a recessive individual (genes gg)
with a dominant individual (genes GG). Then, continuing to mate
the offspring with a dominant individual, write down the difference
equation that describes the probabilities of producing individuals with
genes GG, Gg, and gg. Find limn→∞ p(n) and then interpret your
results.

7. In the dark ages, Harvard, Yale, and MIT admitted only male students.
Assume that at the time, 80% of the sons of Harvard men went to
Harvard and the rest went to MIT, 40% of the sons of MIT men went
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to MIT and the rest split evenly between Harvard and Yale; and of
the sons of Yale men, 70% went to Yale, 20% to Harvard, and 10%
to MIT. Find the transition matrix R of this Markov chain. Find the
long-term probabilities that the descendants of Harvard men will go
to Yale. (Assume that we start with N men, and each man sends one
son to college.)

8. A New York governor tells person A his intention either to run or not
to run in the next presidential election. Then A relays the news to B,
who in turn relays the message to C, and so forth, always to some new
person. Assume that there is a probability α that a person will change
the answer from yes to no when transmitting it to the next person
and a probability β that he will change it from no to yes. Write down
the state transition matrix of this process, then find its limiting state.
Note that the initial state is the governor’s choice.

9. A psychologist conducts an experiment in which 20 rats are placed at
random in a compartment that has been divided into rooms labeled 1,
2, and 3 as shown in Figure 3.4. Observe that there are four doors in
the arrangement. There are three possible states for each rat: It can
be in room 1, 2, or 3. Let us assume that the rats move from room
to room. A rat in room 1 has the probabilities p11 = 0, P21 = 1

3 , and
p31 = 2

3 of moving to the various rooms based on the distribution of
doors. Predict the distribution of the rats in the long run. What is the
limiting probability that a given marked rat will be in room 2?

10. In Example 3.38 (drunkard’s walk), assume that the probability of a
step to the right is 2

3 and that of a step to the left is 1
3 . Write down

the transition matrix and determine limn→∞ p(n).

11. In the trade model (Example 3.39) let a11 = 0.4, a21 = 0.5, a12 =
0.3, a22 = 0.6, i1 = 25 billion dollars, and i2 = 20 billion dollars. If
y1(n) and y2(n) denote the national incomes of countries 1 and 2 in
year n, respectively, and y1(0) = 500 billion dollars and y2(0) = 650
billion dollars, find y1(3) and y2(3). What are the equilibrium national
incomes for nations 1 and 2?

1

2 3

FIGURE 3.4. Diagram for Problem 9.
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air 50

water 0

50

0

0                      0                     0

50 50 50

x1
x2 x3

x4
x5 x6

FIGURE 3.5. Heat flow diagram for Problem 14.

12. Develop a mathematical model for a foreign trade model among three
countries using an argument similar to that used in Example 3.39.

13. In Example 3.40, let k = 4, α = 0.2, and x0(n) = T5(n) = 0◦ C.
Compute Ti(n), 1 ≤ i ≤ 4, for n = 1, 2, 3; then find limn→∞ Ti(n).

14. Suppose we have a grid of six points on a bar as shown in Figure 3.5.
Part of the bar is in air that is kept at a constant temperature of 50
degrees, and part of the bar is submerged in a liquid that is kept at
a constant temperature of 0 degrees. Assume that the temperature at
the point xi, 1 ≤ i ≤ 6, depends only on the temperature of the four
nearest points, that is, the points above, below, to the left, and to the
right.

(i) Write a mathematical model that describes the flow of heat in
this bar.

(ii) Find the equilibrium temperature at the six points xi.



4
Stability Theory

In Chapter 1 we studied the stability properties of first-order difference
equations. In this chapter we will develop the theory for k-dimensional
systems of first-order difference equations. As shown in Chapter 3, this
study includes difference equations of any order. Here we are interested
in the qualitative behavior of solutions without actually computing them.
Realizing that most of the problems that arise in practice are nonlinear and
mostly unsolvable, this investigation is of vital importance to scientists,
engineers, and applied mathematicians.

In this chapter we adapt the differential methods and techniques of Lia-
punov [93], Perron [114], and many others, to difference equations. First, we
introduce the notion of norms of vectors and matrices in Section 4.1. Next,
we give definitions of various notions of stability and some simple examples
to illustrate them in Section 4.2. Section 4.3 addresses the question of sta-
bility of both autonomous and nonautonomous linear systems and includes
the Stable Mainfold Theorem. In Section 4.4 we study the geometrical prop-
erties of planar linear systems by means of phase space analysis. Section 4.5
introduces to the reader the basic theory of the direct method of Liapunov,
by far the most advanced topic in this chapter. In Section 4.6 we present
the stability of nonlinear systems by the method of linear approximation,
which is widely used by scientists and engineers. And, finally, in Section 4.7
we investigate mathematical models of population dynamics and a business
model. Due to the enormity of the existing literature on Liapunov theory,
we have limited our exposition to autonomous equations.

173
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(i) the l1 norm:

‖x‖1 =
k∑

i=1

|xi|

(ii) the l∞ norm:
‖x‖∞ = max

1≤i≤k
|xi|

(iii) the Euclidean norm l2:

‖x‖2 =

(
k∑

i=1

x2
i

)1/2

x = 1
2

x = 1

x = 1
1

FIGURE 4.1. A circle in different norms.

4.1 A Norm of a Matrix

We start this section by introducing the notion of norms of vectors and
matrices.

Definition 4.1. A real-valued function on a vector space V is called a
norm, and is denoted by ‖‖, if the following properties hold:

(i) ‖x‖ ≥ 0 and ‖x‖ = 0 only if x = 0;

(ii) ‖αx‖ = |α|‖x‖ for all x ∈ V and scalars α;

(iii) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ V .

The three most commonly used norms on R
k are shown in Figure 4.1.

We remark here that all norms on R
k are equivalent in the sense that if

‖‖, ‖‖′ are any two norms, then there exist constants α, β > 0 such that

α‖x‖ ≤ ‖x‖′ ≤ β‖x‖.

Thus if {xn} is a sequence in R
k, then ‖xn‖ → 0 as n → ∞ if and only if

‖xn‖′ → 0 as n → ∞.
Corresponding to each vector norm ‖‖ on R

k one may define an operator
norm ‖‖ on a k × k matrix A as

‖A‖ = max
‖x‖�=0

‖Ax‖
‖x‖ . (4.1.1)

It may be shown easily that

‖A‖ = max
‖x‖≤1

‖Ax‖ = max
‖x‖=1

‖Ax‖. (4.1.2)

Using this definition one may easily compute ‖A‖ relative to the above
three norms as shown in Table 4.1. (For a proof see [85].)
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TABLE 4.1. Vector and Matrix Norms.
Norm ‖x‖ ‖A‖

l1

k∑
i=1

|xi| max
1≤j≤k

k∑
i=1

|aij | Sum over columns

l∞ max |xi|
1≤i≤k

max
1≤i≤k

k∑
j=1

|aij | Sum over rows

l2

(
k∑

i=1

x2
i

) 1
2 [

ρ(AT A)
] 1

2

From (4.1.1) we may deduce that for any operator norm on A (Exercises
4.1, Problem 5),

ρ(A) ≤ ‖A‖, (4.1.3)

where ρ(A) = max{|λ| : λ is an eigenvalue of A} is the spectral radius of
A.

Exercises 4.1

1. Compute ‖A‖1, ‖A‖∞, ‖A‖2, and ρ(A) for the following matrices:

(a)

[
2 1
1 2

]
. (b)

⎡⎢⎣1 1 2
0 2 −1
0 3 0

⎤⎥⎦ . (c)

⎡⎢⎣2 1 0
0 2 0
0 3 4

⎤⎥⎦ .

2. Give an example of a matrix A such that ρ(A) �= ‖A‖∞, ‖A‖1, ‖A‖2.

3. Let

A =

⎛⎜⎝λ 1 0
0 λ 1
0 0 λ

⎞⎟⎠ .

Show that for each ε > 0 there exists a diagonal matrix D such that
‖D−1AD‖ ≤ |λ| + ε for operator norms ‖A‖1 ‖A‖∞.

4. Generalize Problem 3 to any k × k matrix A in the Jordan form
diag(J1, J2, . . . , Jr).

5. Prove that ρ(A) ≤ ‖A‖ for any operator norm ‖‖ on A.
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6. Show that for any two norms ‖‖, ‖‖′ on R
k there are constants α, β > 0

such that α‖x‖ ≤ ‖x‖′ ≤ β‖x‖.

7. Deduce from Problem 6 that for any sequence {x(n)}, ‖x(n)‖ → 0 as
n → ∞ if and only if ‖x(n)‖′ → 0.

4.2 Notions of Stability

Let us consider the vector difference equation

x(n + 1) = f(n, x(n)), x(n0) = x0, (4.2.1)

where x(n) ∈ R
k, f : Z

+ × R
k → R

k. We assume that f(n, x) is continuous
in x. Recall that (4.2.1) is said to be autonomous or time-invariant if the
variable n does not appear explicitly in the right-hand side of the equation
f(n, x(n)) ≡ f(x(n)). It is said to be periodic if for all n ∈ Z, f(n+N, x) =
f(n, x) for some positive integer N .

A point x* in R
k is called an equilibrium point of (4.2.1) if f(n, x∗) = x*

for all n ≥ n0. In most of the literature x* is assumed to be the origin 0
and is called the zero solution. The justification for this assumption is as
follows: Let y(n) = x(n) − x*. Then (4.2.1) becomes

y(n + 1) = f(n, y(n) + x∗) − x∗ = g(n, y(n)). (4.2.2)

Notice that y = 0 corresponds to x = x*. Since in many cases it is not
convenient to make this change of coordinates, we will not assume that
x∗ = 0 unless it is more convenient to do so.

Recall that in Chapter 3 we dealt with the existence and uniqueness of
solutions of linear systems, that is, the case f(n, x(n)) = A(n)x(n), where
A(n) is a k×k matrix. The existence and uniqueness of solutions of (4.2.1)
may be established in a similar fashion (Exercises 4.2, Problem 9).

We are now ready to introduce the various stability notions of the
equilibrium point x* of (4.2.1).

Definition 4.2. The equilibrium point x* of (4.2.1) is said to be:

(i) Stable (S) if given ε > 0 and n0 ≥ 0 there exists δ = δ(ε, n0) such that
‖x0 −x∗‖ < δ implies ‖x(n, n0, x0)−x∗‖ < ε for all n ≥ n0, uniformly
stable (US) if δ may be chosen independent of n0, unstable if it is not
stable.

(ii) Attracting (A) if there exists µ = µ(n0) such that ‖x0 − x∗‖ < µ
implies limn→∞ x(n, n0, x0) = x*, uniformly attracting (UA) if the
choice of µ is independent of n0. The condition for uniform attractivity
may be paraphrased by saying that there exists µ > 0 such that for
every ε and n0 there exists N = N(ε) independent of n0 such that
‖x(n, n0, x0) − x∗‖ < ε for all n ≥ n0 + N whenever ‖x0 − x∗‖ < µ.
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x1x0

x2

FIGURE 4.2. Stable equilibrium in phase space.

(iii) Asymptotically stable (AS) if it is stable and attracting, and uniformly
asymptotically stable (UAS) if it is uniformly stable and uniformly
attracting.

(iv) Exponentially stable (ES) if there exist δ > 0, M > 0, and η ∈ (0, 1)
such that ‖x(n, n0, x0) − x∗‖ ≤ M‖x0 − x∗‖ηn−n0 , whenever ‖x0 −
x∗‖ < δ.

(v) A solution x(n, n0, x0) is bounded if for some positive constant M ,
‖x (n, n0, x0)‖ ≤ M for all n ≥ n0, where M may depend on each
solution.

If in parts (ii), (iii) µ = ∞ or in part (iv) δ = ∞, the corresponding stability
property is said to be global. In Figure 4.2, we suppress the (time) n and
show only the movement of a solution that starts inside a ball of radius δ.
The figure illustrates that all future states x(n, n0, x0), n ≥ n0, will stay

n

x
1

n
0

x
2

FIGURE 4.3. Stable equilibrium.
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x1

n
0

x
2

n

η
ε

FIGURE 4.4. Uniformly asymptotically stable equilibrium.

ES

AS UAS

UA

A

S US

FIGURE 4.5. Hierarchy of stability notions.

within the ε ball. This diagram is called a phase space portrait and will be
used extensively in later sections. In Figure 4.3 the time n is considered part
of a three-dimensional coordinate system that provides another perspective
on stability. Figure 4.4 depicts the uniform asymptotic stability of the zero
solution.

Note that in the above definitions, some of the stability properties auto-
matically imply one or more of the others. Figure 4.5 shows the hierarchy
of the stability notions.

Important Remark: In general, none of the arrows in Figure 4.5 may be
reversed. However, for special classes of equations, these arrows in Figure
4.5 may be reversed. In this section, it will be shown that for linear systems

x(n + 1) = A(n)x(n) (4.2.3)

where A(n) is a k × k matrix defined on Z
+, uniform asymptotic stability

implies exponential stability (UAS ⇔ ES).
For the autonomous system

x(n + 1) = f(x(n)) (4.2.4)

we have the following result.
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Theorem 4.3. For the autonomous system (4.2.4), the following state-
ments hold for the equilibrium point x∗:

(i) S ↔ US.

(ii) AS ↔ UAS.

(iii) A ↔ UA.

Proof.

(i) Let x(n, n0, x0) and y(n, m0, x0) be two solutions of (4.2.4), with m0 =
n0+r0, r0 ≥ 0. Notice that x(n−r0, n0, x0) intersects with y(n, m0, x0)
at n = m0. By uniqueness of solutions, it follows that y(n, m0, x0) =
x(n − r0, n0, x0). This implies that the δ in the definition of stability
is independent of the initial time n0 which establishes our result.

The proofs of (ii) and (iii) are similar to the proof of (i). �

The following examples serve to illustrate the definitions.

1. The solution of the scalar equation x(n + 1) = x(n) is given by
x(n, n0, x0) = x0; hence the zero solution is uniformly stable but not
asymptotically stable.

2. The solutions of the scalar equation x(n + 1) = a(n)x(n) are

x(n, n0, x0) =

[
n−1∏
i=n0

a(i)

]
x0. (4.2.5)

Hence one may conclude the following:

(i) The zero solution is stable if and only if∣∣∣∣∣
n−1∏
i=n0

a(i)

∣∣∣∣∣ ≤ M(n0) ≡ M, (4.2.6)

where M is a positive constant that depends on n0 (Exercises
4.2, Problem 2). This condition holds if a(i) = (1 + ηi), where
0 < η < 1.

To show this we write the solution as x(n, n0, x0) = Φ(n)x0, where
Φ(n) =

∏n−1
i=n0

(1 + ηi). Since 1 + ηi < exp(ηi), it follows that

Φ(n) ≤ exp

(
n−1∑
i=n0

ηi

)
≤ exp

( ∞∑
i=n0

ηi

)
≤ exp

(
ηn0

1 − η

)
= M(n0) = M.

Given ε > 0 and n0 ≥ 0, if we let δ = ε/(2M), then |x0| < δ
implies |x(n, n0, x0)| = Φ(n)x0 < ε.
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(ii) The zero solution is uniformly stable if and only if∣∣∣∣∣
n−1∏
i=n0

a(i)

∣∣∣∣∣ ≤ M, (4.2.7)

where M is a positive constant independent of n0 (Exercises 4.2,
Problem 5). This condition holds if a(i) = sin(i + 1).

(iii) The zero solution is asymptotically stable if and only if

lim
n→∞

∣∣∣∣∣
n−1∏
i=n0

a(i)

∣∣∣∣∣ = 0 (4.2.8)

(Exercises 4.2, Problem 5). This condition clearly holds if a(i) =
i+1
i+2 . The solution is given by x(n, n0, x0) = (n0 + 1)/(n + 1)x0.
Thus, the zero solution is uniformly stable and asymptotically
stable (globally), but not uniformly asymptotically stable. (Why?)
(See Exercises 4.2, Problem 6.)

(iv) The zero solution is uniformly asymptotically stable (and thus
exponentially stable) if and only if∣∣∣∣∣

n−1∏
i=n0

a(i)

∣∣∣∣∣ ≤ Mηn−n0 , (4.2.9)

for some M > 0, 0 < η < 1. This may be satisfied if a(i) = 1/i
(Exercises 4.2, Problem 8).

Now we give two important examples. In the first example we show that
the zero solution is stable but not uniformly stable. In the second example
the zero solution is attracting but not stable (personal communication by
Professor Bernd Aulbach).

Example 4.4. The solution of the equation x(n + 1) =
(

n+1
2

)
[x(n)]2 is

given by

x(n, n0, x0) =
(n

2

)(n − 1
2

)2(
n − 2

2

)4

· · ·
(

n0 + 1
2

)2n−n0−1

(x0)2
n−n0

,

x(n0) = x0.

If |x0| is sufficiently small, then limn→∞ x(n) = 0. Thus, the zero solution
is attracting. However, it is not uniformly attracting. For if δ > 0 is given
and n0 is chosen such that (n0 + 1)δ2 ≥ 2, then, for |x0| = δ,

|x(n0 + 1, n0, x0)| =
(

n0 + 1
2

)
|x0|2 ≥ 1.

Let us now check the stability of the zero solution. Given ε > 0 and n0 ≥ 0,
let δ = ε/(n0 +1). If |x0| < δ, then |x(n, n0, x0)| < ε for all n ≥ n0. Since δ
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depends on the choice of n0, the zero solution is stable but not uniformly
stable.

Example 4.5. Consider the difference equation (in polar coordinates)

r(n + 1) =
√

r(n), r > 0,

θ(n + 1) =
√

2πθ(n), 0 ≤ θ ≤ 2π.

We claim that the equilibrium point (1, 0) is attracting but not stable. To
show this, observe that

r(n) = r2−n

0 , r0 = r(0),

θ(n) = (2π)(1−2−n) · (θ0)
2−n

, θ0 = θ(0).

Clearly, limn→∞ r(n) = 1 and limn→∞ θ(n) = 2π. Now, if r0 �= 0, θ0 = 0,
then (r(n), θ(n)) = ((r0)2

−n

, 0), which converges to the equilibrium point
(1, 0). However, if θ0 = δπ, 0 < δ < 1, then the orbit of (r0, θ0) will spiral
around the circle counterclockwise to converge to the equilibrium point
(1, 0). Hence the equilibrium point (1, 0) is attracting but not stable. (See
Figure 4.6.)

Remark: The situation in Example 4.5 is a higher dimension phenomenon.
In 1997, Sedaghat [132] showed that a continuous map on the real line
cannot have an attracting unstable fixed point.

To demonstrate this phenomenon, let us contemplate the following
example:

Example 4.6. Consider the map

Gµ(x) =

{
−2x if x < µ,

0 if x ≥ µ,

FIGURE 4.6. Attracting but not stable equilibrium.
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x
0

x

G
2
(x)

FIGURE 4.7. G2(x).

where µ ∈ R
+. Equivalently, we have the difference equation x(n + 1) =

Gµ(x(n)) whose solution is given by

x(n) = Gn
µ(x0) =

{
(−2)nx0 if (−2)n−1x0 < µ,

0 if (−2)n−1x0 ≥ µ,

where x(0) = x0.
Now, if x0 ≥ µ, then Gn

µ(x0) = 0 for all n ≥ 1. On the other hand, if
x0 < µ, then for some k ∈ Z

+, Gk
µ(x0) ≥ µ. Hence, Gn

µ(x0) = 0 for all
n ≥ k.

Hence the fixed point x∗ = 0 is globally attracting. However, x∗ = 0 is
unstable, for points x0 that are close to 0 are mapped to points further
away from 0 until they exceed µ (see Figure 4.7 for G2).

Theorem 4.7 [132]. A continuous map f on the real line cannot have
an attracting unstable fixed point.

To facilitate the proof of the theorem, we first establish a stability result
that is of independent interest, since it does not require differentiability of
f.

Criterion for asymptotic stability of fixed points
of nondifferentiable maps.

Theorem 4.8 [135]. A fixed point x∗ of a continuous map f is asymp-
totically stable if and only if there is an open interval (a, b) containing x∗

such that f2(x) > x for a < x < x∗ and f2(x) < x for x∗ < x < b.

Proof. See Appendix C. �

Proof of Theorem 4.7. Let f be a continuous map on R that has an
unstable globally attracting fixed point x∗. This implies that the equation
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f2(x) = x has only one solution x = x∗. Hence, there are only two possible
cases:

(a) f2(x) > x for x < x∗ and f2(x) < x for x > x∗;

(b) f2(x) < x for x < x∗ and f2(x) > x for x > x∗.

Notice that by Theorem 4.8, case (a) implies that x∗ is asymptotically
stable and must be discarded. It remains to rule out case (b). So assume
that f2(x) < x for x < x∗. Now let x0 < x∗. Then by iteration, we have
· · · < f4(x0) < f2(x0) < x0 < x∗.

Thus, f2n(x0) does not converge to x∗, which contradicts the global
attractivity of x∗. The case f2(x) > x for x > x∗ is similar and will lead to
a contradiction. Hence, our assumption is false, which proves the assertion
of the theorem. �

Exercises 4.2

1. Meditate upon the scalar equation x(n + 1) = ax(n). Prove that:

(i) If |a| < 1, the zero solution is uniformly asymptotically stable.

(ii) If |a| = 1, the zero solution is uniformly stable.

(iii) If |a| > 1, the zero solution is not stable.

2. (a) Prove that the zero solution of the scalar equation x(n + 1) =
a(n)x(n) is stable if and only if

∣∣∣∏n−1
i=n0

a(i)
∣∣∣ ≤ M(n0), where M

depends on n0.

(b) Show that the zero solution of the equation x(n + 1) = (1 +
ηn)x(n), 0 < η < 1, is stable.

3. (a) Prove that the zero solution of the equation x(n + 1) = a(n)x(n)
is uniformly stable if and only if

∣∣∣∏n−1
i=n0

a(i)
∣∣∣ ≤ M, where M is a

positive constant independent of n0.

(b) Show that the zero solution of the equation x(n + 1) = sin(n +
1)x(n) is uniformly stable.

4. Show that the zero solution of the equation x(n + 1) = n+1
n+2x(n) is

asymptotically stable.

5. Prove that the zero solution of the equation x(n + 1) = a(n)x(n) is
asymptotically stable if and only if limn→∞

∣∣∣∏n−1
i=n0

a(i)
∣∣∣ = 0.

6. Show that the zero solution of the equation in Problem 4 is not
uniformly asymptotically stable.

7. Prove that the zero solution of the equation x(n) = a(n)x(n) is uni-
formly asymptotically stable if and only if

∣∣∣∏n−1
i=n0

a(i)
∣∣∣ ≤ Mηn−n0 , for

some M > 0, 0 < η < 1.
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8. Show that the zero solution of the scalar equation x(n + 1) =
(1/n)x(n), n ≥ 1, is uniformly asymptotically stable.

9. Establish the existence and uniqueness of solutions of (4.2.1).

10. Consider the system

x(n + 1) = x(n) +
x2(n)(y(n) − x(n)) + y5(n)

[x2(n) + y2(n)] + [x2(n) + y2(n)]3
,

y(n + 1) = y(n) +
y2(n)(y(n) − 2x(n))

[x2(n) + y2(n)] + [x2(n) + y2(n)]3
,

which can be written as

x(n + 1) = x(n) + g1(x(n), y(n)),
y(n + 1) = y(n) + g2(x(n), y(n)).

Show that the zero solution is globally attracting but unstable.

11. Define the difference equation on the unit circle as

r(n + 1) = 1,

θ(n + 1) =
√

2πθ, 0 ≤ θ < 2π.

Show that the fixed point (1, 0) is globally attracting but unstable.

4.3 Stability of Linear Systems

4.3.1 Nonautonomous Linear Systems
In this subsection we investigate the stability of the linear nonautonomous
(time-variant) system given by

x(n + 1) = A(n)x(n), n ≥ n0 ≥ 0. (4.3.1)

It is always assumed that A(n) is nonsingular for all n ≥ n0.
If Φ(n) is any fundamental matrix of system (4.3.1) or (4.3.6), then recall

that Φ(n, m) = Φ(n)Φ−1(m) is the state transition matrix. In the following
result we express the conditions for stability in terms of a fundamental
matrix Φ(n) of system (4.3.1).

Theorem 4.9. Consider system (4.3.1). Then its zero solution is

(i) stable if and only if there exists a positive constant M such that

‖Φ(n)‖ ≤ M for n ≥ n0 ≥ 0; (4.3.2)

(ii) uniformly stable if and only if there exists a positive constant M such
that

‖Φ(n, m)‖ ≤ M for n0 ≤ m ≤ n < ∞; (4.3.3)
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(iii) asymptotically stable if and only if

lim
n→∞ ‖Φ(n)‖ = 0; (4.3.4)

(iv) uniformly asymptotically stable if and only if there exist positive
constants M and η ∈ (0, 1) such that:

‖Φ(n, m)‖ ≤ Mηn−m for n0 ≤ m ≤ n < ∞. (4.3.5)

Proof. Without loss of generality we may assume that Φ(n0) = I, since
conditions (4.3.2) through (4.3.5) hold true for every fundamental matrix
if they hold for one. Thus x(n, n0, x0) = Φ(n)x0.

(i) Suppose that inequality (4.3.2) holds. Then ‖x(n, n0, x0)‖ ≤ M‖x0‖.
So for ε > 0, let δ < ε/M . Then ‖x0‖ < δ implies ‖x(n, n0, x0)‖ <
ε and, consequently, the zero solution is stable. Conversely, suppose
that ‖x(n, n0, x0)‖ = ‖Φ(n)x0‖ < ε whenever ‖x0‖ ≤ δ. Observe that
‖x0‖ ≤ δ if and only if 1

δ ‖x0‖ ≤ 1. Hence

‖Φ(n)‖ = sup
‖ξ‖≤1

‖Φ(n)ξ‖ =
1
δ

sup
‖x0‖≤δ

‖Φ(n)x0‖ ≤ ε

δ
= M.

Parts (ii) and (iii) remain as Exercises 4.3, Problems 9 and 10.

(iv) Suppose finally that inequality (4.3.5) holds. The zero solution of sys-
tem (4.3.1) would then be uniformly stable by part (ii). Furthermore,
for ε > 0, 0 < ε < M , take µ = 1 and N such ηN < ε/M . Hence,
if ‖x0‖ < 1, then ‖x(n, n0, x0)‖ = ‖Φ(n, n0)x0‖ ≤ Mηn−n0 < ε for
n ≥ n0 + N . The zero solution would be uniformly asymptotically
stable. Conversely, suppose that the zero solution is uniformly asymp-
totically stable. It is also then uniformly stable, and thus by Theorem
5.1(ii), ‖Φ(n, m)‖ ≤ M for 0 ≤ n0 ≤ m ≤ n < ∞. From uniform
attractivity, there exists µ > 0 such that for ε with 0 < ε < 1
there exists N such that ‖Φ(n, n0)‖ < ε for n ≥ n0 + N, whenever
‖x0‖ < µ. This implies that MΦ(n, n0)‖ ≤ ε for n ≥ n0 + N. Then for
nε[n0 + mN, n0 + (m + 1)N ], m > 0, we have

‖Φ(n, n0)‖ ≤ ‖Φ(n, n0 + mN)‖‖Φ(n0 + mN, n0 + (m − 1)N)‖ ×
· · · × ‖Φ(n0 + N, n0)‖

≤ Mεm ≤ M

ε

(
ε

1
N

)(m+1)N
= M̃η(m+1)N ,

≤ M̃η(n−n0),

for mN ≤ n − n0 ≤ (m + 1)N where M̃ = M
ε , η = ε

1
N . This concludes

the proof of the theorem. �

The following result arises as an immediate consequence of the above
theorem. [See the Important Remark, part (i).]
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Corollary 4.10. For the linear system (4.3.1) the following statements
hold:

(i) The zero solution is stable if and only if all solutions are bounded.

(ii) The zero solution is exponentially stable if and only if it is uniformly
asymptotically stable.

Proof. Statements (i) and (ii) follow immediately from conditions (4.3.3)
and (4.3.5), respectively (Exercises 4.3, Problem 6). �

The following is another important consequence of Theorem 4.9:

Corollary 4.11. For system (4.3.1), every local stability property of the
zero solution implies the corresponding global stability property.

Proof. Use Theorem 4.9 (Exercises 4.3, Problem 7). �

We now give a simple but powerful criterion for uniform stability and
uniform asymptotic stability.

Theorem 4.12 [17].

(i) If
∑k

i=1 |aij(n)| ≤ 1, 1 ≤ j ≤ k, n ≥ n0, then the zero solution of
system (3.2.15) is uniformly stable.

(ii) If
∑k

i=1 |aij(n)| ≤ 1 − ν for some ν > 0, 1 ≤ j ≤ k, n ≥ n0, then the
zero solution is uniformly asymptotically stable.

Proof.

(i) From condition (i) in Theorem 4.12, ‖A(n)‖1 ≤ 1 for all n ≥ n0. Thus,

‖Φ(n, m)‖1 =

∥∥∥∥∥
n−1∏
i=m

A(i)

∥∥∥∥∥
1

≤ ‖A(n−1)‖1‖A(n−2)‖1 · · · ‖A(m)‖1 ≤ 1.

This now implies uniform stability by Theorem 4.9, part (ii).

(ii) The proof of statement (ii) is so similar to the proof of statement (i)
that we will omit it here. �

4.3.2 Autonomous Linear Systems
In this subsection we specialize the results of the previous section to
autonomous (time-invariant) systems of the form

x(n + 1) = Ax(n). (4.3.6)

In the next theorem we summarize the main stability results for the
linear autonomous systems (4.3.6).

Theorem 4.13. The following statements hold:
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(i) The zero solution of (4.3.6) is stable if and only if ρ(A) ≤ 1 and the
eigenvalues of unit modulus are semisimple.1

(ii) The zero solution of (4.3.6) is asymptotically stable if and only if
ρ(A) < 1.

Proof.

(i) Let A = PJP−1, where J = diag(J1, J2, . . . , Jr) is the Jordan form of
A and

Ji =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

λi 1 0
λi

. . . . . .

1
0 λi

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

From Theorem 4.9 the zero solution of (4.3.6) is stable if and only if
‖An‖ = ‖PJnP−1‖ ≤ M or ‖Jn‖ ≤ M̃ , where M̃ = M/(‖P‖‖P−1‖).
Now, Jn = diag(Jn

1 , Jn
2 , . . . , Jn

r ), where

Jn
i =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λn
i

(
n

1

)
λn−1

i · · ·
(

n

si − 1

)
λn−si+1

i

0 λn
i · · · ...(

n

1

)
λn−1

i

0 0 · · · λn
i

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Obviously, Jn
i becomes unbounded if |λi| > 1 or if |λi| = 1 and Ji

is not 1 × 1. If |λi| < 1, then Jn
i → 0 as n → ∞. To prove this

conclusion it suffices to show that |λi|n n� → 0, as n → ∞ for any
positive integer �. This conclusion follows from L’Hôpital’s rule, since
|λi|n n� = n�e(ln |λi|)n (Exercises 4.3, Problem 8).

(ii) The proof of statement (ii) has already been established by the above
argument. This completes the proof of the theorem. �

Explicit Criteria for Stability of Two-Dimensional Systems

In many applications one needs explicit criteria on the entries of the matrix
for the eigenvalues to lie inside the unit disk. So consider the matrix

A =

(
a11 a12

a21 a22

)

1An eigenvalue is said to be semisimple if the corresponding Jordan block is
diagonal.
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whose characteristic equation is given by

λ2 − (a11 + a22)λ + (a11a22 − a12a21) = 0

or

λ2 − (trA)λ + det A = 0. (4.3.7)

Comparing (4.3.7) with the equation

λ2 + p1λ + p2 = 0,

where p1 = −trA, p2 = det A, we conclude from Theorem 2.37 that the
eigenvalues of A lie inside the unit disk if and only if

1 + trA + det A > 0, 1 − trA + det A > 0, 1 − det A > 0 (4.3.8)

or, equivalently,

|trA| < 1 + det A < 2. (4.3.9)

It follows that under condition (4.3.9), the zero solution of the equation

x(n + 1) = Ax(n)

is asymptotically stable.
We now describe the situation when some eigenvalues of A in (4.3.6) are

inside the unit disk and some eigenvalues are outside the unit disk. The
result below is called the Stable Subspace (Manifold) Theorem. The result
does not require that A is invertible.

Let λ be an eigenvalue of A of multiplicity m and let ξ1, ξ2, . . . , ξm be the
generalized eigenvectors corresponding to λ. Then for each i, 1 ≤ i ≤ m,
either

Aξi = λξi (ξi is an eigenvector of A), or
Aξi = λξi + ξi−1.

It follows that the generalized eigenvectors corresponding to λ are the
solutions of the equation

(A − λJ)mξ = 0. (4.3.10)

The set of all linear combinations, or the span of the generalized eigenvec-
tors corresponding to λ is invariant under A and is called the generalized
eigenspace Eλ of the eigenvalue of A. Clearly, if λ1 �= λ2, then Eλ1 ∩Eλ2 =
{0}. Notice that each eigenspace Eλ includes the zero vector.

Assume that A is hyperbolic, that is, none of the eigenvalues of A lie on
the unit circle. Arrange the eigenvalues of A such that ∆s = {λ1, λ2, . . . , λr}
are all the eigenvalues of A with |λi| < 1, 1 ≤ i ≤ r and ∆u =
{λr+1, λr+s, . . . , λk} are all the eigenvalues of A with |λi| > 1, r+1 ≤ i ≤ k.
The eigenspace spanned by the eigenvalues in ∆s is denoted by W s, where
W s =

⋃r
i=1 λi and the eigenspace spanned by the eigenvalues in ∆u is

denoted by Wu, where Wu =
⋃k

i=r+1 λi.
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Theorem 4.14 (The Stable Subspace (Manifold) Theorem). If A
is hyperbolic, then the following statements hold true:

(i) If x(n) is a solution of (4.3.6) with x(0) ∈ W s, then for each n, x(n) ∈
W s. Furthermore,

lim
n→∞ x(n) = 0.

(ii) If x(n) is a solution of (4.3.6) with x(0) ∈ W u, then x(n) ∈ Wu for
each n. Moreover,

lim
n→−∞ x(n) = 0.

Proof.

(i) Let x(n) be a solution of (4.3.6) with x(0) ∈ W s. Since AEλ = Eλ, it
follows that AW s = W s. Hence x(n) ∈ W s for all n ∈ Z

+. To prove
the second statement, observe that x(0) =

∑r
i=1 ciξi, where 1 ≤ ξi ≤ r

are the generalized eigenvectors corresponding to elements in ∆s. Let
J = P−1AP be the Jordan form of A. Then J may be written in the
form

J =

(
Js 0
0 Ju

)
where Js has the eigenvalues in ∆s and Ju has the eigenvalues in
∆u′ . By Lemma 3.27 in Chapter 3, the corresponding generalized
eigenvectors ξ̃i, 1 ≤ i ≤ r, of Js are of the form ξ̃i = P−1ξi =
(ai1, ai2, . . . , air, 0, 0, . . . , 0)T . Now

x(n) = Anx(0)

= PJnP−1
r∑

i=1

ciξi

= PJn
r∑

i=1

ciξ̃i

= P

r∑
i=1

ci

(
Jn

s ξ̃i

0 0

)
.

Thus limn→∞ x(n) = 0 since Jn
s → 0 as n → ∞.

(ii) The proof of (ii) is analogous to (i) and will be left to the reader as
Problem 11. �

Remark:

(i) Part (i) may be obtained without the condition of hyperbolicity of A,
and similarly for part (ii).
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(ii) The General Stable Manifold Theorem for Nonlinear Maps will be given
in Appendix D.

We now use the above result to investigate the stability of the periodic
system

x(n + 1) = A(n)x(n), A(n + N) = A(n). (4.3.11)

Recall from Chapter 3 that if Φ(n, n0) is a fundamental matrix of (4.3.11),
then there exist a constant matrix B whose eigenvalues are called the
Floquet exponents and a periodic matrix P (n, n0) such that Φ(n, n0) =
P (n, n0)Bn−n0 , where P (n + N, n0) = P (n, n0). Thus if Bn is bounded,
then so is Φ(n, n0), and if Bn → 0 as n → ∞, then it follows that
Φ(n, n0) → 0 as n → ∞. This proves the following result.

Theorem 4.15. The zero solution of (4.3.11) is:

(i) stable if and only if the Floquet exponents have modulus less than or
equal to 1; those of modulus of 1 are semisimple;

(ii) asymptotically stable if and only if all the Floquet exponents lie inside
the unit disk.

For practical purposes, the following corollary is of paramount impor-
tance.

Corollary 4.16. The zero solution of (4.3.11) is:

(i) stable if and only if each eigenvalue of the matrix C = A(N −1)A(N −
2) · · ·A(0) has modulus less than or equal to 1; those solutions with
modulus of value 1 are semisimple;

(ii) asymptotically stable if and only if each eigenvalue of
C = A(N − 1)A(N − 2) · · ·A(0) has modulus less than 1.

Let us summarize what we have learned thus far. First, for the au-
tonomous (time-invariant) linear system x(n+1) = Ax(n), the eigenvalues
of A determine the stability properties of the system (Theorem 4.13). But
for a periodic system x(n + 1) = A(n)x(n), the eigenvalues of A(n) do not
play any role in the determination of the stability properties of the sys-
tem. Instead, the Floquet multipliers of A(n) determine those properties.
The following example should dispel any wrong ideas concerning the role
of eigenvalues in a nonautonomous system.

Example 4.17. Let us again consider the periodic system in Example
3.35 where

A(n) =

⎛⎜⎝ 0
2 + (−1)n

2
2 − (−1)n

2
0

⎞⎟⎠ .
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Here the eigenvalues of A are ±√
3/2, and thus ρ[A(n)] < 1. By applying

Corollary 4.16, one may quickly check the stability of this system. We have

C = A(1)A(0) =

⎛⎜⎝0
3
2

1
2

0

⎞⎟⎠
⎛⎜⎝0

1
2

3
2

0

⎞⎟⎠ =

⎛⎜⎝9
4

0

0
1
4

⎞⎟⎠ .

Hence, by Corollary 4.16, the zero solution is unstable, since C has an
eigenvalue 9/4 which is greater than 1.

For the eager reader, perpetually searching for a challenge, we might
determine the stability by explicitly transcribing the fundamental matrix
as follows:

Φ(n) =

⎛⎜⎜⎝
21−n − (−2)1−n

2

( 3
2

)n − (− 3
2

)n
2

2−n − (−2)−n

2

( 3
2

)n − (− 3
2

)n
2

⎞⎟⎟⎠ .

Hence, these are unbounded solutions. Consequently, the zero solution
is unstable. This example demonstrates without any doubt that eigen-
values do not generally provide any information about the stability of
nonautonomous difference systems.

Exercises 4.3

1. Determine whether the zero solution of the system x(n + 1) = Ax(n)
is stable, asymptotically stable, or unstable if the matrix A is:

(a)

(
1 0

−2 1

)
. (b)

⎛⎜⎜⎜⎜⎜⎝
5
12

0
1
2

−1 −1
2

5
4

1
3

0 0

⎞⎟⎟⎟⎟⎟⎠ .

(c)

(
−1 5

−0.5 2

)
. (d)

⎛⎜⎝ 1.5 1 −1
−1.5 −0.5 1.5
0.5 1 0

⎞⎟⎠ .

2. Give another example (see Example 4.17) of a matrix A(n) such that
ρ[A(n)] < 1 and the zero solution of x(n + 1) = A(n)x(n) is unstable.

3. Give an example of a stable matrix A (i.e., ρ(A) < 1) with ‖A‖ > 1,
for some matrix norm ‖‖.

4. Consider the autonomous (time-invariant) system (4.3.6). Prove the
following statements:

(i) The zero solution is stable if and only if it is uniformly stable.
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(ii) The zero solution is asymptotically stable if and only if it is
uniformly asymptotically stable.

5. Use Corollary 4.16 to determine whether or not the zero solution of
x(n + 1) = A(n)x(n) is uniformly stable or uniformly asymptotically
stable, where A(n) is the matrix:

(a)

⎛⎜⎝−1
1
4

cos(n)

0
1
2

sin(n)

⎞⎟⎠ . (b)

⎛⎝ n

n + 1
0

−1 1

⎞⎠ .

(c)

⎛⎜⎜⎜⎜⎜⎝
1

n + 1
0

1
2

sin(n)

1
4

1
2

sin(n)
1
4

cos(n)

1
5

0 0

⎞⎟⎟⎟⎟⎟⎠ . (d)

⎛⎜⎜⎜⎜⎝
n + 2
n + 1

0 0

0 1 0
1

n + 1
0 1

⎞⎟⎟⎟⎟⎠ .

6. Prove Corollary 4.10.

7. Prove Corollary 4.11.

8. Show that if |λ| < 1, then limn→∞ |λ|nns = 0 for any given positive
integer s.

9. Prove that the zero solution of system (4.3.1) is uniformly stable if and
only if there exists M > 0 such that ‖Φ(n, m)‖ ≤ M , for n0 ≤ m ≤
n < ∞.

10. Prove that the zero solution of system (4.3.1) is asymptotically stable
if and only if limn→∞ ‖Φ(n)‖ = 0.

11. Prove Theorem 4.14, part (ii).

Iterative Methods

Consider the system of linear algebraic equations

Ax = b, (4.3.12)

where A = (aij) is a k × k matrix.
Iterative methods are used widely to solve (4.3.12) numerically. We

generate a sequence x(n) using the difference equation

x(n + 1) = Bx(n) + d, (4.3.13)

where the choice of B and d depends on the iterative method used. The
iterative method (4.3.13) is consistent with (4.3.12) if a solution x* of
(4.3.12) is an equilibrium point of (4.3.13), i.e., if

Bx∗ + d = x∗. (4.3.14)

We now describe one such consistent method, the Jacobi iterative method.
Assuming that the diagonal elements aii of A are nonzero, then D =
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diag(a11, a22, . . . , akk) is nonsingular. In (4.3.13) define

B = I − D−1A, d = D−1b. (4.3.15)

This method is consistent (Exercises 4.3, Problem 12). If A is nonsingular,
then x* is unique. The associated error equation may be derived by letting
e(n) = x(n) − x*. Equations (4.3.13) and (4.3.14) then yield the equation

e(n + 1) = Be(n). (4.3.16)

The quantity e(n) represents the error in approximating the solution x* by
the nth iterate x(n) of (4.3.13).

12. (i) Prove that x(n) → x* as n → ∞ if and only if e(n) → 0 as
n → ∞. In other words, the iterative method ((4.3.13) converges
to the solution x* of (4.3.12) if and only if the zero solution of
(4.3.16) is asymptotically stable).

(ii) Use Theorem 4.9 to show that the iterative method converges if
and only if ρ(B) < 1.

13. Show that the Jacobi iterative method is consistent.

14. Consider (4.3.12) and (4.3.13) with the assumption that the diagonal
elements of A are nonzero. Let L be the lower triangular part of A
and let U be the strictly upper triangular part of A (i.e., the main
diagonal of U is zero). Then A = L + U . The Gauss–Seidel iterative
method defines B = −L−1U and d = L−1b. Show that this method is
consistent.

In Problem 15 we consider the k-dimensional system x(n+1) = A(n)x(n).

*15. (a) Define H(n) = AT (n)A(n). Prove the Lagrange identity

‖x(n + 1)‖2
2 = xT (n + 1)x(n + 1) = xT (n)H(n)x(n). (4.3.17)

(b) Show that all eigenvalues of H(n) as defined in part (a) are real
and nonnegative.

(c) Let the eigenvalues of H(n) be ordered as λ1(n) ≤ λ2(n) ≤ · · · ≤
λk(n). Show that, for all x ∈ Rn,

λ1(n)xT x ≤ xT H(n)x ≤ λk(n)xT x. (4.3.18)

(d) Use the Lagrange identity (4.3.17) in formula (4.3.18) to show
that (

n−1∏
i=n0

λ1(i)

)
xT (n0)x(n0) ≤ xT (n)x(n)

≤
(

n−1∏
i=n0

λk(i)

)
xT (n0)x(n0).
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(e) Show that
n−1∏
i=n0

λ1(i) ≤ ‖Φ(n, n0)‖2 ≤
n−1∏
i=n0

λk(i). (4.3.19)

4.4 Phase Space Analysis

In this section we will study the stability properties of the second-order
linear autonomous (time-invariant) systems

x1(n + 1) = a11x1(n) + a12x2(n),
x2(n + 1) = a21x1(n) + a22x2(n),

or

x(n + 1) = Ax(n), (4.4.1)

where

A =

(
a11 a12

a21 a22

)
.

Recall that x* is an equilibrium point of system (4.4.1) if Ax* = x*
or (A − I)x* = 0. So if (A − I) is nonsingular, then x* = 0 is the only
equilibrium point of system (4.4.1). On the other hand, if (A−I) is singular,
then there is a family of equilibrium points, as illustrated in Figure 4.8. In
the latter case we let y(n) = x(n) − x* in (4.4.1) to obtain the system
y(n + 1) = Ay(n), which is identical to system (4.4.1). Thus the stability
properties of any equilibrium point x∗ �= 0 are the same as those of the
equilibrium point x* = 0. Henceforth, we will assume that x* = 0 is the
only equilibrium point of system (4.4.1).

Let J = P−1AP be the Jordan form of A. Then J may have one of the
following canonical forms:(

λ1 0
0 λ2

)
,

(
λ 1
0 λ

)
,

(
α β

−β α

)
. (4.4.2)

(a)
distinct real
eigenvalues

λ1, λ2

(b)
repeated real
eigenvalue λ

(c)
complex conjugate

eigenvalues
λ = α ± iβ

If we let

y(n) = P−1x(n),

or

x(n) = Py(n), (4.4.3)
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y
2

y
1

FIGURE 4.8. λ1 < λ2 < 1, asymptotically stable node.

then system (4.4.1) becomes

y(n + 1) = Jy(n). (4.4.4)

If x(0) = x0 is an initial condition for system (4.4.1), then y(0) = y0 =
P−1x0 will be the corresponding initial condition for system (4.4.4). Notice
that the qualitative properties of the equilibrium points of systems (4.4.1)
and (4.4.4) are identical.

Our program is to sketch the phase space of system (4.4.4) in cases (a),
(b), and (c). Starting with an initial value

y0 =

(
y10

y20

)
in the y1y2-plane, we trace the movement of the points y(1), y(2), y(3), . . . .
Essentially, we draw the orbit {y(n, 0, y0)|n ≥ 0}. An arrow on the orbit
indicates the direction of motion as time increases.

Case (a). In this case the system becomes

y1(n + 1) = λ1y1(n),
y2(n + 1) = λ2y2(n).

Hence (
y1(n)
y2(n)

)
=

(
λn

1y10

λn
2y20

)
,

and thus
y2(n)
y1(n)

=
(

λ2

λ1

)n(
y20

y10

)
.

If |λ1| > |λ2|, then limn→∞ y2(n)/y1(n) = 0, and if |λ1| < |λ2|, then
limn→∞

|y2(n)|
|y1(n)| = ∞ (see Figures 4.8, 4.9, 4.10, 4.11, 4.12).
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y
2

y
1

FIGURE 4.9. λ1 > λ2 > 1, unstable node.

y
1

FIGURE 4.10. 0 < λ1 < 1, λ2 > 1, saddle (unstable).

Case (b). In this case,(
y1(n)
y2(n)

)
= Jn

((
y10

y20

))
=

(
λn nλn−1

0 λn

)((
y10

y20

))
,

or

y1(n) = λny10 + nλn−1y20,

y2(n) = λny20.



4.4 Phase Space Analysis 197

y1

y2

FIGURE 4.11. 0 < λ1 = λ2 < 1, asymptotically stable node.

y2

y1

FIGURE 4.12. λ1 = 1, λ2 < λ1, degenerate node.

Thus

lim
n→∞

y2(n)
y1(n)

= 0.

(See Figures 4.13, 4.14.)

Case (c). In this case, the matrix A has two complex conjugate eigenvalues,

λ1 = α + iβ and λ2 = α − iβ, β �= 0.
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y2

y1

FIGURE 4.13. λ1 = λ2 < 1, asymptotically stable.

y2

y1

FIGURE 4.14. λ1 = λ2 = 1, degenerate case (unstable). All points on the y1-axis
are equilibrium points.

The eigenvector corresponding to λ1 = α + iβ is given by ξ1 =

(
1
i

)
, and

the solution may be given by(
1
i

)
(α + iβ)n =

(
1
i

)
|λ1|n(cos nω + i sinnω),

= |λ1|n
(

cos nω

−sinnω

)
+ i|λ1|n

(
sinnω

cos nω

)
,

where ω = tan−1(β/α).
A general solution may then be given by(

y1(n)
y2(n)

)
= |λ1|n

(
c1 cos nω + c2 sinnω

−c1 sinnω + c2 cos nω

)
.
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Given the initial values y1(0) = y10 and y2(0) = y20, one may obtain
c1 = y10 and c2 = y20. The solution is denoted by

y1(n) = |λ1|n(y10 cos nω + y20 sinnω),
y2(n) = |λ1|n(−y10 sinnω + y20 cos nω).

If we let cos γ = y10/r0 and sin γ = y20/r0, where r0 =
(
y2
10 + y2

20
)
, we

have y1(n) = |λ1|nr0 cos(nω − γ) and y2(n) = −|λ1|nr0 sin(nω − γ). Using
polar coordinates we may now write the solution as

r(n) = r0|λ1|n, θ(n) = −(nω − γ).

If |λ1| < 1, we have an asymptotically stable focus, as illustrated in Figure
4.15. If |λ1| > 1, we find an unstable focus, as shown in Figure 4.16. When
|λ1| = 1, we obtain a center where orbits are circles with radii (Figure 4.17)

r0 =
√

y2
10 + y2

20.

y2

y1

FIGURE 4.15. |λ| < 1, asymptotically stable focus.

y2

y1

FIGURE 4.16. |λ| > 1, unstable focus.
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y1

FIGURE 4.17. |λ| = 1, center (stable).

Using (4.4.3) one may sketch the corresponding phase space portraits in
the x1x2-plane for the system of equations (4.4.1). The following example
illustrates this method.

Example 4.18. Sketch the phase space portrait of the system

x(n + 1) = Ax(n), where A =

(
1 1

0.25 1

)
.

Solution The eigenvalues of A are λ1 = 1.5 and λ2 = 1
2 ; the corresponding

eigenvectors are ξ1 =
(2
1

)
and ξ2 =

( 2
−1

)
, respectively. Thus

P−1AP = J =

(
1.5 0
0 0.5

)
, where P =

(
2 2
1 −1

)
.

Figure 4.18 shows the phase space portrait for y(n+1) = Jy(n). To find the
corresponding phase space portrait of our problem, we let x(n) = Py(n).
We define the relationship between the y1–y2 system and the x1–x2 system
by noticing that

(1
0

)
in the y1–y2 system corresponds to P

(1
0

)
=
(2
1

)
in

the x1–x2 system, and
(0
1

)
in the y1-y2 system corresponds to the point

P
(0
1

)
=
( 2
−1

)
in the x1–x2 system. The y1-axis is rotated by θ1 = tan−1(0.5)

to the x1-axis, and the y2-axis is rotated by θ2 = tan−1(−0.5) to the x2-axis.
Furthermore, the initial point(

y10

y20

)
=

(
1
0

)
for the canonical system corresponds to the initial point(

x10

x20

)
= P

(
1
0

)
=

(
2
1

)
.

The phase space portrait of our system is shown in Figure 4.19. Basically,
the axis x1 is cξ1 =

(2c
c

)
, c ∈ R, and the axis x2 is cξ2 =

(2c
−c

)
, c ∈ R.
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y2

y1

FIGURE 4.18. Canonical saddle.

x2

x1

FIGURE 4.19. Actual saddle.

Example 4.19. Sketch the phase space portrait of the system x(n + 1) =
Ax(n) with

A =

(
1 3

−1 1

)
.

Solution The eigenvalues of A are λ1 = 1 +
√

3 i and λ2 = 1 − √
3 i. The

eigenvector corresponding to λ1 is

ξ1 =

(√
3

i

)
=

(√
3

0

)
+ i

(
0
1

)
.
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If we let

P =

(√
3 0

0 1

)
,

then

P−1AP = J =

(
1

√
3

−
√

3 1

)
,

which is in the canonical form (4.4.2) (c). Hence, the solution of y(n+1) =
Jy(n) is

r(n) = r0|λ1|n =
√

y2
10 + y2

10(2)n

and

θ(n) = α − nω,

where

α = tan−1
(

y20

y10

)
, ω = tan−1

(√
3
)

=
π

3
.

Figure 4.20 depicts the orbit of
(−1

16 , 0
)
. The solution is given by r(n) =

1
16 (2)n = 2n−4, θ(n) = π − (nπ)/3. The corresponding orbit in the original
system has an initial point

x0 =

(√
3 0

0 1

)(
−1/16

0

)
=

(√
3/16
0

)
and is depicted in Figure 4.21. Notice that no axis rotation has occurred
here.

FIGURE 4.20. Canonical unstable focus.
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FIGURE 4.21. Actual unstable focus.

Exercises 4.4

1. Sketch the phase space diagram and determine the stability of the
equation x(n + 1) = Ax(n), where A is given by

(a)

(
0.5 0
0 0.5

)
. (b)

(
0.5 0
0 2

)
.

(c)

(
2 1
0 2

)
. (d)

(
−0.5 1

0 −0.5

)
.

2. Sketch the phase space diagram and determine the stability of the
system x(n + 1) = Ax(n), where A is given by

(a)

(
0 2

−2 0

)
. (b)

(
0.6 −0.5
0.5 0.6

)
.

(c)

(
1 0.5

−0.5 1

)
. (d)

(
0.6 0.8

−0.8 0.6

)
.

In Problems 3 through 6, sketch the phase space diagram and determine
the stability of the system x(n + 1) = Ax(n).

3. A =

(
1 1

−1 3

)
.

4. A =

(
−2 1
−1 3

)
.

5. A =

(
−2 1
−7 3

)
.

6. A =

(
1 2

−1 −1

)
.
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7. If the eigenvalues of a real 2 × 2 matrix A are α + iβ, α − iβ, show
that the Jordan canonical form of A is(

α β

−β α

)
.

4.5 Liapunov’s Direct, or Second, Method

In his famous memoir, published in 1892, the Russian mathematician A.M.
Liapunov introduced a new method for investigating the stability of non-
linear differential equations. This method, known as Liapunov’s direct
method, allows one to investigate the qualitative nature of solutions with-
out actually determining the solutions themselves. Therefore, we regard
it as one of the major tools in stability theory. The method hinges upon
finding certain real-valued functions, which are named after Liapunov. The
major drawback in the direct method, however, lies in determining the
appropriate Liapunov function for a given equation.

In this section we adapt Liapunov’s direct method to difference
equations. We begin our study with the autonomous difference equation

x(n + 1) = f(x(n)), (4.5.1)

where f : G → R
k, G ⊂ R

k, is continuous. We assume that x* is an
equilibrium point of (4.5.1), that is, f(x∗) = x*.

Let V : R
k → R be defined as a real-valued function. The variation of V

relative to (4.5.1) would then be defined as

∆V (x) = V (f(x)) − V (x)

and

∆V (x(n)) = V (f(x(n))) − V (x(n)) = V (x(n + 1)) − V (x(n)).

Notice that if ∆V (x) ≤ 0, then V is nonincreasing along solutions of (4.5.1).
The function V is said to be a Liapunov function on a subset H of R

k if:

(i) V is continuous on H, and

(ii) ∆V (x) ≤ 0, whenever x and f(x) belong to H.

Let B(x, γ) denote the open ball in R
k of radius γ and center x defined

by B(x, γ) = {y ∈ R
k|‖y − x‖ < γ}. For the sake of brevity, B(0, γ) will

henceforth be denoted by B(γ). We say that the real-valued function V is
positive definite at x* if:

(i) V (x∗) = 0, and

(ii) V (x) > 0 for all x ∈ Bx∗, γ), x �= x∗, for some γ > 0.
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x1

x2

V (x1, x2)

FIGURE 4.22. A quadratic Liapunov function.

We now present to the reader an informal geometric discussion of the first
Liapunov stability theorem. For simplicity, we will assume that our system
is planar with x* = 0 as the equilibrium point. Suppose that (4.5.1) has
a positive definite Liapunov function V defined on B(η). Figure 4.22 then
illustrates the graph of V in a three-dimensional coordinate system, while
Figure 4.23 gives the level curves V (x1, x2) = c of V in the plane. If we now
let ε > 0, B(ε) then contains one of the level curves of V , say V (x) = c̃2.
The level curve V (x) = c̃2 contains the ball B(δ) for some δ with 0 < δ ≤ ε.
If a solution x(n, 0, x0) starts at x0 ∈ B(δ), then V (x0) ≤ c̃2. Since ∆V ≤ 0,
V is a monotonic nonincreasing function along solutions of (4.5.1). Hence,
V (x(n)) ≤ V (x0) ≤ c̃2 for all n ≥ 0. Thus, the solution x(n, 0, x0) will
stay forever in the ball B(ε). Consequently, the zero solution is stable. The
above argument contains the essence of the proof of the first Liapunov
stability theorem.

Theorem 4.20 (Liapunov Stability Theorem). If V is a Liapunov
function for (4.5.1) in a neighborhood H of the equilibrium point x∗, and
V is positive definite with respect to x∗, then x∗ is stable. If, in addition,
∆V (x) < 0 whenever x, f(x) ∈ H and x �= x*, then x∗ is asymptotically
stable. Moreover, if G = H = R

k and

V (x) → ∞ as ‖x‖ → ∞, (4.5.2)

then x∗ is globally asymptotically stable.

Proof. Choose α1 > 0 such that B(x∗, α1) ⊂ G ∩ H. Since f is continu-
ous, there is α2 > 0 such that if x ∈ Bx∗, α2), then f(x) ∈ B(x∗, α1). Let
0 < ε ≤ α2 be given. Define ψ(ε) = min{V (x)|ε ≤ ‖x − x∗‖ ≤ α1}. By the
Intermediate Value Theorem, there exists 0 < δ < ε such that V (x) < ψ(ε)
whenever ‖x − x∗‖ < δ.
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x1

x2

B(  )

B(   )

V=c2

V=c3

V=c1

FIGURE 4.23. Level curves.

Realize now that if x0 ∈ B(x∗, δ), then x(n) ∈ B(x∗, ε) for all n ≥ 0.
This claim is true because, if not, there exist x0 ∈ B(x∗, δ) and a positive
integer m such that x(r) ∈ B(x∗, ε) for 1 ≤ r ≤ m and x(m+1) �∈ B(x∗, ε).
Since x(m) ∈ B(x∗, ε) ⊂ B(x∗, α2), it follows that x(m + 1) ∈ B(x∗, α1).
Consequently, V (x(m+1)) ≥ ψ(ε). However, V (x(m+1)) ≤ · · · ≤ V (x0) <
ψ(ε), and we thus have a contradiction. This establishes stability.

To prove asymptotic stability, assume that x0 ∈ B(x∗, δ). Then x(n) ∈
B(x∗, ε) holds true for all n ≥ 0. If {x(n)} does not converge to x*, then
it has a subsequence {x(ni)} that converges to y ∈ Rk. Let E ⊂ B(x∗, α1)
be an open neighborhood of y with x∗ �∈ E. Having already defined on E
the function h(x) = V (f(x))/V (x), we may consider h as well-defined and
continuous, and h(x) < 1 for all x ∈ E. Now, if η ∈ (h(y), 1), then there
exists α > 0 such that x ∈ B(y, α) implies h(x) ≤ η. Thus, for sufficiently
large ni,

V (f(x(ni))) ≤ ηV (x(ni − 1)) ≤ η2V (x(ni − 2)) ≤ · · · ≤ ηniV (x0).

Hence,

lim
ni→∞ V (x(ni)) = 0.

But since limni→∞ V (x(ni)) = V (y), this statement implies that V (y) = 0
and, consequently, y = x*.

To prove the global asymptotic stability, it suffices to show that all solu-
tions are bounded and then repeat the above argument. Begin by assuming
that there exists an unbounded solution x(n), and then some subsequence
{x(ni)} → ∞ as ni → ∞. By condition (4.5.2), this assumption im-
plies that V (x(ni)) → ∞ as ni → ∞, which is a contradiction, since
V (x0) > V (x(ni)) for all i. This concludes the proof. �
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The result on boundedness has its own independent importance, so we
give it its due respect by stating it here as a separate theorem.

Theorem 4.21. If V is a Liapunov function on the set {x ∈ R
k|‖x‖ > α}

for some α > 0, and if condition (4.5.2) holds, then all solutions of (4.5.1)
are bounded.

Proof. (Exercises 4.5, Problem 7.) �

Example 4.22. Consider the following second-order difference equation:

x(n + 1) =
αx(n − 1)
1 + βx2(n)

, β > 0.

This equation is often called an equation with delay. There are three
equilibrium points, namely, x* = 0 and

x∗ = ±
√

(α − 1)
β

if α > 1. Let us first change the equation into a system by letting y1(n) =
x(n − 1) and y2(n) = x(n). Then we obtain the system

y1(n + 1) = y2(n),

y2(n + 1) =
αy1(n)

1 + βy2
2(n)

.

Consider the stability of the equilibrium point (0, 0). Our first choice of a
Liapunov function will be V (y1, y2) = y2

1 + y2
2 . This is clearly continuous

and positive definite on R
2:

∆V (y1(n), y2(n)) = y2
1(n + 1) + y2

2(n + 1) − y2
1(n) − y2

2(n).

Thus,

∆V (y1(n), y2(n)) =
(

α2

[1 + βy2
2(n)]2

− 1
)

y2
1(n) ≤ (α2 − 1)y2

1(n). (4.5.3)

If α2 ≤ 1, then ∆V ≤ 0. In this case x∗ = 0 would be the only equilib-
rium point, and by Theorem 4.20, the origin is stable (Figure 4.24). Since
lim‖x‖→∞ V (x) = ∞, Theorem 4.21 implies that all solutions are bounded.
Since ∆V = 0 for all points on the y2-axis, Theorem 4.20 fails to determine
asymptotic stability for this equation.

This situation is typical in most of the problems encountered in applica-
tions in science and engineering. Therefore, a finer and more precise analysis
is required. This need leads us to LaSalle’s invariance principle, which will
be presented shortly.

To prepare for the introduction of our major theorem, we ought to
familiarize ourselves with some vital terminology:

(i) For a subset G ⊂ R
k, x is a limit point of G if there exists a sequence

{xi} in G with xi → x as i → ∞.
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(ii) The closure G of G is defined to be the union of G and all of its limit
points.

(iii) After considering (4.5.1), the positive orbit O+(x0) is defined as
O+(x0) = {x(n, 0, x0)|n ∈ Z

+}. Since we will only deal with posi-
tive orbits, O+(x) will be denoted by O(x). We will denote O+(x0) by
O(x0).

(iv) The limit set Ω(x0), also referred to as the positive limit set, of x0 is the
set of all positive limit points of x0. Thus, Ω(x0) = {y ∈ Rk|x(ni) → y
as ni → ∞ for some subsequence {ni} of Z

+}.

(v) A set A is positively invariant if O(x0) ⊂ A for every x0 ∈ A. One
may easily show that both O(x0) and Ω(x0) are (positively) invariant.

The nagging question still persists as to whether or not Ω(x0) is
nonempty for a given x0 ∈ Rk. The next lemma satisfies that question.

Theorem 4.23. Let x0 ∈ R
k and let Ω(x0) be its limit set in (4.5.1).

Then the following statements hold true:

(i) Ω(x0) =
∞⋂

i=0

∞⋃
n=i

{fn(x0)} =
∞⋂

i=0

∞⋃
n=i

{x(n)} .

(ii) If f j(x0) = y0, j ∈ Z
+, then Ω(y0) = Ω(x0) .

(iii) Ω(x0) is closed and invariant.

(iv) If the orbit O(x0) is bounded, then Ω(x0) is nonempty and bounded.

Proof.

(i) Let y ∈ Ω(x0). Then fni(x0) → y as ni → ∞. Now for each i, there

exists a positive integer Ni such that fnj (x0) ∈
∞⋃

i=0
{fn(x0)} for all

nj ≥ Ni. Thus y ∈
∞⋃

n=i

{fn(x0)} for every N and, consequently, y ∈
∞⋂

i=0

∞⋃
n=i

{fn(x0)}. This proves one inclusion and, conversely, let y ∈
∞⋂

i=0

∞⋃
n=i

{fn(x0)}. Then for each i, y ∈
∞⋃

n=i

{fn(x0)}. Thus for each i

there exists fni(x0) ∈ By(x0), with n1 < n2 < n3 < · · · and ni → ∞
as i → ∞. Clearly, fni(x0) → y as nN → ∞ and hence y ∈ Ω(x0).

(ii) The proof of (ii) is left to the reader as Problem 5.

(iii) Since the closure of a set is closed,
∞⋃

n=i

{fn(x0)} is closed. Now that

Ω(x0) is closed follows from the fact that the intersection of closed sets
is closed.
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To show that Ω(x0) is invariant, let y ∈ Ω(x0). Then fni(x0) → y
as ni → ∞. Since f is continuous, it follows that fni+1(x0) = f
(fni(x0) → f(y)). Hence f(y) ∈ Ω(x0) and Ω(x0) is thus invariant.

(iv) This is left to the reader as Problem 6. �

Let V be a positive Liapunov function on a subset G of R
k. Define

E = {x ∈ G|∆V (x) = 0}.

Let M be the maximal invariant subset of E, that is, define M as the union
of all invariant subsets of E.

Theorem 4.24 (LaSalle’s Invariance Principle) [88]. Suppose that
V is a positive definite Liapunov function for (4.5.1) in G ⊂ R

k. Then for
each bounded solution x(n) of (4.5.1) that remains in G for all n ∈ Z

+,
there exists a number c such that x(n) → M ∩ V −1(c) as n → ∞.

Proof. Let x(n) be a bounded solution of (4.5.1) with x(0) = x0 and
such that x(n) is bounded and remains in G. Then, by Theorem 4.23,
φ �= Ω(x0) ⊂ G. Thus, if y ∈ Ω(x0), then x(ni) → y as ni → ∞ for
some subsequence ni ∈ Z

+. Since V (x(n)) is nonincreasing and bounded
below, limn→∞ V (x(n)) = c for some number c. By the continuity of V,
it follows that V (x(ni)) → V (y) as ni → ∞, and thus V (y) = c. This
implies that V (Ω(x0)) = c and, consequently, Ω(x0) ⊂ V −1(c). Moreover,
∆V (y) = 0 for every y ∈ Ω(x0). This implies that Ω(x0) ⊂ E. But, since
Ω(x0) is (positively) invariant, Ω(x0) ⊂ M. Therefore, x(n) → Ω(x0) ⊂
M ∩ V −1(c) as n → ∞. �

Example 4.22 revisited. Let us reexamine Example 4.22 in light of
LaSalle’s invariance principle. We will consider three cases:

Case 1. α2 = 1. The set E consists of all the points on the x- and y-
axes. We have two subcases to consider. Subcase (i): α = 1. If y1(0) = a
and y2(0) = 0, then y1(1) = 0 and y2(1) = a, and y1(2) = a, y2(2) = 0.
Therefore, any solution starting on either axis is of period 2, and M = E.
Subcase (ii): α = −1. Then 0+(a, 0) = {(a, 0), (0,−a), (−a, 0), (0, a)}. Thus
any solution starting on either axis is of period 4, and M = E again. Hence
all solutions converge to (a, 0), (−a, 0), (0, a), or (0,−a). Clearly, the zero
solution is not asymptotically stable.

Case 2. Because α2 < 1, E is equal to the y-axis and M = {(0, 0)}. Thus,
all solutions converge to the origin. Hence the origin is globally asymptoti-
cally stable. Figure 4.24 depicts the phase portrait for α = 0.5. Notice the
difference in the way solutions in quadrants I and III begin, compared to
the way the solutions in quadrants II and IV commence.

Case 3. α2 > 1. In this case, LaSalle’s invariance principle does not aid us
in determining the stability of the solution. In other words, the stability is
indeterminable.



210 4. Stability Theory

y
2

y
1

(0.9 , 0.8)

(0.9 , -0.8)(-0.9 , -0.8)

(-0.9 , 0.8)

FIGURE 4.24. A globally asymptotically stable equilibrium.

Sometimes, we may simplify the difference equation by applying a simple
basic transformation to the system. For instance, one might translate the
system into polar coordinates (r, θ), where x1 = r cos θ, x2 = r sin θ. The
following example demonstrates the effectiveness of this method.

Example 4.25. Consider the difference system

x1(n + 1) = x2
1(n) − x2

2(n),
x2(n + 1) = 2x1(n)x2(n).

Let x1(n) = r(n) cos θ(n) and x2(n) = r(n) sin θ(n).
Then

r(n + 1) cos θ(n + 1) = r2(n) cos2 θ(n) − r2(n) sin2 θ(n)

= r2(n) cos 2θ(n), (4.5.4)

and

r(n + 1) sin θ(n + 1) = 2r2 sin θ(n) cos θ(n)

= r2(n) sin 2θ(n). (4.5.5)

Dividing (4.5.4) by (4.5.5), we get

θ(n + 1) = 2θ(n).

Substituting this into (4.5.4), we obtain

r(n + 1) = r2(n).

We may write this solution as r(n) = [r(0)]2
n

and θ(n) = 2nθ(0).
The equilibrium points are (0, 0) and (1, 0).
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1

FIGURE 4.25. Unstable limit cycle. Three initial values (0.6, 0.8), (0.6, 0.81),
(0.6, 0.79).

For r(0) < 1, limn→∞ r(n) = 0. Thus solutions starting inside the unit
disk spiral toward the origin. Consequently, the origin is asymptotically
stable (not globally), as shown in Figure 4.25.

For r(0) > 1, we have limn→∞ r(n) = ∞, and hence solutions that start
outside the unit disk spiral away from the unit circle to ∞. This occurrence
makes the equilibrium point (1, 0) unstable.

For r(0) = 1, r(n) = 1, for all n ≥ 0. Therefore, the circle is an
invariant set, with very complicated dynamics. For instance, the solu-
tion starting at

(
1, π

4

)
will reach the equilibrium point (1, 0) in three

iterations:
(
1, π

4

)
,
(
1, π

2

)
(1, π), (1, 0). However, the solution that starts at(

1, 2π
3

)
is a 2-cycle. In general, (1, θ) is periodic, with period m, if and

only if 2mθ = θ + 2kπ for some integer k, i.e., if and only if θ =
(2kπ)/2m − 1, k = 0, 1, 2, . . . , 2m. For m = 3, θ = 2π

7 , 4π
7 , 6π

7 , 8π
7 , 10π

7 , 12π
7 .

For m = 4, θ = 2π
15 , 4π

15 , 2π
5 , 8π

15 , 2π
3 , 4π

5 , 14π
15 , 16π

15 , . . ..
Notice here that θ is essentially the (2m − 1)th root of 1. Hence, the set

of periodic points (1, θ) densely fills the unit circle (Exercises 4.5, Problem
8). Furthermore, for every m = 1, 2, . . ., there is a periodic point on the
unit circle of that period m.

Now, if θ = απ, α irrational, then obviously, θ �= (2kπ)/2m − 1 for any
m, and thus any solution starting at (1, απ) cannot be periodic. However,
its orbit is dense within the unit circle, that is, O(x) is the unit circle
(Exercises 4.5, Problem 8).

Sometimes, some simple intuitive observations make it much easier to
show that an equilibrium point is not asymptotically stable. The following
example illustrates this remark.
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Example 4.26. Consider the planar systems

x1(n + 1) = 2x2(n) − 2x2(n)x2
1(n),

x2(n + 1) =
1
2
x1(n) + x1(n)x2

2(n).

We find three equilibrium points:

(0, 0),
(

1√
2
,

1√
2

)
,

(
− 1√

2
,− 1√

2

)
.

Let us consider the stability of (0, 0). If V (x1, x2) = x2
1 + 4x2

2, then

∆V (x1(n), x2(n)) = 4x2
2(n) − 8x2

2(n)x2
1(n) + 4x2

2(n)x4
1(n) + x2

1(n)

+ 4x2
1(n)x2

2(n) + 4x2
1(n)x4

2(n) − x2
1(n) − 4x2

2(n)

= 4x2
1(n)x2

2(n)[x2
1(n) + x2

2(n) − 1].

If x2
1 + x2

2 ≤ 1, then ∆V (x1, x2) ≤ 0.
For any real number a, the solution with an initial value of x0 =

(
a
0

)
is periodic with period 2 and with orbit

{(
a
0

)
,
( 0
a/2

)}
, and a solution with

an initial value of x0 =
(0
a

)
is also periodic with period 2. Hence, the zero

solution cannot be asymptotically stable. However, it is stable according
to Theorem 4.20. (Figure 4.26 depicts the phase space portrait near the
origin.)

We now turn our attention to the question of instability. We are inter-
ested in finding conditions on Liapunov functions under which the zero
solution is unstable. Here is a widely used theorem in this area.

(0.4 , 0.3)

(0.4 , -0.3)

(-0.4 , -0.3)

(-0.4 , 0.3)

x2(n)

x
1
(n)

FIGURE 4.26. Stable equilibrium.
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Theorem 4.27. If ∆V is positive definite in a neighborhood of the origin
and there exists a sequence ai → 0 with V (ai) > 0, then the zero solution
of (4.5.1) is unstable.

Proof. Let ∆V (x) > 0 for x ∈ B(η), x �= 0, V (0) = 0. We will prove
Theorem 4.27 by contradiction, first assuming that the zero solution is
stable, in which case, for ε < η, there would exist δ < ε such that ‖x0‖ < δ
implies ‖x(n, 0, x0)‖ < ε, n ∈ Z

+.
Since ai → 0, pick x0 = aj for some j with ∆V (x0) > 0 and ‖x0‖ < δ.

Hence 0(x0) ⊂ B(ε) ⊂ B(η) is closed and bounded (compact). Since
its domain is compact, V (x(n)) is also compact, and therefore bounded
above. Since V (x(n)) is also increasing, it follows that V (x(n)) → c. Fol-
lowing the proof of LaSalle’s invariance principle, it is easy to see that
limn→∞ x(n) = 0. Therefore, we would be led to believe that 0 < V (x0) <
limn→∞ V (x(n)) = 0. This statement is infeasible—so the zero solution
cannot be stable, as we first assumed. The zero solution of (4.5.1) is thus
unstable.

The conclusion of the theorem also holds if ∆V is negative definite and
V (ai) < 0. �

Example 4.28. Consider the systems

x1(n + 1) = 4x2(n) − 2x2(n)x2
1(n),

x2(n + 1) =
1
2
x1(n) + x1(n)x2

2(n).

Let V (x1, x2) = x2
1 + 16x2

2. Then

∆V (x1(n), x2(n)) = 3x2
1(n) + 16x2

1(n)x4
2(n) + 4x4

1x
2
2 > 0 if x1(n) �= 0.

Hence, by Theorem 4.27 the zero solution is unstable.

Example 4.29. First, contemplate the systems

x1(n + 1) = x1(n) + x2
2(n) + x2

1(n), (4.5.6)
x2(n + 1) = x2(n). (4.5.7)

Notice that (0, 0) is an equilibrium of the systems. Its linear component is
denoted by x(n + 1) = Ax(n), where

A =

(
1 0
0 1

)
,

and thus ρ(A) = 1. Let V (x) = x1 + x2 be a Liapunov function. Then

∆V [x(n)] = x2
1 + x2

2 > 0, if (x1, x2) �= (0, 0).

Theorem 4.27 implies that the zero solution of system (4.5.6) is unstable.



214 4. Stability Theory

Let us now ponder system (4.5.7), with the same linear component as
system (4.5.6):

x1(n + 1) = x1(n) − x3
1(n)x2

2(n),
x2(n + 1) = x2(n). (4.5.8)

We let V (x) = x2
1 + x2

2 be a Liapunov function for system (4.5.7). Then

∆V [x(n)] = x4
1(n)x2

2(n)
[−2 + x2

1(n)x2
2(n)
]
.

Hence, ∆V (x) ≤ 0 if x2
1x

2
2 ≤ 2. It follows from Theorem 4.27 that the zero

solution of system (4.5.7) is stable.

We conclude from this discussion that if ρ(A) = 1, then the zero solution
of the nonlinear equation may be either stable or unstable, thus proving
part (i) of Theorem 4.38.

We conclude this section with a brief discussion of Liapunov functions for
linear autonomous systems. In Section 4.3, we noticed that the condition
for asymptotic stability of the difference equation (4.3.6) is that ρ(A) < 1.
This condition requires the computation of the eigenvalues of A. Using
the second method of Liapunov, such computation is unnecessary. Before
introducing Liapunov’s method, however, we need to recall the definition
of a positive definite matrix. Consider the quadratic form V (x) for a k × k
real symmetric matrix B = (bij):

V (x) = xT Bx =
k∑

i=1

k∑
j=1

bijxixj .

A matrix B is said to be positive definite if V (x) is positive definite.
Sylvester’s criterion is the simplest test for positive definiteness of a matrix.
It merely notes that a real symmetric matrix B is positive definite if and
only if the determinants of its leading principal minors are positive, i.e., if
and only if

b11 > 0,

∣∣∣∣∣b11 b12

b12 b22

∣∣∣∣∣ > 0,

∣∣∣∣∣∣∣
b11 b12 b13

b21 b22 b23

b31 b32 b33

∣∣∣∣∣∣∣ > 0, . . . ,det B > 0.

The leading principal minors of matrix B are B itself and the minors
obtained by removing successively the last row and the last column. For
instance, the leading principal minors of

B =

⎛⎜⎝3 2 0
2 5 −1
0 −1 1

⎞⎟⎠
are

(3),

(
3 2
2 5

)
, B,
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all of which have positive determinants. Hence, B is positive definite. Notice
that, for x = (x1, x2, x3)T ,

V (x) = xT Bx = 3x2
1 + 5x2

2 + x2
3 + 4x1x2 − 2x2x3 > 0

for all x �= 0, and V (0) = 0.
On the other hand, given

V (x) = ax2
1 + bx2

2 + cx2
3 + dx1x2 + ex1x3 + fx2x3,

one may write

V (x) = xT Bx,

where

B =

⎛⎜⎝ a d/2 e/2
d/2 b f/2
e/2 f/2 c

⎞⎟⎠ .

Hence V is positive definite if and only if B is. We now make a useful
observation. Note that if B is a positive definite symmetric matrix, then
all eigenvalues of B are positive (Exercises 4.5, Problem 14). Furthermore,
if λ1, λ2, . . . , λk are the eigenvalues of B with

λmin = min{|λi||1 ≤ i ≤ k},

λmax = ρ(A) = max{|λi||1 ≤ i ≤ k},

then

λmin‖x‖2 ≤ V (x) ≤ λmax‖x‖2, (4.5.9)

for all x ∈ R
k, where V (x) = xT Bx, and ‖.‖ is the Euclidean norm

(Exercises 4.5, Problem 15).
If B is a positive definite matrix, we let V (x) = xT Bx be a Liapunov

function of (4.3.6). Then, relative to (4.3.6),

∆V (x(n)) = xT (n)AT BAx(n) − xT (n)B(n)

= xT (AT BA − B)x. (4.5.10)

Thus ∆V < 0 if and only if

AT BA − B = −C (4.5.11)

for some positive definite matrix C. Equation (4.5.11) is labeled the Li-
apunov equation of the system of equations (4.3.6). The above argument
establishes a sufficient condition for the asymptotic stability of the zero
solution of (4.3.6). It is also a necessary and vital condition, as may be
seen by the following result.
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Theorem 4.30. The zero solution of (4.3.6) is asymptotically stable if
and only if for every positive definite symmetric matrix C, (4.5.11) has a
unique solution B that is also symmetric and positive definite.

Proof. Assume that the zero solution of (4.3.6) is asymptotically stable.
Let C be a positive definite symmetric matrix. We will show that the
Liapunov equation (4.5.11) has a unique solution B. Multiply (4.5.11) from
the left by (AT )r and from the right by Ar to obtain

(AT )r+1BAr+1 − (AT )rBAr = −(AT )rCAr.

Hence

lim
n→∞

n∑
r=0

[
(AT )r+1BAr+1 − (AT )rBAr

]
= − lim

n→∞

n∑
r=0

(AT )rCAr

and

lim
n→∞

[
B − (AT )n+1BAn+1] =

∞∑
r=0

(AT )rCAr. (4.5.12)

Using Theorem 4.13, part (ii), we conclude that ρ(A) < 1 and, consequently,
ρ(AT ) < 1. This implies that limn→∞(AT )n+1BAn+1 = 0. Thus formula
(4.5.12) yields

B =
∞∑

r=0

(AT )rCAr. (4.5.13)

It is straightforward to prove that formula (4.5.13) gives a solution of
(4.5.11) (Exercises 4.5, Problem 16). But since there is a norm such that
‖AT ‖ < 1 and ‖A‖ < 1, it may be shown that the series in formula
(4.5.13) converges (Exercises 4.5, Problem 16). It is easy to verify that
B is symmetric and positive definite (Exercises 4.5, Problem 16). �

Remark: Note that from the proof preceding the statement of Theorem
4.30, the zero solution of (4.3.6) is asymptotically stable if (4.5.11) has
a unique, symmetric, and positive definite matrix B for some (not all)
positive definite matrices C. Indeed, one may allow C to be the identity
matrix I. In this case a solution of (4.5.11) is given by

B =
∞∑

r=0

(AT )rAr. (4.5.14)

Corollary 4.31. If ρ(A) > 1, then there exists a real symmetric matrix B
that is not positive semidefinite such that (4.5.11) holds for some positive
definite matrix C.

Proof. This follows from Theorem 4.30 and is left to the reader as
Problem 17 of Exercises 4.5. �
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Exercises 4.5

1. Consider the planar system

x1(n + 1) = x2(n)/[1 + x2
1(n)], x2(n + 1) = x1(n)/[1 + x2

2(n)].

Find the equilibrium points and determine their stability.

2. Consider the planar system

x1(n + 1) = g1(x1(n), x2(n)),

x2(n + 1) = g2(x1(n), x2(n)),

with g1(0, 0) = g2(0, 0) = 0 and g1(x1, x2)g2(x1, x2) > x1x2, for every
point x = (x1, x2) in a neighborhood of the origin. Show that the origin
is unstable.

*3. Consider the system

x1(n + 1) = ax2(n)/[1 + x2
1(n)], x2(n + 1) = bx1(n)/[1 + x2

2(n)].

(i) Find conditions on a and b under which:

(a) the zero solution is stable, and

(b) the zero solution is asymptotically stable.

(ii) Find the attractor when a2 = b2 = 1.

4. Prove that the zero solution of

x1(n + 1) = x2(n) − x2(n)[x2
1(n) + x2

2(n)],

x2(n + 1) = x1(n) − x1(n)[x2
1(n) + x2

2(n)],

is asymptotically stable.

5. Prove Theorem 4.23, part (ii).

6. Prove Theorem 4.23, part (iv).

7. Prove Theorem 4.21.

8. In Example 4.25:

(a) Show that the orbit starting at the point (1, απ), where α is any
irrational number, is dense on the unit circle.

(b) Show that the set of periodic points (1, θ) is dense on the unit
circle.
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*9. Suppose that:

(i) V is a Liapunov function of system equation (4.5.1) on R
k,

(ii) Gλ = {x|V (x) < λ} is bounded for each λ, and

(iii) M is closed and bounded (where M is the maximal invariant set
in E).

(a) Prove that M is a global attractor, i.e., Ω(x0) ⊂ M for all
x0 ∈ R

k.

(b) Suppose that M = {0}. Verify that the origin is globally
asymptotically stable.

10. Show that the sets Gλ defined in the preceding problem are bounded
if V (x) → ∞ as ‖x‖ → ∞.

*11. (Project). Suppose that V : R
k → R is a continuous function

with ∆2V (x(n)) > 0 for x(n) �= 0, where x(n) is a solution of
(4.5.1). Prove that for any x0 ∈ R

k, either x(n, x0) is unbounded or
limn→∞ x(n, x0) = 0.

*12. (Project). Wade through Problem 11 again, after replacing the
condition ∆2V (x(n)) > 0 by ∆2V (x(n)) < 0.

13. Contemplate the planar system

x(n + 1) = y(n),
y(n + 1) = x(n) + f(x(n)).

If ∆[y(n)f(x(n))] > 0 for all n ∈ Z
+, prove that the solutions are

either unbounded or tend to the origin.

14. Prove that if B is a positive definite symmetric matrix, then all its
eigenvalues are positive.

15. Let B be a positive definite symmetric matrix with eigenvalues λ1 ≤
λ2 ≤ · · · ≤ λk. For V (x) = xT Bx, show that λ1‖x‖2

2 ≤ V (x) ≤ λ2‖x‖2
2

for all x ∈ R
k.

16. (a) Show that the matrix B =
∑∞

r=0(A
T )rCAr is symmetric and

positive definite if ‖A‖ < 1 and C is a positive definite symmetric
matrix.

(b) Show that the matrix B in formula (4.5.13) is a solution of
(4.5.11).

17. Prove Corollary 4.31.
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4.6 Stability by Linear Approximation

The linearization method is the oldest method in stability theory. Scien-
tists and engineers frequently use this method in the design and analysis
of control systems and feedback devices. The mathematicians Liapunov
and Perron originated the linearization method, each with his own unique
approach, in their work with the stability theory of differential equations.
In this section we adapt Perron’s approach to our study of the nonlinear
systems of difference equations

y(n + 1) = A(n)y(n) + g(n, y(n)) (4.6.1)

using their linear component

z(n + 1) = A(n)z(n), (4.6.2)

where A(n) is a k×k matrix for all n ∈ Z
+ and g : Z

+×G → R
k, G ⊂ R

k, is
a continuous function. One may perceive system (4.6.1) as a perturbation of
system (4.6.2). The function g(n, y(n)) represents the perturbation due to
noise, inaccuracy in measurements, or other outside disturbances. System
(4.6.1) may arise from the linearization of nonlinear equations of the form

x(n + 1) = f(n, x(n)), (4.6.3)

where f : Z
+×G → R

k, G ⊂ R
k, is continuously differentiable at an equilib-

rium point y* (i.e., ∂f
∂yi

|y* exists and is continuous on an open neighborhood
of y* for 1 ≤ i ≤ k). We now describe the linearization method applied to
system (4.6.3). Let us write f = (f1, f2, . . . , fk)T . The

∂f(n, y)
∂y

∣∣∣∣
y=0

=
∂f(n, 0)

∂y
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂f1(n, 0)
∂y1

∂f1(n, 0)
∂y2

· · · ∂f1(n, 0)
∂yk

∂f2(n, 0)
∂y1

∂f2(n, 0)
∂y2

· · · ∂f2(n, 0)
∂yk

...
...

...
∂fk(n, 0)

∂y1

∂fn(n, 0)
∂y2

· · · ∂fk(n, 0)
∂yk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

For simplicity, ∂f(n,x∗)
∂x is denoted by Df(n, x∗). Letting

y(n) = x(n) − x∗ (4.6.4)

in (4.6.3) yields

y(n + 1) = f(n, y(n) + x∗) − x∗

=
∂f

∂x
(n, x∗)y(n) + g(n, y(n))

where g(n, y(n)) = f(n, y(n) + x∗) − x∗ − ∂f
∂x (n, x∗)y(n).
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If we let A(n) = ∂f
∂x (n, x∗), then we obtain (4.6.1). From the assumptions

on f , we conclude that g(n, y) = o(‖y‖) as ‖y‖ → 0. This means, given
ε > 0, there exists δ > 0 such that ‖g(n, y)‖ ≤ ε‖y‖ whenever ‖y‖ < δ, for
all n ∈ Z

+.
Notice that when x∗ = 0, we have

g(n, y(n)) = f(n, y(n)) − Df(n, 0)y(n)
= f(n, y(n)) − A(n)y(n).

An important special case of system (4.6.3) is the autonomous system

y(n + 1) = f(y(n)), (4.6.5)

which may be written as

y(n + 1) = Ay(n) + g(y(n)), (4.6.6)

where A = f ′(0) is the Jacobian matrix of f at 0, and g(y) = f(y) − Ay.
Since f is differentiable at 0, it follows that g(y) = o(y) as ‖y‖ → 0.
Equivalently,

lim
‖y‖→0

‖g(y)‖
‖y‖ = 0.

Remarks:

(a) Observe that whether the linearization is about a nontrivial equilib-
rium point x∗ �= 0 or a trivial equilibrium x∗ = 0, g(n, 0) = 0 (g(0) = 0)
for all n ∈ Z

+. Hence the zero solution of (4.6.1) corresponds to the
equilibrium point x∗ that we linearize about.

(b) If one wishes to study a nontrivial equilibrium point x∗ �= 0, then
by virtue of (a), we have two options. The first option is to linearize
about x∗. The second option is to make the change of variable y(n) =
x(n) − x∗ as in (4.6.4). In the new system, y∗ = 0 corresponds to x∗.
Then we linearize the new system about y∗ = 0. The latter option is
simple in computation as it is usually used if x∗ is given explicitly.
The former option is used normally if x∗ is given implicitly or we have
multiequilibria.

Before commencing our stability analysis we must consider a simple but
important lemma. This lemma is the discrete analogue of the so-called
Gronwall inequality, which is used, along with its variations, extensively in
differential equations.

Lemma 4.32 (Discrete Gronwall Inequality). Let z(n) and h(n)
be two sequences of real numbers, n ≥ n0 ≥ 0 and h(n) ≥ 0. If

z(n) ≤ M

⎡⎣z(n0) +
n−1∑
j=n0

h(j)z(j)

⎤⎦
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for some M > 0, then

z(n) ≤ z(n0)
n−1∏
j=n0

[(1 + Mh(j)], n ≥ n0, (4.6.7)

z(n) ≤ z(n0) exp

⎡⎣ n−1∑
j=n0

Mh(j)

⎤⎦ , n ≥ n0. (4.6.8)

Proof. Let

u(n) = M

⎡⎣u(n0) +
n−1∑
j=n0

h(j)u(j)

⎤⎦ , u(n0) = z(n0). (4.6.9)

Since h(j) ≥ 0 for all j ≥ n0, it follows that z(n) ≤ u(n) for all n ≥ n0.
From (4.6.9) we have u(n + 1) − u(n) = Mh(n)u(n), or u(n + 1) = [1 +
Mh(n)]u(n). By formula (1.2.3) we obtain

u(n) =
n−1∏
j=n0

[1 + Mh(j)]u(n0).

This proves formula (4.6.7). The conclusion of formula (4.6.8) follows by
noting that 1 + Mh(j) ≤ exp(Mh(j)). �

Theorem 4.33. Assume that g(n, y) = o(‖y‖) uniformly as ‖y‖ → 0.
If the zero solution of the linear system (4.6.2) is uniformly asymptotically
stable, then the zero solution of the nonlinear system (4.6.1) is exponentially
stable.

Proof. From (4.3.5) it follows that ‖Φ(n, m)‖ ≤ Mη(n−m), n ≥ m ≥ n0,
for some M ≥ 1 and η ∈ (0, 1). By the variation of constants formula
(3.2.12), the solution of (4.6.6) is given by

y(n, n0, y0) = Φ(n, n0)y0 +
n−1∑
j=n0

Φ(n, j + 1)g(j, y(j)).

Thus

‖y(n)‖ ≤ Mη(n−n0)‖y0‖ + Mη−1
n−1∑
j=n0

η(n−j)‖g(j, y(j)‖. (4.6.10)

For a given ε > 0 there is δ > 0 such that ‖g(j, y)‖ < ε‖y‖ whenever
‖y‖ < δ. So as long as ‖y(j)‖ < δ, (4.6.10) becomes

η−n‖y(n)‖ ≤ M

⎡⎣η−n0‖y0‖ +
n−1∑
j=n0

εη−j−1‖y(j)‖
⎤⎦ . (4.6.11)
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Letting z(n) = η−n‖y(n)‖ and then applying the Gronwall inequality
(4.6.7), one obtains

η−n‖y(n)‖ ≤ η−n0‖y0‖
n−1∏
j=n0

[1 + εη−1M ].

Thus,

‖y(n)‖ ≤ ‖y0‖(η + εM)(n−n0). (4.6.12)

Choose ε < (1 − η)/M . Then η + εM < 1. Thus ‖y(n)‖ ≤ ‖y0‖ < δ for all
n ≥ n0 ≥ 0. Therefore, formula (4.6.11) holds and, consequently, by virtue
of formula (4.6.12), we obtain exponential stability. �

Corollary 4.34. If ρ(A) < 1, then the zero solution of (4.6.6) is
exponentially stable.

Proof. Using Theorem 4.13, the corollary follows immediately from
Theorem 4.33. �

Corollary 4.35. If ‖f ′(0)‖ < 1, then the zero solution of (4.6.5) is
exponentially stable.

Proof. Since ρ (f ′(0)) ≤ ‖f ′(0)‖, the proof follows from Corollary
4.34. �

A Remark about Corollaries 4.34 and 4.35

It is possible that ‖A‖ ≥ 1 but ρ(A) < 1. For example,

A =

(
0.5 1
0 0.5

)
, ‖A‖2 =

√
ρ(AT A) =

√
0.75 + (

√
2/2) > 1,

‖A‖∞ =
3
2
, ‖A‖1 =

3
2
.

However, ρ(A) = 1
2 . With the above matrix A, the zero solution of the

system x(n + 1) = Ax(n) + g(x(n)) is exponentially stable, provided that
g(x) = o(x) as ‖x‖ → 0. Obviously, Corollary 4.35 fails to help us in deter-
mining the stability of the system. However, even with all its shortcomings,
Corollary 4.35 is surprisingly popular among scientists and engineers.

It is also worthwhile to mention that if ρ(A) < 1, there exists a nonsin-
gular matrix Q such that ‖Q−1AQ‖ < 1 [85]. One may define a new norm
on A, ‖A‖ = ‖Q−1AQ‖, and then apply Corollary 4.35 in a more useful
way.

Let us return to our example where

A =

(
0.5 1
0 0.5

)
.
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Let

Q =

(
1 0
0 α

)
.

Then

Q−1 =

(
1 0
0 1/α

)

and

Q−1AQ =

(
0.5 α

0 0.5

)
.

We have ‖Q−1AQ‖1 = α + 0.5. If we choose α < 0.5, then ‖Q−1AQ‖1 < 1.
The above procedure may be generalized to any Jordan block

A =

⎛⎜⎜⎜⎜⎜⎝
λ 1 · · · 0
... λ

...
...

... 1
0 0 λ

⎞⎟⎟⎟⎟⎟⎠ .

In this case, we let Q = diag(1, α, α2, . . . , αk−1), where k is the order of A.
Hence,

‖Q−1AQ‖ =

⎛⎜⎜⎜⎜⎜⎝
λ α · · · 0
... λ

...
...

... α

0 0 λ

⎞⎟⎟⎟⎟⎟⎠ ,

and ‖Q−1AQ‖1 = |λ| + |α| (see Exercises 4.1, Problems 3 and 4). Con-
sequently, if |λ| < 1, one may choose an α such that |λ| + |α| < 1, so
that under the matrix norm ‖A‖ = ‖Q−1AQ‖1, ‖A‖ < 1. We now give two
examples to illustrate the preceding conclusions.

Example 4.36. Investigate the stability of the zero solution of the planar
system

y1(n + 1) = ay2(n)/[1 + y2
1(n)],

y2(n + 1) = by1(n)/[1 + y2
2(n)].

(4.6.13)
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Solution Let f = (f1, f2)T , where f1 = ay2(n)/[1 + y2
1(n)] and f2 =

by1(n)/[1 + y2
2(n)]. Then the Jacobian matrix is given by

∂f

∂y

∣∣∣∣ (0, 0) =

⎛⎜⎜⎝
∂f1(0, 0)

∂y1

∂f1(0, 0)
∂y2

∂f2(0, 0)
∂y1

∂f2(0, 0)
∂y2

⎞⎟⎟⎠ =

(
0 a

b 0

)
.

Hence system (4.6.13) may be written as(
y1(n + 1)
y2(n + 1)

)
=

(
0 a

b 0

)(
y1(n)
y2(n)

)
+

(
−ay2(n)y2

1(n)/[1 + y2
1(n)]

−by2
2(n)y1(n)/[1 + y2

2(n)]

)
,

or as

y(n + 1) = Ay(n) + g(y(n)).

The eigenvalues of A are λ1 =
√

ab, λ2 = −√
ab. Hence, if |ab| < 1, the zero

solution of the linear part x(n+1) = Ax(n) is asymptotically stable. Since
g(y) is continuously differentiable at (0, 0), g(y) is o(y). Corollary 4.34 then
implies that the zero solution of (4.6.13) is exponentially stable.

Example 4.37. Pielou Logistic Delay Equation [119]

In Example 2.39 we investigated the Pielou logistic equation

x(n + 1) =
αx(n)

1 + βx(n)
.

If we now assume that there is a delay of time period 1 in the response
of the growth rate per individual to density change, then we obtain the
difference delay equation

y(n + 1) =
αy(n)

1 + βy(n − 1)
, α > 1, β > 0. (4.6.14)

An example of a population that can be modeled by (4.6.14) is the blowfly
(Lucilia cuprina) (see [107]). Find conditions on α, β for which the positive
equilibrium point y* = α−1

β is asymptotically stable.

Solution

Method (1): Let y(n) = y(n) − (α − 1)/β. Then (4.6.14) becomes

y(n + 1) =
αy(n) − (α − 1)y(n − 1)

α + βy(n − 1)
. (4.6.15)

The equilibrium point y*(n) = 0 of (4.6.15) corresponds to y* = (α −
1)/β. To change (4.6.15) to a planar system, we let

x1(n) = y(n − 1) and x2(n) = y(n).
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Then (
x1(n + 1)
x2(n + 1)

)
=

⎛⎝ x2(n)
αx2(n) − (α − 1)x1(n)

α + βx1(n)

⎞⎠ . (4.6.16)

By linearizing (4.6.16) around (0, 0) we give it the new form

x(n + 1) = Ax(n) + g(x(n)),

where

A =

⎛⎝ 0 1
1 − α

α
1

⎞⎠
and

g(x) =

⎛⎝ 0
β(α − 1)x2

1 − αβx1x2

α(α + βx1)

⎞⎠ .

The characteristic equation of A is λ2 − λ + α−1
α = 0. Thus by condition

(4.3.3) the eigenvalues of A are inside the unit disk if and only if 1 <
α−1

α + 1 < 2, or 0 < α−1
α < 1, which is always valid, since α > 1.

Therefore, ρ(A) < 1 for all α > 1. Since g(x) is continuously differen-
tiable at (0, 0), the zero solution of (4.6.16) is uniformly asymptotically
stable. Consequently, the equilibrium point x* = (α − 1)/β of (4.6.14) is
asymptotically stable.

Method (2): Letting y(n) = (α − 1)/β exp(x(n)) in (4.6.14), we obtain the
new equation

exp(x(n + 1)) =
exp(x(n))

{1 + (α − 1) exp(x(n − 1))}/α
.

Taking the logarithm of both sides, we get

x(n + 1) − x(n) +
α − 1

α
f [x(n − 1)] = 0,

or

x(n + 2) − x(n + 1) +
α − 1

α
f [x(n)] = 0, (4.6.17)

where

f(x) =
α

α − 1
ln
[
(α − 1)ex + 1

α

]
.

The Taylor expansion of f around 0 is given by f(x) = x+g(x), where g(x)
is a polynomial in x that contains terms of degree higher than or equal to
2. Thus g(x) = o(x). The linearized equation of (4.6.17) is denoted by

x(n + 2) − x(n + 1) +
α − 1

α
x(n) = 0. (4.6.18)
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Since the characteristic roots of (4.6.18) are the same as the eigenvalues of
A, it follows that the zero solution (4.6.18) is asymptotically stable. Corol-
lary 4.34 then implies that the zero solution of (4.6.17) is asymptotically
stable. Since the equilibrium point y* = (α − 1)/β corresponds to the zero
solution of (4.6.17), it then follows that y* = (α−1)/β is an asymptotically
stable equilibrium point of (4.6.15).

Our final result deals with the cases ρ(A) = 1 and ρ(A) > 1.

Theorem 4.38. The following statements hold:

(i) If ρ(A) = 1, then the zero solution of (4.6.6) may be stable or unstable.

(ii) If ρ(A) > 1 and g(x) is o(x) as ‖x‖ → 0, then the zero solution of
(4.6.6) is unstable.

Proof.

(i) See Example 4.29.

(ii) Assume that ρ(A) > 1. Then by Corollary 4.31, there exists a
real symmetric matrix B that is not positive semidefinite for which
BT AB − B = −C is negative definite. Thus the Liapunov function
V (x) = xT Bx is negative at points arbitrarily close to the origin. Fur-
thermore, ∆V (x) = −xT Cx + 2xT AT B g(x) + V (g(x)). Now, (4.5.6)
allows us to pick γ > 0 such that xT Cx ≥ 4γ‖x‖2 for all x ∈ R

k.
There exists δ > 0 such that if ‖x‖ < δ, then ‖Bg(x)‖ ≤ γ‖x‖ and
V (g(x)) ≤ γ‖x‖. Hence ∆V (x(n)) ≤ −γ‖x(n)‖2. Hence by Theorem
4.27, the zero solution is unstable. �

Example 4.39. Let S(n) and I(n) denote the number of susceptibles and
infectives, respectively, of a population at time n. Let d > 0 be the per
capita natural death rate of the population and α ≥ 0 be the disease
related death rate. In the following model, suggested by Elaydi and Jang
[47], a simple mass action βSI is used to model disease transmission, where
β > 0 and a fraction γ ≥ 0 of these infectives recover. Hence we have the
following system

S(n + 1) =
S(n) + A + γI(n)
1 + βhI(n) + dh

,

I(n + 1) =
I(n) + βS(n)I(n)
1 + (d + γ + α)

, (4.6.19)

S(0), I(0) ≥ 0.

We make the assumption that

ω = βA − d(d + γ + α) > 0 (4.6.20)
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under assumption (4.6.20) equation (4.6.19) has two equilibria

X∗
1 =
(

A

d
, 0
)

and X∗
2 =
(

d + γ + α

β
,
βA − d(d + γ + α)

(d + α)β

)
.

The linearization of (4.6.19) about X∗
2 = (S∗, J∗) yields the Jacobian

matrix

J =

⎛⎜⎜⎝
1

1 + βI∗ + d

γ + dγ − S∗β − AB

(1 + βI∗ + d)2

βI∗

1 + d + γ + α
1

⎞⎟⎟⎠ .

Notice that

det J =
1

1 + βI∗ + d
− βI∗(γ + dγ − S∗β − Aβ)

(1 + d + γ + α)(1 + βI∗ + d)2
> 0

and

trJ = 1 +
1

1 + βI∗ + d
> 0.

One may show that

trJ < 1 + det J < 2.

Hence by Theorem 4.33 and equation (4.3.9), the equilibrium point X∗
2 is

asymptotically stable.
We now turn our attention to the equilibrium point X∗

1 =
(

A
d , 0
)
. The

linearization of (4.6.19) about X∗
1 yields the Jacobian matrix

J =

⎛⎜⎜⎜⎝
1

1 + d

γ + dγ − A
d β − AB

(1 + d)2

0
1 + β A

d

1 + d + γ + α

⎞⎟⎟⎟⎠ .

The eigenvalues of J are given by

λ1 =
1

1 + d
and λ2 =

1 + β A
d

1 + d + γ + α
.

By virtue of assumption (4.6.20), λ2 > 1 and hence by Theorem 4.38(ii),
the equilibrium point X∗

1 is unstable.

Exercises 4.6

1. Determine the stability of the zero solution of the equation

x(n + 2) − 1
2
x(n + 1) + 2x(n + 1)x(n) +

13
16

x(n) = 0.

2. Judge the stability of the zero solution of the equation

x(n + 3) − x(n + 1) + 2x2(n) + 3x(n) = 0.
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3. Consider Example 4.25. Determine the stability and asymptotic

stability for the equilibrium points
(

1√
2
,

1√
2

)
,

(
− 1√

2
,− 1√

2

)
.

4. (a) Hunt down the equilibrium points of the system:
x1(n + 1) = x1(n) − x2(n)(1 − x2(n)),
x2(n + 1) = x1(n),

x3(n + 1) =
1
2
x3(n).

(b) Determine the stability of all the equilibrium points in part (a).

5. Investigate the stability of the zero solution of the system:

x1(n + 1) =
1
2
x1(n) − x2

2(n) + x3(n),

x2(n + 1) = x1(n) − x2(n) + x3(n),

x3(n + 1) = x1(n) − x2(n) +
1
2
x3(n).

6. Linearize the equation

x1(n + 1) = sin(x2) − 0.5x1(n),

x2(n + 1) = x2/(0.6 + x1(n)),

around the origin and then determine whether the zero solution is
stable.

7. (a) Find the equilibrium points of the system:
x1(n + 1) = cos x1(n) − x2(n),
x2(n + 1) = −x1(n).

(b) Is the point (π/2,−π/2) asymptotically stable?

8. Determine conditions for the asymptotic stability of the zero solution
of the system

x1(n + 1) = ax1(n)/[1 + x2(n)],

x2(n + 1) = [bx2(n) − x1(n)][1 + x1(n)].

9. The following model of combat was proposed by Epstein [52], Sedaghat
[133].

u(n + 1) = u(n) +
1
a
(a − u(n))[a − u(n)(1 − v(n))],

v(n + 1) = v(n) +
1 − v(n)

1 − d
[u(n)(1 − v(n)) − d)],

where d < a, a > 0.

Investigate the stability of the positive equilibrium point.
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10. The following system represents a discrete epidemic model. The pop-
ulation is divided into three groups: susceptibles S(n), infectives I(n),
and immune or removed individuals R(n), n ∈ Z

+. If we assume the
total population size equals N for all time, then S(n)+I(n)+R(n) = N
and we then can eliminate one of the variables, say R(n). The model
is given by

S(n + 1) = S(n) − α

N
I(n)S(n) + β(N − S(n)),

I(n + 1) = I(n)(1 − γ − β) +
α

N
I(n)S(n),

with 0 < β + γ < 1 and 0 < α < 1. This model is called an SIR
epidemic model.

(a) Find all the equilibrium points.

(b) Determine the stability of the equilibrium points.

11. Consider system (4.6.19) under the assumption that

σ = βA − d(d + γ + α) < 0.

(i) Show that there is only one equilibrium point X∗
1 =
(

A
d , 0
)
.

(ii) Show that X∗
1 is asymptotically stable.

(iii)∗Show that X∗
1 is globally asymptotically stable.

12. Show that if the zero solution of (4.6.2) is uniformly stable (uni-
formly asymptotically stable), then the zero solution of (4.6.1) is also
uniformly stable (uniformly asymptotically stable), provided that

‖g(n, y(n))‖ ≤ an‖y(n)‖, where an > 0 and
∞∑

n=0

an < ∞.

13. Suppose that the zero solution of x(n + 1) = Ax(n) is asymptotically
stable. Prove that the zero solution of y(n + 1) = [A + B(n)]y(n) is
asymptotically stable if

∑∞
n=0 ‖B(n)‖ < ∞.

4.7 Applications

4.7.1 One Species with Two Age Classes
Consider a single-species, two-age-class system, with X(n) being the
number of young and Y (n) that of adults, in the nth time interval:

X(n + 1) = bY (n),

Y (n + 1) = cX(n) + s Y (n) − D Y 2(n). (4.7.1)
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A proportion c of the young become adult, and the rest will die before
reaching adulthood. The adults have a fecundity rate b and a density-
dependent survival rate sY (n)−DY 2(n). Equation (4.7.1) may be written
in a more convenient form by letting X̃(n) = DX(n)/b and Ỹ (n) = DX(n).
Hence we have

X̃(n + 1) = Ỹ (n + 1),

Ỹ (n + 1) = aX̃(n) + s Y (n) − Y 2(n), (4.7.2)

with a = cb > 0.
The nontrivial fixed point is (X̃∗, Ỹ ∗), with X̃∗ = Ỹ ∗ and Ỹ ∗ = a+s−1.

Note that the equilibria X̃∗ and Ỹ ∗ must be positive in order for the model
to make sense biologically. This implies that a+s−1 > 0. Since it is easier to
do stability analysis on the zero equilibrium point, we let x(n) = X̃(n)−X̃∗

and y(n) = Ỹ (n) − Ỹ ∗. This yields the system

x(n + 1) = y(n),

y(n + 1) = ax(n) + ry(n) − y2(n), r = 2 − 2a − s. (4.7.3)

The fixed point (0, 0) corresponds to the fixed point (X̃∗, Ỹ ∗). Local
stability can now be obtained by examining the linearized system

x(n + 1) = y(n),
y(n + 1) = ax(n) + ry(n),

whose eigenvalues are the roots of the characteristic equation

λ2 − rλ − a = 0.

By criteria (4.3.9), the trivial solution is asymptotically stable if and only
if:

(i) 1 − r − a > 0 or a + s > 1 , and

(ii) 1 + r − a > 0 or 3a + s < 3.

Hence the range of values of a and s for which the trivial solution is asymp-
totically stable is bounded by the region a = 1, s = 1, a + s = 1, and
3a + s = 3, as shown in Figure 4.27.

The shaded region represents the range of parameters a, s for which the
trivial solution is asymptotically stable.

To find the region of stability (or the basin of attraction) of the trivial
solution we resort to the methods of Liapunov functions. Let

V (x, y) = a2x2 +
2arxy

1 − a
+ y2.

Recall from calculus that Ax2+2Bxy+Cy2 = D is an ellipse if AC−B2 >

0, or a2 − a2r2

(1−a)2 > 0, or a − 1 < r < 1 − a. This reduces to s + a > 1
and s < 3 − 3a, which is the shaded region in Figure 4.27. By rotating the
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a

s�1

s s�3−3a a�1

1

1

FIGURE 4.27.

axes, one may eliminate the mixed term xy to obtain A′x2 + C ′y2 = D,
with A′ + C ′ = a2 + 1 > 0. Moreover, A′C ′ > 0. Hence both A′ and C ′

are positive and, consequently, D is positive. Thus in the shaded region in
Figure 4.27, V (x, y) is positive definite.

After some computation we obtain

∆V (x, y) = y2W (x, y),

where

W (x, y) = (y − r)2 − 2ax − 2ar(r − y)
1 − a

+ a2 − 1.

Hence ∆V (x, y) ≤ 0 if W (x, y) < 0, that is, if (x, y) is in the region

G =
{

(x, y) : (y − r)2 − 2ax − 2ar(r − y)
1 − a

+ a2 − 1 < 0
}

.

The region G is bounded by the parabola W (x, y) = 0. Now, in the region
G, ∆V (x, y) = 0 on the x-axis y = 0. Hence E is the x-axis. But since (c, 0)
is mapped to (0, ac), the largest invariant set M in E is the origin. Hence
by Theorem 4.24 every bounded solution that remains in G will converge
to the origin.

We now give a crude estimate of the basin of attraction, that is, the set
of all points in G that converges to the origin. Define

Vmin = min{V (x0, y0) : (x0, y0) ∈ ∂G},

Jm = {X̃, Ỹ } : X̃ = x0 + X̃∗, Ỹ = y0 + Ỹ ∗,
V (x(m), y(m)) < Vmin, m = 0, 1, 2, . . . .

Now, if (x0, y0) ∈ J0, then V (x(1), y(1)) ≤ V (x0, y0) < Vmin, and hence
(x(1), y(1)) ∈ J0. Similarly, one may show that (x(n), y(n)) ∈ J0 for
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n = 1, 2, 3, . . . and, consequently, as n → ∞, (x(n), y(n)) → (0, 0). Now, if
(x0, y0) ∈ Jm, then

V (x(m + 1), y(m + 1)) ≤ V (x(m), y(m)) < Vmin,

and the argument proceeds as before to show that (x(n), y(n)) →
(0, 0) as n → ∞. Hence the sets Jm are estimates of the basin of attraction
of (X̃, Ỹ ).

4.7.2 Host–Parasitoid Systems
Consider a two-species model in which both species have a number of life-
cycle stages that include eggs, larvae, pupae, and adults. Let

H(n) = the density of host species in generation n,
P (n) = the density of parasitoid in generation n,
f(H(n), P (n)) = fraction of hosts not parasitized,
λ = host reproductive rate,
c = average number of viable eggs laid by a parasitoid on a single host.

An adult female parasitoid finds a host on which to deposit its eggs. The
larval parasitoids consume and eventually kill their host. The life–cycle of
both species is depicted in Figure 4.28. Then

H(n + 1) = number of hosts in generation n × fraction not parasitized
× reproductive rate λ,

P (n + 1) = number of hosts parasitized in generation n × fecundity
of parasitoids c.

FIGURE 4.28. Host–Parasitoid. Schematic representation of host–parasite sys-
tem.
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Thus we have

H(n + 1) = λH(n)f(H(n), P (n)), (4.7.4)
P (n + 1) = cH(n)[1 − f(H(n), P (n))]. (4.7.5)

4.7.3 A Business Cycle Model
One of the first formal mathematical models for business cycles was due to
Paul Samuelson (1939). The model was later modified by Sir John Hicks
(1950). Let I(n) denote the investment at time period n and Y (n) is the
income at time period n. In the Samuelson–Hicks model, it is assumed that
investment is proportional to income change, i.e.,

I(n) = v(Y (n − 1) − Y (n − 2)). (4.7.6)

Likewise, consumption C(n) is proportional to income Y (n − 1) in the
previous period, i.e.,

C(n) = (1 − s)Y (n) (4.7.7)

where 0 ≤ s ≤ 1 is the “complementary” proportion used. Introducing the
accounting identity for a closed economy:

Y (n) = C(n) + I(n) (4.7.8)

we derive a simple second–order difference equation

Y (n) = (1 + v − s)Y (n − 1) − vY (n − 2). (4.7.9)

The linear model (4.7.9) does not adequately represent a business since it
does not produce oscillatory solutions (or periodic cycles) except for special
cases (such as v = 1).

A nonlinear cubic model

I(n) = v(Y (n − 1) − Y (n − 2)) − v(Y (n − 1) − Y (n − 2))3, (4.7.10)
C(n) = (1 − s)Y (n − 1) + εsY (n − 2), (4.7.11)

was proposed in Puu [124] and [125]. A fraction 0 ≤ ε ≤ 1 of savings was
assumed to be spent after being saved for one period. So for ε = 0, the
original Hicks model (4.7.7) is recovered.

Let us introduce a new variable

Z̃(n − 1) =
I(n)

v
= Y (n − 1) − Y (n − 2). (4.7.12)

Adding (4.7.10) and (4.7.11) and using (4.7.8) yields

Y (n + 1) = I(n + 1) + C(n + 1)
= v(Y (n) − Y (n − 1)) + (1 − s)Y (n)

+ εsY (n − 1) − v(Y (n) − Y (n − 1))3.
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Subtracting Y (n) from both sides yields

Z̃(n) = (v − εs)Z̃(n − 1) − vZ̃3(n) + (ε − 1)sY (n − 1).

Let

Z̃(n) =

√
1 + v − εs

v
Z(n).

Then

Z(n) = (v − εs)Z(n − 1) − (1 + v − εs)Z3(n − 1) + (ε − 1)sY (n − 1).

Let a = (v − εs), (ε − 1)s = b. We get

Z(n + 1) = aZ(n) − (1 + a)Z3(n) + bY (n) (4.7.13)

where b = (1−ε)s represents a sort of eternal rate of saving. Using (4.7.12)
and (4.7.13) we now have the two-dimensional system

Y (n + 1) = Y (n) + Z(n),

Z(n + 1) = aZ(n) − (a + 1)Z3(n) − bY (n). (4.7.14)

System (4.7.14) has a single equilibrium point X∗ = (Y ∗, Z∗) = (0, 0).
Local stability can now be obtained by examining the linearized system(

Y (n + 1)
Z(n + 1)

)
=

(
1 1

−b a

)(
Y (n)
Z(n)

)
. (4.7.15)

The eigenvalues are given by

λ1,2 =
a + 1 ±√(a − 1)2 − 4b

2
. (4.7.16)

By criteria (4.3.9), the trivial solution is asymptotically stable if and only
if:

(i) 2 + 2a + b > 0,

(ii) b > 0,

(iii) 1 − a − b > 0.

Taking into account that a > 0 and 0 < b < 1, the region of stability S is
given by

S = {(b, a) | 0 < b < 1, 0 < a < 1 − b}.

We conclude that if (b, a) ∈ S, then equilibrium X∗ = (0, 0) is
asymptotically stable (Figure 4.29).

Notice that the eigenvalues λ1, λ2 are complex numbers if 1−2
√

b < a <
1+2

√
b. But this is fulfilled if (b, a) ∈ S. Thus if (b, a) ∈ S, the equilibrium

point X∗ = (0, 0) is a stable focus.
At a = 1 − b, the equilibrium point X∗ = (0, 0) loses it stability and

possible appearance of cycles. For example, for a = 0, b = 1, an attracting
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FIGURE 4.29. The region of stability S is the shaded area.

cycle of period 6 and a saddle cycle of period 7 appear. At a =
√

2 − 1,
b = 2 − √

2 and attracting and saddle cycles of period 8 appear and so on
[126].

4.7.4 The Nicholson–Bailey Model
In [107] the function f was specified under two assumptions:

1. The number of encounters He of hosts by parasitoids is proportional
to the product of their densities, that is,

He = aH(n)P (n). (4.7.17)

2. The first encounter between a host and a parasitoid is the only signif-
icant encounter. Since the encounters are assumed to be random, it is
appropriate to use a Poisson probability distribution to describe these
encounters.

If µ is the average number of events in a given time interval, then the
probability of r events (such as encounters between host and its parasitoid)
is

p(r) =
ēµµr

r!
,

with µ = He

H(n) . It follows from equation (4.7.17) that

µ = aP (n). (4.7.18)

Since the likelihood of escaping parasitism is the same as the probability of
no encounters during the host lifetime, f(H(n), P (n)) = ēaP (n). Equations
(4.7.4) and (4.7.5) now become

H(n + 1) = λH(n)ēaP (n), (4.7.19)

P (n + 1) = cH(n)(1 − ēaP (n)). (4.7.20)
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The nontrivial equilibrium points are given by

H∗ =
λln λ

(λ − 1) ac
, P ∗ =

1
a

lnλ.

It can be shown by linearization that (H∗, P ∗) is unstable. Thus this model
is too simple for any practical applications except possibly under contrived
laboratory conditions.

It is reasonable to modify the H(n) equation (4.7.4) to incorporate some
saturation of the prey population, or, in terms of predator encounters, a
prey-limiting model. Hence a more realistic model is given by

H(n + 1) = H(n) exp
[
r

(
1 − H(n)

k

)
− aP (n)

]
, r > 0,

P (n + 1) = cH(n)(1 − exp(−aP (n))). (4.7.21)

The equilibrium points are solutions of

1 = exp
[
r

(
1 − H∗

K

)
− aP ∗

]
, P ∗ = cH∗(1 − exp(−aP ∗)).

Hence

P ∗ =
r

a

[
1 − H∗

K

]
=

r

a
(1 − q), H∗ =

P ∗

(1 − ēap∗)
. (4.7.22)

Thus

r(1 − H∗
K )

acH∗ = 1 − exp
[
−r

(
1 − H∗

K

)]
. (4.7.23)

Clearly, H∗
1 = K, P ∗

1 = 0 is an equilibrium state. The other equilibrium
point may be obtained by plotting the left- and right-hand sides of (4.7.19)
against H∗. From Figure 4.30 we see that there is another equilibrium point
with 0 < H∗

2 < K. Then we may find P ∗
2 from (4.7.18).
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To perform the stability analysis of the equilibrium point (H∗
2 , P ∗

2 ), we
put H(n) = x(n) + H∗

2 , P (n) = y(n) + P ∗
2 . Hence we obtain

x(n + 1) = −H∗
2 + (x(n) + H∗

2 ) exp
[
r

(
1 − x(n) + H∗

2

K

)
− a(y(n) + P ∗

2 )
]

,

y(n + 1) = −P ∗
2 + c(x(n) + H∗

2 )[1 − exp(−a(y(n) + P ∗
2 ))]. (4.7.24)

By linearizing around (0, 0) we obtain the linear system(
x(n + 1)
y(n + 1)

)
= A

(
x(n)
y(n)

)
(4.7.25)

with

A =

(
1 − rq −arq

c(1 − exp(−r(1 − q)) ϕ − r(1 − q)

)
, (4.7.26)

where q = H∗
2

K and

ϕ =
r(1 − q)

1 − exp(−r(1 − q))
.

The details of obtaining the matrix A will be left to the reader. Observe
that the value of q = H∗

2
K is a measure of the extent to which the predator

can depress the prey below the carrying capacity.

The characteristic equation of A is given by

λ2 − λ(1 − r + ϕ) + (1 − rq)ϕ + r2q(1 − q) = 0. (4.7.27)

By criterion (4.3.9), the eigenvalues of A lie inside the unit disk if and only
if

|1 − r + ϕ| < 1 + (1 − rq)ϕ + r2q(1 − q) < 2.

54321
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FIGURE 4.31. The origin is asymptotically stable within the shaded area.
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Hence

(1 − rq)ϕ + r2q(1 − q) < 1, (4.7.28)

1 + (1 − rq)ϕ + r2q(1 − q) > |1 − r + ϕ|. (4.7.29)

Plotting (4.7.24) and (4.7.25) gives the region of asymptotic stability
indicated by the shaded area in Figure 4.31.

The origin is asymptotically stable within the shaded area. Note that the
area of stability narrows as r increases.

Beddington et al. [7] conducted a numerical simulation for the specific
value q = 0.4. As r grows past a certain value, the equilibrium point
becomes unstable and a hierarchy of stable limit cycles of increasing, non-
integral period, ultimately breaking down to cycles of period 5, appears.
These are followed by cycles of period 2 × 5, 22 × 5, . . . , 2n × 5, . . . .

4.7.5 The Flour Beetle Case Study
The team of R.F. Costantino, J.M. Cushing, B. Dennis, R.A. Deshar-
nais, and S.M. Henson [27] have studied the flour beetles extensively. They
conducted both theoretical studies as well as experimental studies in the
laboratory. To describe their model, we will give a brief background of the
life-cycle of the flour beetles. The life-cycle consists of larval and pupal
stages each lasting approximately two weeks, followed by an adult stage
(see Figure 4.32).

As is shown in Figure 4.32, cannibalism occurs among the various groups.
Adults eat pupae and eggs, larvae eat eggs. Neither larvae nor adults eat
mature adults. Moreover, larvae do not feed on larvae. The cannibalism
of larvae by adults and of pupae by larvae is assumed negligible since it
typically occurs at much reduced rates.

Let L(n) be the larvae population at time period n, let P (n) be the pupal
population at time period n, and let A(n) be the adult population at time

C

C

EAC

EL

PA

Eggs

Larvae

Pupae

Adults

FIGURE 4.32. The arrows show the cannibalistic interaction between difference
life-cycle stages.
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period n. Then the larval–pupal–adult (LPA) model is given by

L(n + 1) = bA(n) exp(−cEAA(n) − cELL(n)),
P (n + 1) = (1 − µL)L(n), (4.7.30)
A(n + 1) = P (n) exp(−cPAA(n)) + (1 − µA)A(n),

where L(0) ≥ 0, P (0) ≥ 0, A(0) ≥ 0.
The constants µL, µA are the larval and adult probability of dying from

causes other than cannibalism, respectively. Thus 0 ≤ µL ≤ 1 and 0 ≤
µA ≤ 1. The term exp(−cEAA(n)) represents the probability that an egg
is not eaten in the presence of A(n) adults, exp(−cELL(n)) represents
the probability that an egg is not eaten in the presence of L(n) larvae,
and exp(−cPAA(n)) is the survival probability of a pupa in the presence
of A(n) adults. The constants cEA ≥ 0, cEL ≥ 0, cPA ≥ 0 are called
the cannibalism coefficients. We assume that adult cannibalism is the only
significant cause of pupal mortality.

There are two equilibrium points (0, 0, 0)T and (L∗, P ∗, A∗) ∈ R
3
+, L∗ >

0, P ∗ > 0, A∗ > 0. The positive equilibrium point may be obtained by
solving the three equations

L exp(cELL) = bA exp(−cEAA),
P = (1 − µL)L, (4.7.31)

µA exp(cPAA) = P.

Eliminating P yields

(1 − µL)L = µAA exp(cPAA),
L exp(cELL) = bA exp(−cEAA).

Dividing the second equation by the first yields

exp(cELL) =
b(1 − µL)

µA
exp[(−cEA − cPA)A]. (4.7.32)

The number

N =
b(1 − µL)

µA

is called the inherent net reproductive number. This number will play a
significant role in our stability analysis. Observe that if N < 1, equa-
tion (4.7.32) has no solution and we have no positive equilibrium point.
However, if N > 1, then equation (4.7.32) has a solution which is the inter-
section of the curve (1 − µL)L = µA exp(cPAA) and the straight line from
(0, lnN/cEL) to (ln N/(cEA + cPA), 0) in the (A, L)-plane represented by
equation (4.7.32). To investigate the local stability of the equilibrium point
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(L, P, A) of equation (4.7.30), we compute the Jacobian J ,

J =

⎛⎜⎝−cELbAe(−cEAA−cELL) 0 be(−cELL−cEAA)(1−cEAA)

1 − µL 0 0

0 e(−cP AA) 1 − µA − cPAPe(−cP AA)

⎞⎟⎠ .

(4.7.33)
At the equilibrium point (0, 0, 0)T we have

J1 = J |(0,0,0)T =

⎛⎜⎝ 0 0 b

1 − µL 0 0
0 1 1 − µA

⎞⎟⎠ .

The characteristic polynomial of J1 is given by

P (λ) = λ3 − (1 − µA)λ2 − b(1 − µL) = 0 (4.7.34)

which is of the form

P (λ) = λ3 + p1λ
2 + p2λ + p3 = 0,

with p1 = −(1 − µA), p2 = 0, p3 = −b(1 − µL).
According to (5.1.17), the eigenvalues of J1 are inside the unit circle if

and only if

|p3 + p1| < 1 + p2 and |p2 − p3p1| < 1 − p2
3.

Applying the first condition yields

|−b(1 − µL) − (1 − µA)| < 1,

b(1 − µL) + (1 − µA) < 1,

or

N =
b(1 − µL)

µA
< 1. (4.7.35)

The second condition gives

|−(1 − µA)(1 − µL)b| < 1 − b2(1 − µL)2,

b2(1 − µL)2 + (1 − µA)(1 − µL)b < 1.

But this inequality is satisfied if we assume (4.7.35). For if N < 1 we have

b2(1 − µL)2 + (1 − µA)(1 − µL)b < µ2
A + µA(1 − µA) = µA ≤ 1.

We conclude that the trivial equilibrium is asymptotically stable if and
only if N < 1, and thus attracts all orbits in the nonnegative cone. As N
increases past 1, a “bifurcation” occurs which results in the instability of
the trivial equilibrium and the creation of the positive equilibrium. In fact,
for N > 1 there exists one and only one positive equilibrium. The Jacobian
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at the positive equilibrium (L∗, P ∗, A∗) satisfying (4.7.31) is given by

J2 = J |(L∗,P ∗,A∗) =

⎛⎜⎜⎝−cELL∗ 0
L∗

A∗ − cEAL∗

1 − µL 0 0
0 A∗ exp(cPA) 1 − µA − A∗µAcPA

⎞⎟⎟⎠ .

The characteristic equation is given by

λ3 + (cELL∗ + µAcPAA∗ − (1 − µA))λ2 − cELL∗(1 − µA)λ−(
L∗

A∗ − cEAL∗
)

(1 − µL) exp(−cPAA∗) = 0.

As of writing this edition of the book, a condition for the stability of the
positive equilibrium is known only in special cases.

Case (i) If cEL = 0, the positive equilibrium is globally attracting if

1 < N < e min{(1, (cEA/cPA)((1 − µA)/µA)} [83].

Case (ii) In several long term experiments reported in [27], the adult death
rate was manipulated to equal 96% and hence µA = 0.96. Motivated by this
data, Cushing [25] assumed that µA = 1. In this case we have N = b(1−µL)
and equation (4.7.30) becomes

L(n + 1) =
N

1 − µL
A(n) exp(−cELL(n) − cEAA(n)),

P (n + 1) = (1 − µL)L(n), (4.7.36)
A(n + 1) = P (n) exp(−cPAA(n)).

Theorem 4.40 [25]. For N > 1, the trivial equilibrium of equation
(4.7.36) is unstable and there exists a unique positive equilibrium. This
positive equilibrium, which bifurcates from the trivial equilibrium at N = 1,
is unstable for N = 1 + δ, where δ is sufficiently small.

A subcase of Case (ii) is the case of synchronous orbits. A triple
(L(n), P (n), A(n)) is said to be synchronous at time n if one com-
ponent equals zero and at least one component is nonzero. One can
see immediately from equation (4.7.36), that an orbit that is syn-
chronous at time n0 is synchronous for all n ≥ n0. Notice that a
point (L0, P0, 0)T in the L, P -plane is mapped to the point (0, (1 −
µL)L0, P0)T in the P, A-plane, which in turn is mapped to the point(

N
1−µL

P0 exp(−cEAP0), 0, (1 − µL)L0 exp(−cPAP0)T
)

in the L, A-plane.
Hence points are mapped from one nonnegative quadrant of the co-
ordinate planes to the next in sequential order. A synchronous triplet
(L(n), P (n), A(n))T is said to be fully synchronous at time n if it has two
zero components. This is the case for points on the positive coordinate
axes. An orbit is fully synchronous if and only if its initial point is fully
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synchronous. This notion is derived from the fact that the three life-cycle
stages are synchronized temporarily in such a way that they never overlap.

Denote the map (4.7.36) by F ,⎛⎜⎝L(n + 1)
P (n + 1)
A(n + 1)

⎞⎟⎠ = F

⎛⎜⎝L(n)
P (n)
A(n)

⎞⎟⎠ . (4.7.37)

Then F 3 maps the nonnegative quadrant of a coordinate plane to itself.
A fixed point of F 3 corresponds to a 3-cycle of F and so on. The map F 3

is defined by the equations

x(n + 1) = Nx(n) exp
[

− cPAy(n) exp(−cPAz(n))

− cEA(1 − µL)x(n) exp(−cPAy(n) exp(−cPAz(n)))

− cEL
N

1 − µL
y(n) exp(−cPAy(n) − cEAy(n) exp(−cPAz(n)))

− cEL
N

1 − µL
z(n) exp

(− cEA
N

1 − µL
z(n) exp(−cEAz(n)

− cELx(n))
)]

, (4.7.38)

y(n + 1) = Ny(n) exp
[− cPAz(n) − cEAy(n) exp(−cPAz(n))

− cEA
N

1 − µL
z(n) exp(−cEAz(n) − cELx(n))

]
, (4.7.39)

z(n + 1) = Nz(n) exp
[− cEAz(n) − cELx(n)

− cPA(1 − µL)x(n) exp(−cPAy(n) exp(−cPAz(n)))
]
.

If (x0, 0, z0)T is a point in the x, z-plane, then its orbit is described by the
two-dimensional system

x(n + 1) = Nx(n) exp(−cx(n)), (4.7.40)
z(n + 1) = [N exp(−αx(n))]z(n) exp(−βz(n)), (4.7.41)
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where c = cEA(1 − µL), α = cEL + cPA(1 − µL), β = cEA.
The first equation (4.7.40) is the well–known Ricker’s map, where

limn→∞ x(n) = 0 and the convergence is exponential. Hence equation
(4.7.41) may be looked at as a perturbation of (4.7.40). Hence by Corollary
8.27, limn→∞ z(n) = 0 which is consistent with what we had earlier. For
N > 1, Ricker’s map has a unique positive equilibrium x∗ = lnN/c. Con-
sequently, there exists a fully synchronous 3-cycle of equation (4.7.36). As
N increases, Ricker’s map undergoes a period-doubling bifurcation route
to chaos. If 1 < N < e2, then (x∗, z∗)T = (1

c lnN, 0)T is an asymptotically
stable equilibrium point of equations (4.7.40) and (4.7.41) and globally at-
tracts all positive initial conditions in the x, z-plane. This fixed point of F 3

corresponds to the fully synchronous 3-cycle of the LPA model (4.7.36)⎛⎜⎜⎜⎝
lnN

cEA(1 − µL)
0
0

⎞⎟⎟⎟⎠→

⎛⎜⎜⎝
0

1
cEA

lnN

0

⎞⎟⎟⎠→

⎛⎜⎜⎝
0
0

1
cEA

lnN

⎞⎟⎟⎠ . (4.7.42)

Thus we have the following result. Theorem 4.40 [25] for 1 < N < e2, the
LPA model (4.7.36) has a unique, nontrivial fully synchronous 3-cycle given
by (4.7.42). This 3-cycle attracts all fully synchronous orbits or equation
(4.7.36). For N > e2, the system has a period-doubling cascade of fully
synchronous (3×2n)-cycle attractors and, for sufficiently large N , has “fully
synchronous chaotic” attractors (with respect only to fully synchronous
orbits).

This is the first proof of the presence of chaos in a population model.
Details about synchronous but not fully synchronous orbits may be found

in Cushing [25]. There are still many open problems that need to be tackled.
We invite the reader to solve them.

Open Problem 1. Investigate the LPA model for the general case µA �= 1.
For a starting point, try the case with µA = 0.96.

Open Problem 2. Investigate the behavior of orbits that are not syn-
chronous provided that µA = 1.



5
Higher-Order Scalar Difference
Equations

In Chapter 4 we investigated the qualitative behavior of systems of dif-
ference equations, both linear and nonlinear. In this chapter we turn our
attention to linear and nonlinear higher-order scalar difference equations.
Although one may be able to convert a scalar difference equation to a
system, it is often advantageous to tackle the scalar difference equation
directly. Moreover, since a system of difference equations may not be con-
vertible to a scalar difference equation, results on the latter may not extend
to the former. Every section in this chapter was written with this statement
in mind. Section 5.1 gives explicit necessary and sufficient conditions for the
stability of the zero solution of a kth-order scalar difference equation. This
task is accomplished either via the Schur–Cohn criterion or by using spe-
cial techniques that were developed by Levin and May [90], Kuruklis [86],
Dannan [28], and Dannan and Elaydi [29]. Section 5.2 provides easy com-
putable sufficient conditions for asymptotic stability using Gerschgorin’s
Theorem which provides a rough estimate of the location of eigenvalues of
matrices.

In the first and second editions of this book I have used Rouché’s The-
orem from complex analysis to obtain the results in Section 5.2. However,
the new approach is not only more accessible to readers with no background
in complex analysis but, more importantly, it is much more intuitive. Sec-
tion 5.3 treats nonlinear equations via linearization and follows closely the
exposition in Section 4.4 for systems. Section 5.4 collects the main results
in global stability of nonlinear scalar difference equations. It remains an
open question of whether or not these results extend to nonlinear systems
of difference equations. Finally, Section 5.5 presents the larval–pupal–adult

245
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(LPA) model of flour beetles with no larval cannibalism on eggs, and a
mosquito model.

5.1 Linear Scalar Equations

Consider the kth-order difference equation

x(n + k) + p1x(n + k − 1) + p2x(n + k − 2) + · · · + pkx(n) = 0 (5.1.1)

where the pi’s are real numbers.
It follows from Corollary 2.24 that the zero solution of (5.1.1) is asymp-

totically stable if and only if |λ| < 1 for all characteristic roots λ of (5.1.1),
that is, for every zero λ of the characteristic polynomial

p(λ) = λk + p1λ
k−1 + · · · + pk. (5.1.2)

Furthermore, the zero solution of (5.1.1) is stable if and only if |λ| ≤ 1
for all characteristic roots of (5.1.1) and those characteristic roots λ with
|λ| = 1 are simple (not repeated). On the other hand, if there is a repeated
characteristic root λ with |λ| = 1, then according to Corollary 2.24 the zero
solution of (5.1.1) is unstable.

One of the main tools that provides necessary and sufficient conditions for
the zeros of a kth-degree polynomial, such as (5.1.2), to lie inside the unit
disk is the Schur–Cohn criterion. This is useful for studying the stability
of the zero solution of (5.1.1). Moreover, one may utilize the Schur–Cohn
criterion to investigate the stability of a k-dimensional system of the form

x(n + 1) = Ax(n) (5.1.3)

where p(λ) in (5.1.2) is the characteristic polynomial of the matrix A.
But before presenting the Schur–Cohn criterion we introduce a few

preliminaries.
First let us define the inners of a matrix B = (bij). The inners of a matrix

are the matrix itself and all the matrices obtained by omitting successively
the first and last rows and the first and last columns. For example, the
inners for the following matrices are highlighted:

A 3 × 3 matrix⎛⎜⎜⎜⎝
b11 b12 b13

b21 b22 b23

b31 b32 b33

⎞⎟⎟⎟⎠ ,

A 4 × 4 matrix⎛⎜⎜⎜⎜⎜⎜⎝
b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44

⎞⎟⎟⎟⎟⎟⎟⎠ ,

A 5 × 5 matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b11 b12 b13 b14 b15

b21 b22 b23 b24 b25

b31 b32 b33 b34 b35

b41 b42 b43 b44 b45

b51 b52 b53 b54 b55

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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A matrix B is said to be positive innerwise if the determinants of all of
its inners are positive.

Theorem 5.1 (Schur–Cohn Criterion) [74]. The zeros of the charac-
teristic polynomial (5.1.2) lie inside the unit disk if and only if the following
hold:

(i) p(1) > 0,

(ii) (−1)kp(−1) > 0,

(iii) the (k − 1) × (k − 1) matrices

B±
k−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0
p1 1 . . . 0
...

...
pk−3

pk−2 pk−3 . . . p1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
±

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 pk

0 0 . . . pk pk−1

...
...

...
0 pk p3

pk pk−1 . . . p3 p2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
are positive innerwise.

Using the Schur–Cohn criterion (Theorem 5.1), one may obtain necessary
and sufficient conditions on the coefficients pi’s such that the zero solution
of (5.1.1) is asymptotically stable. Neat and compact, necessary and suffi-
cient conditions for the zero solution of (5.1.1) to be asymptotically stable
are available for lower-order difference equations. We will present these
conditions for second- and third-order difference equations.

For the second-order difference equation

x(n + 2) + p1x(n + 1) + p2x(n) = 0 (5.1.4)

the characteristic polynomial is

p(λ) = λ2 + p1λ + p2. (5.1.5)

The characteristic roots are inside the unit disk if and only if

p(1) = 1 + p1 + p2 > 0, (5.1.6)
p(−1) = 1 − p1 + p2 > 0, (5.1.7)

B±
1 = 1 ± p2 > 0. (5.1.8)

It follows from (5.1.6) and (5.1.7) that 1+p2 > |p1| and 1+ p2 > 0. Now
(5.1.8) reduces to 1 − p2 > 0 or p2 < 1. Hence the zero solution of (5.1.4)
is asymptotically stable if and only if

|p1| < 1 + p2 < 2. (5.1.9)

For the third-order difference equation

x(n + 3) + p1x(n + 2) + p2x(n + 1) + p3x(n) = 0 (5.1.10)
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the characteristic polynomial is

λ3 + p1λ
2 + p2λ + p3 = 0. (5.1.11)

The Schur–Cohn criterion are

1 + p1 + p2 + p3 > 0, (5.1.12)

(−1)3[−1 + p1 − p2 + p3] = 1 − p1 + p2 − p3 > 0 (5.1.13)

|B+
2 | =

∣∣∣∣∣
[

1 0
p1 1

]
+

[
0 p3

p3 p2

]∣∣∣∣∣ =
∣∣∣∣∣ 1 p3

p1 + p3 1 + p2

∣∣∣∣∣ > 0.

Thus

1 + p2 − p1p3 − p2
3 > 0 (5.1.14)

and

|B−
2 | =

∣∣∣∣∣
[

1 0
p1 1

]
−
[

0 p3

p3 p2

]∣∣∣∣∣ =
∣∣∣∣∣ 1 −p3

p1 − p3 1 − p2

∣∣∣∣∣ > 0. (5.1.15)

Hence

1 − p2 + p3p1 − p2
3 > 0. (5.1.16)

Using (5.1.12), (5.1.13), (5.1.14), and (5.1.16), we conclude that a nec-
essary and sufficient condition for the zero solution of (5.1.10) to be
asymptotically stable is

|p1 + p3| < 1 + p2 and |p2 − p1p3| < 1 − p2
3. (5.1.17)

It is now abundantly clear that the higher the order of the equation,
the more difficult the computation involved in applying the Schur–Cohn
criterion becomes. However, Levin and May [90], using a very different
technique, were able to obtain a simple criterion for the asymptotic stability
of the following special equation

x(n + 1) − x(n) + qx(n − k) = 0, (5.1.18)

or, equivalently,

x(n + k + 1) − x(n + k) + qx(n) = 0. (5.1.19)

Theorem 5.2. The zero solution of (5.1.18) is asymptotically stable if
and only if

0 < q < 2 cos
(

kπ

2k + 1

)
. (5.1.20)

The proof of this theorem is given in Appendix E. The theorem may
also be obtained as a corollary of a more general theorem by Kuruklis [86]
which we now state.
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FIGURE 5.1. The graphs of the domains of (a, b), for which the roots of λk+1 −
aλk + b = 0, with a �= 0 and k > 1, are inside the unit disk. The curved sides
are parts of |b| = |a2 + 1 − 2|a| cos φ| 1

2 , where φ is the solution in (0, π(k + 1)) of
sin(kθ)/sin(k + 1)θ = 1/|a|.

Contemplate the equation

x(n + 1) − ax(n) + bx(n − k) = 0, n ∈ Z
+. (5.1.21)

Theorem 5.3. Let a be a nonnegative real number, b an arbitrary
real number, and k a positive integer. The zero solution of (5.1.21) is
asymptotically stable if and only if |a| < (k + 1)/k, and:

(i) |a| − 1 < b < (a2 + 1 − 2|a| cos φ)
1
2 for k odd, or

(ii) |b − a| < 1 and |b| < (a2 + 1 − 2|a| cos φ)
1
2 for k even,

where φ is the solution in (0, π/(k+1)) of sin(kθ)/sin(k+1)θ = 1/|a|. (See
Figure 5.1.)

Using the above theorem we present a simple proof of Theorem 5.2.

Proof of Theorem 5.2.
From Theorem 5.3 we have that the zero solution of the difference

equation (5.1.19) is asymptotically stable if and only if

0 < b < (2 − 2 cos φ)
1
2 for k odd (5.1.22)

or

|b − 1| < 1 and |b| < (2 − 2 cos φ)
1
2 for k even, (5.1.23)

where φ is the solution in (0, π/(k + 1)) of

sin(kθ)/sin(k + 1)θ = 1. (5.1.24)

Note that |b − 1| < 1 implies b > 0. Therefore conditions (5.1.22) and
(5.1.23) are reduced to

0 < b < (2 − 2 cos φ)
1
2 . (5.1.25)
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Also note that

(2 − 2 cos φ)
1
2 = [2(1 − cos φ)]

1
2 = [4 sin2(φ/2)]

1
2 = 2 sin(φ/2)

and thus (5.1.25) can be written as

0 < b < 2 sin(φ/2). (5.1.26)

Furthermore, (5.1.24) yields sin(kφ) = sin[(k + 1)φ] and so either

kφ + (k + 1)φ = (2n + 1)π (5.1.27)

or

kφ = (k + 1)φ + 2nπ, (5.1.28)

where n is an integer. Since (5.1.28) cannot be valid for 0 < φ < π/(k + 1)
we have that (5.1.27) holds. In fact, 0 < φ < π/(k + 1) forces n = 0
and so φ = π/2 and thus condition (5.1.25) may be written as 0 < b <
2 cos[kπ/(2k + 1)], which is the condition of Theorem 5.3. �

Dannan [28] considered the following more general equation

x(n + k) + ax(n) + bx(n − l) = 0, n ∈ Z
+, (5.1.29)

where k ≥ 1 and l ≥ 1 are integers.

Theorem 5.4 [28]. Let l ≥ 1 and k > 1 be relatively prime odd integers.
Then the zero solution of (5.1.29) is asymptotically stable if and only if
|a| < 1 and

|a| − 1 < bmin
θ∈S

(1 + a2 − 2|a| cos kθ)
1
2 (5.1.30)

where S is the solution set of

1
|a| =

sin lθ

sin(l + k)θ
(5.1.31)

on the interval (0, π).

Theorem 5.5 [28]. Let l ≥ 1 be an odd integer, k an even integer, with l
and k relatively prime. Then the zero solution of (5.1.29) is asymptotically
stable if and only if

|b| < 1 − |a| for − 1 < a < 0 (5.1.32)

and

|b| < min
θ∈S∗

(1 + a2 + 2a cos kθ)
1
2 for 0 < a < 1, (5.1.33)

where S∗ is the solution set of

−1
a

=
sin lθ

sin(l + k)θ
(5.1.34)

on the interval (0, π).
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Theorem 5.6 [28]. Let l be an even integer and k > 1 an odd integer,
where l and k are relatively prime. Then the zero solution of (5.1.29) is
asymptotically stable if and only if

|a| − 1 < bmin
θ∈S

(1 + a2 − 2|a| cos kθ)
1
2 for − 1 < a < 0 (5.1.35)

and

a − 1 < −b < min
θ∈S

(1 + a2 − 2a cos kθ)
1
2 for 0 < a < 1. (5.1.36)

where S is as in Theorem 5.4.

Remark: If l and k in Theorems 5.4, 5.5, and 5.6 are not relatively prime,
then l = sl̃ and k = sk̃ for some positive integers s, l̃, and k̃, where l̃ and
k̃ are relatively prime. The asymptotic stability of (5.1.29) is equivalent to
the asymptotic stability of

x(n + k̃) + ax(n) + bx(n − l̃) = 0. (5.1.37)

(Why?) The reader is asked to prove this in Exercises 5.1, 5.2, Problem 5.

Example 5.7. Consider the difference equation

x(n + 25) + ax(n) + bx(n − 15) = 0, n = 0, 1, 2, . . . .

The corresponding characteristic equation is

λ40 + aλ25 + b = 0,

and in the reduced form is

λ8 + aλ5 + b = 0.

Here we have l̃ = 5 and k̃ = 3. Therefore, Theorem 5.5 is applicable and
the given equation is asymptotically stable if and only if |a| < 1 and

|a| − 1 < bmin
θ∈S

(1 + a2 − 2|a| cos 3θ)
1
2 ,

where S is the solution set of 1
|a| = sin 5θ

sin 8θ on the interval (0, π). If we let
a = 0.6, then θ = 2.007548968 and the given equation is asymptotically
stable if and only if −0.4 < b < 0.4477703541.

5.2 Sufficient Conditions for Stability

Clark [21] considered the equation

x(n + k) + px(n + k − 1) + qx(n) = 0 (5.2.1)

where p, q ∈ R. When p = −1, we revert back to the Levin and May equa-
tion (5.1.18). He showed that the zero solution of (5.2.1) is asymptotically
stable if

|p| + |q| < 1. (5.2.2)
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Moreover, the zero solution is unstable if

|p| − |q| > 1. (5.2.3)

Here we will extend Clark’s Theorem to the general equation (5.1.1).
The novelty of Clark’s proof is the use of Rouché’s Theorem from Complex
Analysis to locate the characteristic roots of the equation. In the first two
editions of this book, I followed Clark’s proof. In this edition, I am going to
deviate from this popular method, and give instead a simpler proof based
on Gerschgorin’s Theorem [111] which we now state.

Theorem 5.8. Let A be a k × k real or complex matrix. Let Si be the disk

in the complex plane with center at aii and radius ri =
k∑

j=1
j �=i

|aij |. Then all

the eigenvalues of A lie in S =
k⋃

i=1
Si.

Proof. Let λ be an eigenvalue of A with a corresponding eigenvector
v = (v1, v2, . . . , vk)T such that ||v||∞ = max

i
{|vi|} = 1. (Why?).

Since Av = λv, equating the ith row in both sides yields
k∑

j=1
aijvj = λvi.

Hence

(λ − aii)vi =
k∑

j �=i

aijvj , i = 1, 2, . . . , k.

Since ||v||∞ = 1, there exists r, 1 ≤ r ≤ k, such that ||v||∞ = |vr| = 1.
Then

|λ − arr| = |(λ − arr)vr| ≤
k∑

j �=r

|arj ||vj | ≤ rk

so that λ is in the disk Sr. �

The following example illustrates the above theorem.

Example 5.9. Consider the difference equation

x(n + 3) +
1
2
x(n + 2) − 1

4
x(n + 1) +

1
5
x(n) = 0. (5.2.4)

This equation can be converted to the system

x1(n + 1) = x2(n),
x2(n + 1) = x3(n),

x3(n + 1) = −1
5
x1(n) +

1
4
x2(n),−1

2
x3(n)

where x1(n) = x(n), x2(n) = x(n + 1), x3(n) = x(n + 2).
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2
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−1 1

FIGURE 5.2. Gerschgorin disks.

This can be written in the compact form

y(n + 1) = Ay(n),

y(n) = (x1(n), x2(n), x3(n))T ,

A =

⎛⎜⎜⎝
0 1 0
0 0 1

−1
5

1
4

−1
2

⎞⎟⎟⎠ .

The eigenvalues of A are the characteristic roots of (5.2.4). By Ger-
schgorin’s Theorem, all the eigenvalues of A lie in the union of the disks S1
and S2, where S1 is the disk centered at the origin with radius 1 and S2 is
centered at − 1

2 and with radius 1
4 + 1

5 = 9
10 = 0.45 (Figure 5.2). Thus

the spectral radius of A, ρ(A) ≤ 1. In fact we can do better if we realize
that an eigenvalue λ0 of A is also a characteristic root of (5.2.4). Hence
λ3

0 + 1
2λ2

0 − 1
4λ0 + 1

5 = 0 or λ3
0 = −1

2λ2
0 + 1

4λ0 − 1
5 = 0. Now if |λ0| = 1,

1 = |λ3
0| ≤ | − 1

2λ0| + | 14λ0| + | − 1
5 | = 19

20 , a contradiction. Hence ρ(A) < 1.
Thus by Corollary 2.24, the zero solution of (5.2.4) is asymptotically stable.

Theorem 5.10. The zero solution of (5.1.1) is asymptotically stable if

k∑
i=1

|pi| < 1. (5.2.5)

Proof. We first convert (5.1.1) into a system of first-order difference
equations

x(n + 1) = Ax(n) (5.2.6)
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where

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
−pk −pk−1 −pk−2 · · · −p1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (5.2.7)

By Gerschgorin’s Theorem all the eigenvalues lie in S1 ∪ S2, where S1 is
the unit disk, and S2 is the disk with center −p1 and radius r =

∑k
i=2 |pi|.

By assumption (5.2.5), |λ| ≤ 1. To eliminate the possibility that |λ| = 1,
we assume that A has an eigenvalue λ0 such that |λ0| = 1. Now λ0 is also a
characteristic root of (5.1.1) and thus from (5.1.2), p(λ0) = λk

0 + p1λ
k−1
0 +

· · · + pk = 0. This implies that

1 = |λk
0 | ≤ |−p1λ

k−1
0 | + |−p2λ

k−2
0 | + · · · + |−pk|

=
k∑

i=1

|pi|

< 1

which leads to a contradiction. It follows by Corollary 2.24 that the zero
solution (5.1.1) is asymptotically stable. �

A partial converse of this theorem may be obtained by a more refined
statement of Gerschgorin’s Theorem.

Theorem 5.11. Let Si, i = 1, 2, . . . , k, be the Gerschgorin disks of a k×k
matrix A. Suppose that for some 1 ≤ m ≤ k, (

⋃m
i=1 Si) ∩ (

⋃k
i=m+1 Si) = ∅.

Then there are exactly m eigenvalues (counting multiplicities) of A that lie
in
⋃m

i=1 Si and k − m eigenvalues that lie in
⋃k

i=m+1 Si.

Proof. The proof may be found in [111]. �

We are now ready to provide the promised partial converse to Theorem
5.10.

Theorem 5.12. The zero solution of (5.1.1) is unstable if

|p1| −
k∑

i=2

|pi| > 1. (5.2.8)

Proof. We first convert (5.1.1) into system (5.2.6). Then by Ger-
schgorin’s Theorem all the eigenvalues of A lie in the disks S1 and S2
where S1 is the unit disk and S2 is the disk centered at −p1 and with ra-
dius r =

∑k
i=2 |pi|. Condition (5.2.8) implies that S1 ∩S2 = ∅. By Theorem

5.11, S2 must contain an eigenvalue λj of A. Moreover, |λj | > 1. Hence the
zero solution of (5.1.1) is unstable. �
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Exercises 5.1 and 5.2

1. Show that the zero solution of x(n + 4) + p1x(n + 3) + p2x(n + 2) +
p3x(n + 1) + p4x(n) = 0 is asymptotically stable if and only if |p4| <
1, |p3 +p1| < 1+p2 +p4, and |p2(1−p4)+p4(1−p2

4)+p1(p4p1 −p3)| <
p4p2(1 − p4) + (1 − p2

4) + p3(p4p1 − p3).

2. Extend the result in Problem 1 to the fifth-order equation

x(n+5)+p1x(n+4)+p2x(n+3)+p3x(n+2)+p4x(n+1)+p5x(n) = 0.

3. For what values of α is the zero solution of x(n + 3) − x(n + 2) +
α−1

α x(n) = 0 asymptotically stable?

4. Consider the equation x(n + k) − x(n + k − 1) + α−1
α x(n) = 0, k ≥ 2.

(i) Show that the zero solution is asymptotically stable if and only if

(L) 1 < α < 1+
[
2 cos

[
(k − 1)π
2k − 1

]
/

(
1 − 2 cos

[
(k − 1)π
2k − 1

])]
.

(ii) Show that in (L) as k increases to ∞, α decreases monotonically
to 1.

5. Prove that the zero solution of (5.1.37) is asymptotically stable if and
only if the zero solution of (5.1.29) is asymptotically stable.

6. Apply Theorem 5.1 to show that the zero solution of the difference
equation ∆x(n) = −qx(n − 1), q > 0, is asymptotically stable if and
only if q < 1.

*7. (Hard). Prove that the zero solution of the difference equation ∆x(n) =
−qx(n − k), q > 0, k > 1, is asymptotically stable if qk < 1.

*8. Consider the linear difference equation

x(n + 1) − x(n) +
m∑

i=1

pix(n − ki) = 0, n ∈ Z
+,

p1, p2, . . . , pm ∈ (0,∞) and k1, k2, . . . , km are positive integers. Show
that the zero solution is asymptotically stable if

∑m
i=1 kipi < 1.

9. Consider the difference equation

x(n + 1) − x(n) + px(n − k) − qx(n − m) = 0, n ∈ Z
+,

where k and m are nonnegative integers, p ∈ (0,∞), and q ∈ [0,∞).
Show that the zero solution is (globally) asymptotically stable if

kp < 1 and q < p(1 − kp)/(1 + kp).

*10. Consider the following model of haematopoiesis (blood cell production)
[97], [78]

N(n + 1) = αN(n) +
β

1 + Np(n − k)
, n ∈ Z

+,
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and α ∈ [0, 1), p, β ∈ (0,∞), k is a positive integer. Here N(n) denotes
the density of mature cells in blood circulation.

(a) Find the positive equilibrium point N∗.

(b) Show that N∗ is (locally) asymptotically stable if either:

(i) p ≤ 1; or

(ii) p > 1 and
(

β
1−α

)p

< pp

(p−1)p+1 .

The following problems give Clark’s proof of Theorems 5.10 and 5.12.
These proofs are based on Rouché’s Theorem from Complex Analysis
[20].

Theorem 5.13 (Rouché’s Theorem). Suppose that:

(i) two functions f(z) and g(z) are analytic inside and on a simple
closed contour γ in the complex domain, and

(ii) |f(z)| > |g(z)| at each point on γ.

Then f(z) and f(z) + g(z) have the same number of zeros, counting
multiplicities, inside γ.

11. Use Rouché’s Theorem to prove Theorem 5.10.

12. Use Rouché’s Theorem to prove Theorem 5.12.

5.3 Stability via Linearization

Let I be a subset of the real line R. Then Im = I × I × · · · × I ⊂ R
m is

the product of m copies of I equipped with any of the norms l1, l2, or l∞
as discussed in Chapter 3.

Now a function f : Im → I is continuous at x = (x1, x2, . . . , xm) if
given ε > 0, there exists δ > 0 such that if y = (y1, y2, . . . , ym) ∈ Im and
||x−y|| < δ, then |f(x)−f(y)| < ε. Notice that the l1-norm gives ||x−y||1 =∑m

i=1 |xi − yi|. For the l2-norm, we have ||x − y||2 =
∑m

i=1(x
2
i − y2

i ), and
finally the l∞-norm gives ||x − y||∞ = max

1≤i≤m
|xi − yi|.

Following the work of Ladas and his collaborators [85] we will use the
l1-norm, unless otherwise noted.

Consider the following difference equation of order k + 1,

x(n + 1) = f(x(n), x(n − 1), . . . , x(n − k)) (5.3.1)

where f : Ik+1 → I is a continuous function.
Given a set of (k +1) initial conditions x−k, x−k+1, . . . , x0 ∈ I, there ex-

ists a unique solution {x(n)}∞
n=−k of (5.3.1) such that x(−k) = xk, x(−k +

1) = x−k+1, . . . , x(0) = x0. Of course one may convert (5.3.1) to a
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system of first-order difference equations of order k + 1 as follows. Let
y1(n) = x(n − k), y2(n) = (x − k + 1), . . . , yk+1(n) = x(n). Then (5.3.1)
may be converted to the system

y(n + 1) = F (y(n)), (5.3.2)

where

y(n) = (y1(n), y2(n), . . . , yk+1(n))T ,

F (y(n)) = (y2(n), y3(n), . . . , yk+1(n), f(yk+1(n), yk(n), . . . , y1(n))T .

We may write F = (F1, F2, . . . , Fk+1)T , where F1(y1) = y2, F2(y2) =
y3, . . . , Fk+1(yk+1) = f(yk+1, . . . , y1).

A point x∗ ∈ I is an equilibrium point of (5.3.1) if f(x∗, x∗, . . . , x∗) =
x∗. This corresponds to the equilibrium point (x∗, x∗, . . . , x∗) ∈ R

k+1 for
system (5.3.2). Notions of stability of equilibrium points and periodic points
of (5.3.1) may be stated via (5.3.2) and the use of proper interpretations
of the notions in regards to (5.3.1). Here is a sample.

Definition 5.14. An equilibrium point x∗ of (5.3.1) is stable (S) if, given
ε > 0, there exists δ > 0 such that if {x(n)}∞

n=−k is a solution of (5.3.1)
with

(|x(−k) − x∗| + |x(−k + 1) − x∗| + · · · + |x(0) − x∗|) < δ,

then

|x(n) − x∗| < ε for all n ≥ −k.

Analogous definitions can be given for the remaining notions of stability
as defined in Chapter 4.

If f is continuously differentiable in some open neighborhood of X∗ =
(x∗, x∗, . . . , x∗), then one can linearize (5.3.1) around X∗. One way to do
this is to revert to system (5.3.2) to obtain the linear system

z(n + 1) = Az(n), (5.3.3)

where A is the Jacobian of F at X∗, A = DF (X∗). Then convert (5.3.3)
to a scalar equation. However, one may also linearize (5.3.1) directly using
the chain rule. Thus the linearized equation around x∗ is given by

u(n + 1) = p0u(n) + p1u(n − 1) + · · · + pku(n − k), (5.3.4)

where

pi =
∂f

∂ui
(x̄, x̄, . . . , x̄),

with f(u0, u1, . . . , uk).
The characteristic equation of (5.3.4) is given by

λk+1 − p0λ
k − p1λ

k−1 − · · · − pk = 0. (5.3.5)
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Using the stability results in Chapter 4 for system (5.3.2), one may easily
establish the following fundamental stability result.

Theorem 5.15 (The Linearized Stability Result). Suppose that
f is continuously differentiable on an open neighborhood G ⊂ R

k+1 of
(x∗, x∗, . . . , x∗), where x∗ is a fixed point of (5.3.1). Then the following
statements hold true:

(i) If all the characteristic roots of (5.3.5) lie inside the unit disk in the
complex plane, then the equilibrium point x∗ of (5.3.1) is (locally)
asymptotically stable.

(ii) If at least one characteristic root of (5.3.5) is outside the unit disk in
the complex plane, the equilibrium point x∗ is unstable.

(iii) If one characteristic root of (5.3.5) is on the unit disk and all the
other characteristic roots are either inside or on the unit disk, then the
equilibrium point x∗ may be stable, unstable, or asymptotically stable.

Proof. The proofs of (i) and (ii) follow from Corollary 4.34 and Theorem
4.38.

(iii) This part may be proved by the following examples. First consider the
logistic equation x(n + 1) = x(n)(1 − x(n)) = f(x(n)). The linearized
equation around the equilibrium point x∗ = 0 is given by u(n + 1) =
u(n) with the characteristic roots λ = 1. But we know from Section
1.6 that x∗ = 0 is unstable.

Now we give an example that produces a different conclusion from the
above example. Consider the equation

x(n + 1) = x(n) − x3(n) = f(x(n)).

The linearized equation is given by

u(n + 1) = u(n)

with the characteristic root λ = 1. Now for the equilibrium point
x∗ = 0, we have f ′(0) = 1, f ′′(0) = 0, f ′′′(0) = −6 < 0. This implies
by Theorem 1.15 that x∗ = 0 is asymptotically stable. �

Example 5.16 [15]. Consider the difference equation

x(n + 1) = ax(n) + F (x(n − k)) (5.3.6)

which models whale populations. Here x(n) represents the adult breeding
population, a, 0 ≤ a ≤ 1, the survival coefficient, and F (x(n − k)) the
recruitment to the adult stage with a delay of k years. The equilibrium
point x∗ of (5.3.6) is given by the equation

x∗ = ax∗ + F (x∗),
x∗ = F (x∗)/(1 − a). (5.3.7)
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Since F (x∗) = (1 − a)x∗, (1 − a) is the annual mortality rate of the whale
population. The linearized equation associated with (5.3.6) is given by

u(n + 1) = au(n) + bu(n − k), (5.3.8)

where b = F ′(x∗).
Equation (5.3.8) may be written in the form

u(n + 1) − au(n) − bu(n − k) = 0. (5.3.9)

By Theorem 5.10, a sufficient condition for the zero solution of (5.3.9)
to be asymptotically stable is

|a| + |b| < 1,

a + |b| < 1. (5.3.10)

Condition (5.3.10) is a sufficient condition for the asymptotic stability of
the equilibrium point x∗ given by (5.3.7).

Exercises 5.3

1. Consider the delayed recruitment model

x(n + 1) =
1
2
x(n) + F (x(n − k)).

Let x∗ be the equilibrium point and let b = F ′(x∗). Assume that
F is continuously differentiable in an open neighborhood of x∗. Find
sufficient conditions for x∗ to be asymptotically stable if:

(i) k = 2,

(ii) k = 3.

2. Consider the single species, age-structured population model

x(n + 2) = x(n) exp(r − ax(n + 1) − x(n)),

where xn ≥ 0 for all n ∈ Z
+, a, r > 0.

(i) Show that all solutions are bounded.

(ii) Find conditions on r and α under which the positive equilibrium
is asymptotically stable.

In Subsection 4.7.5 we studied in detail the larval–pupal–adult (LPA)
of the flour beetle.

L(n + 1) = bA(n) exp(−cEAA(n) − cELL(n)),
P (n + 1) = (1 − µL)L(n), (5.3.11)
A(n + 1) = P (n) exp(−cPAA(n)) + (1 − µA)A(n).

Kuang and Cushing [83] considered the simplified case when larval
cannibalism of eggs is not present, i.e., cEL = 0. Problems 3 though 5
refer to this simplified model.
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3. Prove that (5.3.11) reduces to

x(n+1)−αx(n)−βx(n−2) exp(−c1x(n−2)− c2x(n)) = 0, (5.3.12)

where α = 1−µA, β = b(1−µL), c1 = cEA, c2 = cPA, x(n) = A(n+2),
n ≥ −2.

Then show that if α + β ≤ 1, equation (5.3.12) has only the trivial
equilibrium x∗

1 = 0. Furthermore, if α + β > 1, then (5.3.12) has two
equilibria, x∗

1 = 0 and x∗
2 > 0, with x∗

2 = (1/c1 + c2) ln(β/(1 − α)).

4. Show that the linearized equation of (5.3.12) around an equilibrium
point x∗ is given by

y(n + 1) − [α − βc2x
∗ exp{−(c1 + c2)x∗}]y(n)

− β(1 − c1x
∗) exp{−(c1 + c2)x∗}y(n − 2) = 0.

5. Prove that:

(i) The trivial solution x∗
1 = 0 is asymptotically stable

b(1 − µL)
µA

< 1.

(ii) The positive equilibrium x∗
2 = (1/c1 + c2) ln(β/(1 − α)) is

asymptotically stable if and only if

|A + B| < 1, |A − 3B| < 3, and B(B − A) < 1, (5.3.13)

where

A =
c2(1 − α)
c1 + c2

(
ln

β

1 − α

)
− α,

B = (1 − α)
[

c1

c1 + c2

(
ln

β

1 − α

)
− 1
]

.

6. Consider the difference equation N(n+1)−N(n) = N(n)[a+ bN(n−
k) − cN2(n − k)], n ∈ Z

+, where a, c ∈ [0,∞) and b ∈ R, k ∈ Z
+.

(a) Prove the equation has a unique positive equilibrium N∗.

(b) Show that N∗ is (locally) asymptotically stable if

N∗√b2 + 4ac < 2 cos
[

kπ

2k + 1

]
.

7. Consider the rational difference equation

x(n + 1) =

(
a +

k∑
i=0

aix(n − i)

)/(
b +

k∑
i=0

bix(n − i)

)
,

where k is a nonnegative integer, a0, a1, . . . , ak, b0, b1, . . . , bk ∈ [0,∞),
a, b ∈ (0,∞),

∑k
i=0 ai = 1 and B =

∑k
i=0 bi > 0. Find the pos-
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itive equilibrium point x∗ of the equation. Then show that x∗ is
asymptotically stable if b > 1.

Consider the rational difference equation

x(n + 1) = [a + bx(n)]/[A + x(n − k)], (5.3.14)

n ∈ Z
+, a, b ∈ [0,∞), with a + b > 0, A ∈ (0,∞), and k is a positive

integer. Problems 8, 9, and 10 refer to equation (5.3.14) with the above
assumptions.

8. (i) Show that if either a > 0 or a = 0 and b > A, equation (5.3.14)
has a positive equilibrium x∗. Then find x∗.

(ii) Show that x∗ is (locally) asymptotically stable if either b = 0 or
a = 0 and

b > A > b

(
1 − 2 cos

kπ

2k + 1

)
.

9. Show that the positive equilibrium x∗ of equation (5.3.14) is asymp-
totically stable if either k = 1 and a > 0 or k ≥ 2 and A >
b.

*10. Show that for any positive solution x(n) of equation (5.3.14) there
exists positive constants C and D such that C ≤ x(n) ≤ D, n ∈ Z

+

provided that b > 1.

5.4 Global Stability of Nonlinear Equations

Results on global asymptotic stability are scarce and far from complete. In
Chapter 4 we have seen how Liapunov functions can be used to establish
both local and global asymptotic stability. In this section we will utilize
the special nature of scalar equations to present a few results that can
deal with several types of equations. Roughly speaking, we will be mainly
concerned with “monotone” equations. A more general investigation on
monotone discrete dynamical systems is beyond the scope of this book
and the interested reader is referred to the work of Hal Smith [138]. More
detailed expositions may also be found in Sedaghat [133], Kocic and Ladas
[80], and Kulenovic and Ladas [85].

Consider the following difference equation of order (k + 1),

x(n + 1) = f(x(n), x(n − 1), . . . , x(n − k)), (5.4.1)

n ∈ Z
+ and k ≥ 1 is a positive integer. The main result in this section is

due to Hautus and Bolis [65]. (See also Kocic and Ladas [80] and Kulenovic
and Ladas [84].)
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Theorem 5.17. Consider (5.4.1) with f ∈ C(Ik+1, R), where I is an open
interval in R and x∗ ∈ I is an equilibrium point. Suppose that f satisfies
the following assumptions:

(i) f is nonincreasing in each of its arguments, i.e., if a ≤ b, then
f(·, . . . , a, . . . , ·) ≤ (f(·, . . . , b, . . . , ·).

(ii) (u − x∗)[f(u, u, . . . , u) − u] < 0 for all u ∈ I/{x∗}.
Then with initial values (x(0), x(−1), . . . , x(−k)) ∈ I, we have x(n) ∈ I

for n ≥ 0 and limn→∞ x(n) = x∗.

Proof. Condition (ii) ensures that x∗ is the only equilibrium point in I.
For if y∗ ∈ I is another equilibrium point, then (y∗ −x∗)[f(y∗, y∗, . . . , y∗)−
y∗] = 0 which violates condition (ii). Let x(n) be a solution of (5.4.1)
with x(0), x(−1), . . . , x(−k) ∈ I. Set m = min{x∗, x(0), . . . , x(−k)}, M =
max{x∗, x(0), . . . , x(−k)}. By condition (ii) and since m ≤ x∗, we have m ≤
f(m, m, . . . , m). Moreover, by condition (i) we obtain f(m, m, . . . , m) ≤
f(x(0), x(−1), . . . , x(−k)) = x(1). Thus m ≤ f(m, m, . . . , m) ≤ x(1). Sim-
ilarly, one may show that x(1) ≤ f(M, M, . . . , M) ≤ M . By induction
on n, it is easy to show that m ≤ x(n) ≤ M for all n ≥ −k. In partic-
ular, since [m, M ] ⊂ I, it follows that x(n) ∈ I, for all n ≥ −k. Since
x(n) is bounded, both limn→∞ inf x(n) = L1 and limn→∞ supx(n) = L2
exist. Furthermore, m ≤ L1 ≤ L2 ≤ M . Let ε > 0 be sufficiently small
such that [m + ε, M + ε] ⊂ I. There exists a positive integer N such
that L1 − ε < x(n − k) for all n ≥ N . This implies by condition (i) that
f(L1 − ε, L1 − ε, . . . , L1 − ε) ≤ f(x(n), x(n − 1), . . . , x(n − k)) = x(n + 1),
for all n ≥ N . Consequently, f(L1 − ε, L1 − ε, . . . , L1 − ε) ≤ L1. Since f is
continuous, and ε is arbitrary, it follows that f(L1, L1, . . . , L1) ≤ L1. This
implies by condition (ii) that x∗ ≤ L1. By a similar argument (Problem
12). one may show that L2 ≤ x∗ and, consequently, L2 ≤ x∗ ≤ L1. Hence
x∗ = L1 = L2, and limn→∞ x(n) = x∗. �

Example 5.18. The Beverton–Holt model [10]

x(n + 1) =
rKx(n)

K + (r − 1)x(n)
, K > 0, r > 0, (5.4.2)

has been used to model populations of bottom-feeding fish, including the
North Atlantic plaice and haddock. These species have very high fertility
rates and very low survivorship to adulthood. Furthermore, recruitment is
essentially unaffected by fishing.

Local stability analysis (Theorem 1.13) reveals that:

(i) if 0 < r < 1, then the zero solution x∗
1 = 0 is asymptotically stable,

(ii) if r > 1, then the equilibrium x∗
2 = K is asymptotically stable.

Using Theorem 5.17 one can say more about x∗
2. Since f(x) = rKx/K +

(r − 1)x is monotonically increasing for r > 1, condition (i) in Theorem
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5.17 holds. Now for any u ∈ (0,∞),

(u − K)(f(u) − u) = (u − K)
(

rKu − u(K + (r − 1)u)
K + (r − 1)u

)
= −u(r − 1)

(K − u)2

K + (r − 1)u
< 0

and condition (ii) in Theorem 5.17 is satisfied. It follows that x∗
2 = K is

globally asymptotically stable.
Cushing and Henson [26] used more elementary methods to prove the

above results.
Now consider the second-order (modified) Beverton–Holt model

x(n + 1) =
rK(αx(n) + βx(n − 1))

K + (r − 1)x(n − 1)
(5.4.3)

where r > 0, K > 0, and α + β = 1.
In this model, the future generation x(n + 1) depends not only on the

present generation x(n) but also on the previous generation x(n − 1). This
model has two equilibrium points as before x∗

1 = 0 and x∗
2 = K.

We first investigate the local stability of these two equilibria. Using
Theorem 5.15, we have the following conclusions:

(a) The zero solution x∗
1 = 0 of (5.4.3) is locally asymptotically stable if

and only if 0 < r < 1.

(b) The equilibrium x∗
2 = K is locally asymptotically stable if and only if

r > 1.

In fact, one can say more about x∗
2 = K. Following the same analysis used

for (5.4.2), one may conclude by employing Theorem 5.17 that x∗
2 = K is in

fact globally asymptotically stable. A higher-order Beverton–Holt equation
has been investigated in [81].

The second result that we will present is of a different flavor. It is much
more flexible than Theorem 5.17 since it allows f to be either nondecreas-
ing or nonincreasing in its arguments. This leads to the notion of weak
monotonicity.

Definition 5.19. The function f(u1, u2, . . . , uk+1) is said to be weakly
monotonic if f is nondecreasing or nonincreasing in each of its arguments,
i.e., for a given integer j, 1 ≤ j ≤ k + 1, if a ≤ b, then either

f(·, . . . , a, . . . , ·) ≤ f(·, . . . , b, . . . , ·) or
f(·, . . . , a, . . . , ·) ≥ f(·, . . . , b, . . . , ·),

where a and b are in the jth slot, and all the other slots are filled with fixed
numbers z1, z2, . . . , zj−1, zj , . . . , zk+1.

Theorem 5.20 [60]. Suppose that f in (5.4.1) is continuous and weakly
monotonic. Assume, in addition, that whenever (m, M) is a solution of the
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system

m = f(m1, m2, . . . , mk+1) and M = f(M1, M2, . . . , Mk+1),

where, for each i = 1, 2, . . . , k + 1,

mi =

{
m if f is nondecreasing in zi,

M if f is nonincreasing in zi,

and

Mi =

{
M if f is nondecreasing in zi,

m if f is nonincreasing in zi,

then m = M .
Then (5.4.1) has a unique equilibrium point x∗ = m which is globally

attracting.

Proof. Let m0 = a, M0 = b, and for each i = 1, 2, . . . set

M i = f(M i−1
1 , M i−1

2 , . . . , M i−1
k+1)

and

mi = f(mi−1
1 , mi−1

2 , . . . , mi−1
k+1),

where

m0
i =

{
a if f is nondecreasing in the ith slot,

b if f is nonincreasing in the ith slot,

and

M0
i =

{
b if f is nondecreasing in the ith slot,

a if f is nonincreasing in the ith slot.

For r > 0,

mr
i =

{
mr−1

i if f is nondecreasing in the ith slot,

Mr−1
i if f is nonincreasing in the ith slot,

and

Mr
i =

{
Mr−1

i if f is nondecreasing in the ith slot,

mr−1
i if f is nonincreasing in the ith slot.

It follows from the assumptions on f that, for i ≥ 0,

m0 ≤ m1 ≤ · · · < mi ≤ · · · ≤ M i ≤ · · · ≤ M1 ≤ M0.
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Furthermore, mi ≤ x(n) ≤ M i for n ≥ 2i + 1. Set m = limi→∞ mi and
M = limi→∞ M i. Then M ≥ lim supn→∞ x(n) ≥ lim infn→∞ x(n) ≥ m.
Since f is continuous, it follows that m = f(m1, m2, . . . , mk+1) and M =
f(M1, M2, . . . , Mk+1). Hence x∗ = m = M is the unique equilibrium point
of (5.4.1). Moreover, limn→∞ x(n) = 0 and the proof of the theorem is now
complete. �

Example 5.21 [85]. Consider the difference equation

y(n + 1) =
py(n) + y(n − 1)

p + y(n − 1)
, p > 0, n ∈ Z

+. (5.4.4)

This equation has only two fixed points y∗
1 = 0 and y∗

2 = 1. Local stability
analysis shows that y∗

2 is locally asymptotically stable. Now assume that
y(n) is a solution of (5.4.4), such that y(n) ≥ 1 for all n ∈ Z

+. Then from
(5.4.4) we have y(n + 1) − y(n) = (1 − y(n)) y(n−1)

p+y(n−1) ≤ 0. This implies
that y(n) is nonincreasing and thus has a limit in [1,∞). But this leads
to a contradiction since 0 < y∗

2 < 1. Hence for some positive integer N ,
y(N) ∈ (0, 1). Writing (5.4.4) in the form

y(n + 1) − 1 = [y(n) − 1]
p

p + y(n − 1)

we conclude that y(N + r) ∈ (0, 1) for all r ∈ Z
+. Now in the interval

(0, 1), the function f(u, v) = pv+u
p+u is increasing in both arguments and, by

Theorem 5.20, y∗
2 is globally asymptotically stable.

The following corollary of Theorem 5.20 is easy to apply to establish the
global asymptotic stability of the zero solution.

An independent proof of this conclusion may be found in Grove et al.
[61].

Corollary 5.22. Contemplate the difference equation

x(n + 1) =
k∑

i=0

x(n − i)fi(x(n), x(n − 1), . . . , x(n − k)), n ∈ Z
+, (5.4.5)

with initial values x(0), x(−1), . . . , x(−k) ∈ [0,∞) such that

(i) k ∈ Z
+;

(ii) f0, f1, . . . , fk ∈ C
[
[0,∞)k+1, [0, 1)

]
;

(iii) f0, f1, . . . , fk are nonincreasing in each argument;

(iv)
∑k

i=0 fi(u0, u1, . . . , uk) < 1 for all (u0, u1, . . . , uk) ∈ (0,∞)k+1;

(v) f0(u, u, . . . , u) > 0 for all u ≥ 0.

Then the trivial solution x∗ = 0 of (5.4.5) is globally asymptotically stable.

Proof. This will be left as Exercises 5.4, Problem 13. �
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Example 5.23. Consider again (5.4.4). If p + 1 < q, then y∗
1 = 0 is

the only equilibrium point in [0,∞). By Theorem 5.15, y∗
1 = 0 is locally

asymptotically stable. Now we write (5.4.4) in the form

y(n + 1) = y(n) · p

q + y(n − 1)
+ y(n − 1) · 1

q + y(n − 1)
.

Hence

f0(u, v) =
p

q + v
, f1(y, v) =

1
q + v

.

It is easy to show that f0 and f1 satisfy all the conditions (i) through (iv) in
Corollary 5.22. Hence by Corollary 5.22, y∗

1 = 0 is globally asymptotically
stable.

Exercise 5.4

1. Consider a modified Beverton–Holt equation

x(n + 1) =
rK(αx(n) + βx(n − 1))

K + (r − 1)x(n − 1)
, α + β = 1, α, β > 0.

Show that the zero solution is globally asymptotically stable if 0 < r <
1.

2. Show that the zero solution of the equation x(n + 1) = ax(n −
k) exp[−b(x2(n) + · · · + x2(n − m))], |a| ≤ 1, b > 0, is globally
asymptotically stable.

3. Consider the LPA model of the flour beetle (5.3.11) with no larval
cannibalism on eggs:

x(n + 1) = αx(n) + βx(n − 2) exp[−c1x(n − 2) − c2x(n)]

where α = 1−µA, β = b(1−µL), c1 = cEA, c2 = cPA, x(n) = A(n+2).
Show that the zero solution is globally asymptotically stable if α+β ≤
1 and β > 0.

4. The following equation describes the growth of a mosquito population:

x(n + 1) = (ax(n) + bx(n − 1)e−x(n−1))e−x(n), n ∈ Z
+,

where a ∈ (0, 1), b ∈ [0,∞). Prove that the zero solution is globally
asymptotically stable if a + b ≤ 1.

5. A variation of the mosquito model in Problem 4 is given by the
equation

x(n + 1) = (ax(n) + bx(n − 1))e−x(n), n ∈ Z
+, (5.4.6)

where a ∈ [0, 1), b ∈ (0,∞). Prove that the zero solution is globally
asymptotically stable if a + b ≤ 1 and b < 1.
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6.1 Show that the positive equilibrium of the equation

x(n + 1) =
p + qx(n − 1)

1 + x(n)
, p, q > 0,

is globally asymptotically stable if q < 1.

7. Show that the positive equilibrium of the equation

x(n + 1) =
p + x(n − 1)

qx(n) + x(n − 1)
, p, q > 0,

is globally asymptotically stable if q ≤ 1 + 4p.

8. Consider equation (5.4.4). Show that if y(−1)+y(0) > 0 and p+1 > q,
then the positive equilibrium y∗ = p + 1 − q is globally asymptotically
stable.

9. Consider the equation

x(n + 1) =
x(n) + p

x(n) + qx(n − 1)
, p, q > 0, n ∈ Z

+.

Show that the positive equilibrium point of the equation is globally
asymptotically stable if q ≤ 1 + 4p.

10. Show that the positive equilibrium point of the equation

x(n + 1) =
p + qx(n)

1 + x(n − 1)
, p, q > 0, n ∈ Z

+,

is globally asymptotically stable if one of the following two conditions
holds:

(i) q < 1,

(ii) q ≥ 1 and either p ≤ q or q < p < 2(q + 1).

11. Show that the positive equilibrium of the equation

x(n + 1) =
px(n) + x(n − 1)
qx(n) + x(n − 1)

, p, q > 0, n ∈ Z
+,

is globally asymptotically stable if q < pq + 1 + 3p and p < q.

12. Complete the proof of the Theorem 5.17 by showing that L2 ≤ x∗.

13. Prove Corollary 5.22.

*14. (Term project). Consider equation (5.4.6) with the assumption a+b >
1 and b < e−a

e+1 (where ex is the exponential function). Show that the
positive equilibrium is globally asymptotically stable, with basin of
attraction [0,∞) × [0,∞)/{(0, 0)}.

1Problems 6–11 are from Kulenovic and Ladas [85].
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*15. Conjecture [85]. Prove that every positive solution of the equation

x(n + 1) =
α + βx(n) + γx(n − 1)

cx(n − 1)
,

where n ∈ Z
+, αc > 0, converges to the positive equilibrium of the

equation.

*16. Conjecture [85]. Consider the equation

x(n + 1) =
α + γx(n − 1)

A + Bx(n) + Cx(n − 1)
,

where α, γ, A, B, C > 0. Prove that if the equation has no solutions of
prime period 2, then the positive equilibrium is globally asymptotically
stable.

(Open Problems: Kulenovic and Ladas.) Assume that p, q, r ∈ [0,∞),
k ≥ 2 is a positive integer. Investigate the global stability of the following
equations.

*17. y(n + 1) = p + qy(n)
1 + y(n) + ry(n − k) .

*18. y(n + 1) = p + qy(n − k)
1 + y(n) + ry(n − k) .

*19. y(n + 1) = py(n) + y(n − k)
r + qy(n) + y(n − k) .

5.5 Applications

5.5.1 Flour Beetles
In this section we consider again the LPA model [83] of the flour beetle
(5.3.12) with no larval cannibalism on eggs:

x(n + 1) = αx(n) + βx(n − 2) exp[−c1x(n − 2) − c2x(n)]
= f(x(n), x(n − 1), x(n − 2)) (5.5.1)

where α = 1 − µA, β = b(1 − µL), c1 = cEA, c2 = cPA, x(n) = A(n + 2).
Using the Schur–Cohn Criterion one may show that the positive equilib-

rium x∗
2 = 1

c1+c2
ln
(

β
1−α

)
is (locally) asymptotically stable if and only if

the following conditions hold:

|A + B| < 1, |A − 3B| < 3, B(B − A) < 1, (5.5.2)

where

A =
c2(1 − α)
c1 + c2

(
ln

β

1 − α

)
− α, B = (1 − α)

[
c1

c1 + c2

(
ln

β

1 − α

)
− 1
]

.
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In the sequel, we will go one step further and prove that the equilib-
rium point x∗

2 is in fact globally asymptotically stable under the following
assumptions:

A1 : α + β > 1 and β < min{e(1 − α), eαc1/c2},

A2 : max{x(−2), x(−1), x(0)} > 0.

The following two lemmas from Kuang and Cushing [83] will facilitate
the proof of the main result and make it more transparent.

Lemma 5.24. If α + β > 1, then

lim sup
n→∞

x(n) ≤ β

c1e(1 − α)
. (5.5.3)

Proof. Consider the function h(x) = c1exe−c1x. This function has a
critical point xc, where

h′(xc) = c1e
1−c1xc − c2

1xce
1−c1xc = 0.

Hence xc = 1
c1

, and h
(

1
c1

)
= 1 is the maximum value of h. It follows that

c1exe−c1x ≤ 1 and, consequently,

xe−c1x ≤ 1
c1e

. (5.5.4)

Going back to equation (5.5.1) we obtain

x(n + 1) ≤ αx(n) + βx(n − 2) exp(−c1x(n − 2))

≤ αx(n) +
β

c1e
(by (5.5.4)). (5.5.5)

By (1.2.8), the solution of (5.5.5) is given by

x(n) ≤ αnx(0) +
β

c1e(1 − α)
(1 − αn)

and since α ∈ (0, 1), it follows that

lim sup
n→∞

x(n) ≤ β

c1e(1 − α)
. �

The next lemma shows that (5.5.1) satisfies condition (ii) in Theorem
5.17.

Lemma 5.25. For any u > 0, u �= x∗
2,

(u − x∗
2)[f(u, u, u) − u] < 0. (5.5.6)

Proof. Let g(u) = f(u, u, ur) − u. Then

g(u) = u[α + β exp(−(c1 + c2)u) − 1].

Clearly g(u) = 0 if and only if u = 0 or u = x∗
2. We now have two cases to

consider.
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Case (a): If 0 < u < x∗
2 = 1

c1+c2
ln
(

β
1−α

)
, then

α + β exp[−(c1 + c2)u] − 1 > α + βe−(c1+c2)x∗
2 − 1 = 0,

and (5.5.6) holds true.

Case (b): If u > x∗
2, then

α + β exp[−(c1 + c2)u] − 1 < α + β exp[−(c1 + c2)x∗
2] − 1 = 0,

and (5.5.6) holds true. �

We are now ready to prove the following theorem.

Theorem 5.26. If conditions A1 and A2 hold, then

lim
n→∞ x(n) = x∗

2.

Proof. By virtue of Lemma 5.25 it remains to show that condition (ii)
of Theorem 5.17 holds. To accomplish this task we need to show that

∂f
∂x(n) ,

∂f
∂x(n−1) ,

∂f
∂x(n−2) ≥ 0 on a region D. Simple computations show that

∂f

∂x(n)
= α − c2βx(n − 2) exp[−c1x(n − 2) − c2x(n)],

∂f

∂x(n − 1)
= 0,

∂f

∂x(n − 2)
= β(1 − c1x(n − 2)) exp[−c1x(n − 2) − c2x(n)].

Now by Lemma 5.24, lim supn→∞ x(n) ≤ β[c1e(1 − α)]−1. Since β < e(1 −
α), this implies that lim supn→∞ ≤ 1

c1
. Hence, for n > N , for some integer

N greater than 2, x(n − 2) < 1
c1

. Let I =
(
0, 1

c

)
and D = I3. Then x∗

2 ∈ I

and ∂f
∂x(n−i) ≥ 0 for i = 1, 2. Furthermore, ∂f

∂x(n) ≥ α − c2β exp(−c1x(n −
2)) ≥ α − c2β

c1e ≥ 0. This shows that f is nondecreasing in each of its
arguments restricted to D. Since max{x(−2), x(−1), x(0)} > 0, there is n0
such that for n ≥ n0, 0 < x(n−2) < 1

c1
. Let x̂(0) = x(n0), x̂(−1) = x(n0 −

1), x̂(−2) = x(n0−2). Then since the equation is autonomous, x̂(n) = x(n)
for n ≥ n0. By Theorem 5.17, we have limn→∞ x(n) = x∗

2. �

5.5.2 A Mosquito Model
Consider the following mosquito model [61]

x(n + 1) = [ax(n) + bx(n − 1) exp(−x(n − 1))] exp(−x(n)), (5.5.7)

where

a ∈ (0, 1), b ∈ ([0,∞), n ∈ Z
+.

This equation describes the growth of a mosquito population. Mosquitoes
lay eggs, some of which hatch as soon as conditions are favorable, while
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others remain dormant for a year or two. In this model, it is assumed that
eggs are dormant for one year at most.

Clearly x∗
1 = 0 is an equilibrium point. The positive equilibrium point

may be obtained by solving the equation

(a + be−x)e−x = 1.

Let g(x) = (a+ be−x)e−x − 1. Then since g′(x) = −e−x[a+2be−x] < 0 and
g(0) = a + b − 1, a positive root of g exists if and only if

a + b > 1. (5.5.8)

Moreover, the positive equilibrium point is given by

x∗
2 = ln

(
a +

√
a2 + 4b

2

)
.

Note also that if x(n) is a solution of (5.5.7) with x(−1) + x(0) > 0, then
x(n) > 0 for all n ≥ 1.

Our main objective in this subsection is to prove the following result.

Theorem 5.27. Suppose that

1 − a < b ≤ a(e − a)
a + 1

. (5.5.9)

Then the positive equilibrium x∗
2 of (5.5.7) is globally asymptotically stable

whose basin of attraction is (0,∞).

Proof. The proof is divided into two parts. The first part establishes lo-
cal asymptotic stability and the second part establishes global attractivity.
Here we denote x∗

2 by x∗.

Part I: Local stability analysis.
By criterion (5.1.9), it follows that the equilibrium point x∗

2 is locally
asymptotically stable if and only if the following three inequalities hold:

b − bx∗ − e2x∗
< aex∗ − ax∗ex∗ − bx∗, (5.5.10)

aex∗ − ax∗ex∗ − bx∗ < e2x∗ − b + bx∗, (5.5.11)

bx∗ − b < e2x∗
. (5.5.12)

Observe that x∗ satisfies the equation

x∗ = (ax∗ + bx∗e−x∗
)e−x∗

or, equivalently, if x∗
2 �= 0,

e2x∗
= aex∗

+ b. (5.5.13)

Inequality (5.5.11) is satisfied since by using (5.5.13) we obtain

e2x∗ − b + 2bx∗ + ax∗ex∗ − aex∗
= 2bx∗ + ax∗ex∗

> 0.
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Inequalities (5.5.10) and (5.5.12) both hold using (5.5.13) if 0 < x∗ < 2.
But this is true in general for any positive solution x(n) since from (5.5.7)

it follows that

x(n + 1) < ax(n)e−x(n) + bx(n − 1)e−x(n−1) ≤ a

e
+

b

e
=

a + b

e
.

(Why?) (The function x
ex attains its maximum at x = 1.) But by assump-

tion (5.5.9), b ≤ a(e−a)
a+1 < e − a, and so a+b

e < 1. Hence x∗ < 2 and x∗ is
thus locally asymptotically stable.

Part II: Global attractivity.
We set I =

(
0, a+b

e

)
and D = I×I and let our function be f : D → (0,∞)

defined as

f(u, v) = (au + bve−v)e−u.

Then clearly x∗ ∈ I.
Now ∂f

∂v (u, v) = be−u ∂(ve−v)
∂v ≥ 0 since v → ve−v is increasing on [0, 1].

Hence f is nondecreasing in v for v ∈ I. Moreover,

∂f

∂v
(u, v) = e−u(a − au − bve−v) ≥ 0

if (au + bve−v) ≤ a for all u, v ∈ (0, a+b
e

)
. But

au + bve−v ≤ a

(
a + b

e

)
+

b

e

≤ a2(a + 1) + a2(e − a) + a(e − a)
e(a + 1)

= a.

Hence f is nondecreasing in u, for u ∈ I.
This shows that condition (i) in Theorem 5.17 is fulfilled. Condition (ii)

in Theorem 5.17 can easily be established and will be left to the reader to
verify. The proof of the theorem is now complete. �



6
The Z-Transform Method and
Volterra Difference Equations

In the last five chapters we used the so-called time domain analysis. In
this approach we investigate difference equations as they are, that is, with-
out transforming them into another domain. We either find solutions of
the difference equations or provide information about their qualitative
behavior.

An alternative approach will be developed in this chapter. The new ap-
proach is commonly known as the transform method. By using a suitable
transform, one may reduce the study of a linear difference or differen-
tial equation to an examination of an associated complex function. For
example, the Laplace transform method is widely used in solving and an-
alyzing linear differential equations and continuous control systems, while
the Z-transform method is most suitable for linear difference equations
and discrete systems. It is widely used in the analysis and design of digital
control, communication, and signal processing.

The Z-transform technique is not new and may be traced back to De
Moivre around the year 1730. In fact, De Moivre introduced the more
general concept of “generating functions” to probability theory.

273
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6.1 Definitions and Examples

The Z-transform of a sequence x(n), which is identically zero for negative
integers n (i.e., x(n) = 0 for n = −1,−2, . . .), is defined by

x̃(z) = Z(x(n)) =
∞∑

j=0

x(j)z−j , (6.1.1)

where z is a complex number.
The set of numbers z in the complex plane for which series (6.1.1) con-

verges is called the region of convergence of x(z). The most commonly used
method to find the region of convergence of the series (6.1.1) is the ratio
test. Suppose that

lim
j→∞

∣∣∣∣x(j + 1)
x(j)

∣∣∣∣ = R.

Then by the ratio test, the infinite series (6.1.1) converges if

lim
j→∞

∣∣∣∣x(j + 1)z−j−1

x(j)z−j

∣∣∣∣ < 1

and diverges if

lim
j→∞

∣∣∣∣x(j + 1)z−j−1

x(j)z−j

∣∣∣∣ > 1.

Hence the series (6.1.1) converges in the region |z| > R and diverges for
|z| < R. This is depicted in Figure 6.1, where Re z denotes the real axis
and Im z represents the imaginary axis.

The number R is called the radius of convergence of series (6.1.1). If R =
0, the Z-transform x̃(z) converges everywhere with the possible exception
of the origin. On the other hand, if R = ∞, the Z-transform diverges
everywhere.

We now compute the Z-transform of some elementary functions.

Example 6.1. Find the Z-transform of the sequence {an}, for a fixed real
number a, and its region of convergence.

Solution Z(an) =
∞∑

j=0

ajz−j . The radius of convergence R of Z(an) is given

by

R = lim
j→∞

∣∣∣∣aj+1

aj

∣∣∣∣ = |a|.

Hence (Figure 6.2)

Z(an) =
∞∑

j=0

(a

z

)j

=
1

1 − (a/z)
=

z

z − a
for |z| > |a|. (6.1.2)
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Im z

Region of 
convergence

Re z

R

Region of
divergence

FIGURE 6.1. Regions of convergence and divergence for x̃(z).

Im z

Re z
a

Region of 
convergence

divergence

Region of

FIGURE 6.2. Regions of convergence and divergence for Z(an).

A special case of the above result is that of a = 1. In this case we have

Z(1) =
z

z − 1
for |z| > 1.

Example 6.2. Find the Z-transform of the sequences {nan} and {n2an}.

Solution Recall that an infinite series Z(an) may be differentiated, term by
term, any number of times in its region of convergence [20]. Now,

∞∑
j=0

ajz−j =
z

(z − a)
for |z| > |a|.

Taking the derivative of both sides yields
∞∑

j=0

−jajz−j−1 =
−a

(z − a)2
for |z| > |a|.
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Hence

Z(nan) =
∞∑

j=0

jajz−j = −z

∞∑
j=0

−jajz−j−1.

Therefore,

Z(nan) =
az

(z − a)2
for |z| > 1. (6.1.3)

Again taking the derivative of both sides of the identity

∞∑
j=0

jajz−j =
az

(z − a)2
for |z| > |a|

yields

Z(n2an) =
az(z + a)
(z − a)3

for |z| > |a|. (6.1.4)

Example 6.3. The unit impulse sequence, or the Kronecker delta sequence,
is defined by

δk(n) =

{
1 if n = k,

0 if n �= k.

The Z-transform of this function is

Z(δk(n)) =
∞∑

j=0

δk(j)z−j = z−k.

If k = 0, we have the important special case

Z(δ0(n)) = 1. (6.1.5)

Notice that the radius of convergence of Z(δk(n)) is R = 0.

Example 6.4. Find the Z-transform of the sequence {sin(ωn)}.

Solution Recall that the Euler identity gives eiθ = cos θ+ i sin θ for any real
number θ. Hence e−iθ = cos θ − i sin θ. Both identities yield

cos θ =
eiθ + e−iθ

2
and sin θ =

eiθ + e−iθ

2i
.

Thus

Z(sinωn) =
1
2i

[Z(eiωn) − Z(e−iωn)].
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Using formula (6.1.2) we obtain

Z(sinωn) =
1
2i

[
z

z − eiω
− z

z − e−iω

]
for |z| > 1

=
z sinω

(z − eiω)(z − e−iω)

=
z sinω

z2 − (eiω + e−iω)z + 1
,

or

Z(sinωn) =
z sinω

z2 − 2z cos ω + 1
for |z| > 1. (6.1.6)

6.1.1 Properties of the Z-Transform
We now establish some useful properties of the Z-transform that will be
needed in the sequel.

(i) Linearity.
Let x̃(z) be the Z-transform of x(n) with radius of convergence R1,
and let ỹ(z) be the Z-transform of y(n) with radius of convergence R2.
Then for any complex numbers α, β we have

Z[αx(n) + βy(n)] = αx̃(z) + βỹ(z) for |z| > max(R1, R2). (6.1.7)

The proof of property (6.1.7) is left to the reader as Exercises 6.1,
Problem 18.

(ii) Shifting. Let R be the radius of convergence of x̃(z).

(a) Right-shifting: If x(−i) = 0 for i = 1, 2, . . . , k, then

Z[x(n − k)] = z−kx̃(z) for |z| > R. (6.1.8)

(b) Left-shifting:

Z[x(n + k)] = zkx̃(z) −
k−1∑
r=0

x(r)zk−r for |z| > R. (6.1.9)

The proofs are left as Exercises 6.1, Problem 16. The most commonly
used cases of formula (6.1.9) are

Z[x(n + 1)] = zx̃(z) − zx(0) for |z| > R,

Z[x(n + 2)] = z2x̃(z) − z2x(0) − zx(1) for |z| > R.

(iii) Initial and final value.

(a) Initial value theorem:

lim
|z|→∞

x̃(z) = x(0). (6.1.10)
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(b) Final value theorem:

x(∞) = lim
n→∞ x(n) = lim

z→1
(z − 1)x̃(z). (6.1.11)

The proof of formula (6.1.10) follows immediately from the definition
of x̃(z). To prove formula (6.1.11) we first observe that

Z[x(n + 1) − x(n)] =
∞∑

j=0

[x(j + 1) − x(j)]z−j .

Using formula (6.1.9) on the left-hand side of the above identity leads
to

(z − 1)x̃(z) = zx(0) +
∞∑

j=0

[x(j + 1) − x(j)]z−j .

Thus

lim
z→1

(z − 1)x̃(z) = x(0) +
∞∑

j=0

[x(j + 1) − x(j)] = lim
n→∞ x(n).

(iv) Convolution.
The convolution∗ of two sequences x(n), y(n) is defined by

x(n) ∗ y(n) =
n∑

j=0

x(n − j)y(j) =
n∑

j=0

x(n)y(n − j).

Now,

Z[x(n) ∗ y(n)] =
∞∑

m=0

⎡⎣ m∑
j=0

x(m − j)y(j)

⎤⎦ z−m.

Interchanging the summation signs yields

Z[x(n) ∗ y(n)] =
∞∑

j=0

y(j)
∞∑

m=j

x(m − j)z−m.

And if we put m − i = s, we obtain

Z[x(n) ∗ y(n)] =

⎛⎝ ∞∑
j=0

y(j)z−j

⎞⎠( ∞∑
s=0

x(s)z−s

)
,

Z[x(n) ∗ y(n)] = x̃(z)ỹ(z). (6.1.12)
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It is interesting to know that one may obtain formula (6.1.12) if the
convolution is defined as

x(n) ∗ y(n) =
∞∑

j=0

x(n − j)y(j).

(v) Multiplication by an property.
Suppose that x̃(z) is the Z-transform of x(n) with radius of
convergence R. Then

Z[anx(n)] = x̃
(z

a

)
, for |z| > |a|R. (6.1.13)

The proof of (6.1.13) follows easily from the definition and will be left
to the reader as Exercises 6.1, Problem 19.

Example 6.5. Determine the Z-transform of

g(n) = an sinωn, n = 0, 1, 2, . . . .

Using Example 6.4 and formula (6.1.13) we have

g̃(z) = Z(an sinωn) =
(z/a) sin ω

(z/a)2 − 2(z/a) cos ω + 1

=
az sinω

z2 − 2az cos ω + a2 , for |z| > |a|. (6.1.14)

(vi) Multiplication by nk.
In Example 6.2 it was shown that Z(nan) = az

(z−a)2 , which may be
written in the form

Z(nan) = −z
d

dz
Z(an).

Similarly, formula (6.1.4) may be written in the form

Z(n2an) = −z
d

dz

[
−z

d

dz
Z(an)

]
.

This may be written in the compact form

Z(n2an) =
(

−z
d

dz

)2

Z(an).

Generally speaking, we write(
−z

d

dz

)k

x̃(z) =
(

−z
d

dz

(
−z

d

dz

(
· · ·
(

−z
d

dz
x̃(z)
)

· · ·
)))

.

It may be shown (Exercises 6.1, Problem 7) that

Z[nkx(n)] =
(

−z
d

dz

)k

Z(x(n)). (6.1.15)
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Exercises 6.1

1. Find the Z-transform and its region of convergence of the given
sequence {x(n)}.

(a) cos ωn. (b)n sin 2n. (c)n.

2. Find the Z-transform and its region of convergence of the sequence

f(n) =

{
1 for n = 1, 3, 5,

0 for all other values of n.

3. Find the Z-transform and its region of convergence of the sequence

f(n) =

⎧⎪⎪⎨⎪⎪⎩
0 for n = 0,−1,−2, . . .,

−1 for n = 1,

an for n = 2, 3, 4, . . ..

4. Let x(n) be a periodic sequence of period N , i.e., x(n + N) = x(n) for
all n ∈ Z

+. Prove that x̃(z) = [zn/(zn − 1)]x̃1(z) for |z| > 1, where
x̃1(z) =

∑N−1
j=0 x(j)z−j(x̃1)(z) is called the Z-transform of the first

period.

5. Determine the Z-transform of the periodic sequence shown in Figure
6.3.

6. Use Problem 4 to find the Z-transform and its radius of convergence
for the periodic sequence of period 4

f(n) =

{
1 for n = 0, 1,

−1 for n = 2, 3.

7. Let R be the radius of convergence of x̃(z). Show that

Z[nkx(n)] =
(

−z
d

dz

)k

x̃(z) for |z| > R.

1

2

1

0        1        2         3         4        5        6         7        8        9        10      1 1
n

FIGURE 6.3. A periodic sequence.
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8. Prove that the Z-transform of the sequence

x(n) =

{
(n − 1)an−2, n = 0, 1, 2, . . .,

0 n = −1,−2, . . .,
.

is x̃(z) = 1
z−a2 for |z| > |a|.

9. Find the Z-transform and its region of convergence of the sequence
defined by

x(n) =

⎧⎨⎩
(n − 1)(n − 2)

2
an−3, n = 0, 1, 2, . . .,

0 n = −1,−2, . . ..

The first backward difference for a sequence x(n) is defined by ∇x(n) =
x(n) − x(n − 1).

10. Find Z[∇x(n)], Z[∇2x(n)].

11. Generalize the results of Problem 10 and show that Z[∇kx(n)] =(
z−1

z

)k
x̃(z).

12. Find Z[∆x(n)], Z[∆2x(n)].

13. Show that Z[∆kx(n)] = (z − 1)kx̃(z) − z
∑k−1

j=0 (z − 1)k−j−1∆jx(0).

14. Let y(n) =
∑n

i=1 x(i), n ∈ Z
+. Show that ỹ(z) = z

z−1 x̃(z) for |z| >
max{1, R}, where R is the radius of convergence of x̃(z).

15. Let y(n) =
∑n

i=0 ix(i). Prove that ỹ(z) = −z2

z−1
d
dz x̃(z).

16. Prove formulas (6.1.8) and (6.1.9).

17. Find the Z-transform of:

(a) x(n) =
∑n

r=0 an−r sin(ωr).

(b)
∑n

r=0 cos ω(n − r).

18. Prove expression (6.1.7).

19. Show that Z[anx(n)] = x̃
(

z
a

)
for |z| > |a|R, where R is the radius of

convergence of x̃(z).

20. Find the Z-transform and its radius of convergence of the sequence
g(n) = an cos(ωn).

21. Use the initial value theorem to determine x(0) for the sequence {x(n)}
whose Z-transform is given by:

(a) 2
z−a , for |z| > a.

(b) 3z
z−6 , for |z| > 3.
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22. Extend the initial value theorem to finding x(1), x(2) by proving:

(i) x(1) = lim
|z|→∞

[z(x̃(z) − x(0))],

(ii) x(2) = lim
|z|→∞

[z(x̃(z) − zx(0) − x(1))].

6.2 The Inverse Z-Transform and Solutions
of Difference Equations

As we have mentioned in the introduction to this chapter, the Z-transform
transforms a difference equation of an unknown sequence x(n) into an
algebraic equation in its Z-transform x̃(z). The sequence x(n) is then ob-
tained from x̃(z) by a process called the inverse Z-transform. This process
is symbolically denoted by

Z−1[x̃(z)] = x(n). (6.2.1)

The uniqueness of the inverse Z-transform may be established as follows:
Suppose that there are two sequences x(n), y(n) with the same Z-transform,
that is,

∞∑
i=0

x(i)z−i =
∞∑

i=0

y(i)z−i, for |z| > R.

Then
∞∑

i=0

[x(i) − y(i)]z−i = 0, for |z| > R.

It follows from Laurent’s theorem [20] that x(n) ≡ y(n). The most
commonly used methods for obtaining the inverse Z-transform are:

1. power series method;

2. partial fractions method;

3. inversion integral method.

It is imperative to remind the reader that when finding the inverse Z-
transform, it is always assumed that for any sequence x(n), x(k) = 0 for k =
−1,−2, . . . .

6.2.1 The Power Series Method
In this method we obtain the inverse Z-transform by simply expanding
x̃(z) into an infinite power series in z−1 in its region of convergence:
x̃(z) =

∑∞
i=0 aiz

−i for |z| > R. Then by comparing this with Z[x(n)] =∑∞
i=0 x(i)z−i for |z| > R, one concludes that x(n) = an, n = 0, 1, 2, . . . .
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If x̃(z) is given in the form of a rational function x̃(z) = g(z)/h(z), where
g(z) and h(z) are polynomials in z, then we simply divide g(z) by h(z) to
obtain a power series expansion x̃(z) in z−1. The only possible drawback
of this method is that it does not provide us with a closed-form expression
of x(n).

Example 6.6. Obtain the inverse Z-transform of

x̃(z) =
z(z + 1)
(z − 1)2

.

Solution We first write x(z) as a ratio of two polynomials in z−1:

x̃(z) =
1 + z−1

1 − 2z−1 + z−2 .

Dividing the numerator by the denominator, we have

x̃(z) = 1 − 3z−1 + 5z−2 + 7z−3 + 9z−4 + 11z−5 + · · · .

Thus

x(0) = 1, x(2) = 3, x(3) = 5, x(4) = 7, . . . , x(n) = 2n + 1.

6.2.2 The Partial Fractions Method
This method is used when the Z-transform x̃(z) is a rational function in z,
analytic at ∞, such as

x̃(z) =
b0z

m + b1z
m−1 + · · · + bm−1z + bm

zn + a1zn−1 + · · · + an−1z + bn
, m ≤ n. (6.2.2)

If x̃(z) in expression (6.2.2) is expressed by a partial fraction expression,

x̃(z) = x̃1(z) + x̃2(z) + x̃3(z) + · · · ,

then by the linearity of the inverse Z-transform one obtains

x(n) = Z−1[x̃1(z)] + Z−1[x̃2(z)] + Z−1[x̃3(z)] + · · · .

Then a Z-transform table (Table 6.1; see the end of this chapter) is used
to find Z−1[x̃i(z)], i = 1, 2, 3, . . . .

Before giving some examples to illustrate this method we remind the
reader that the zeros of the numerator of expression (6.2.2) are called zeros
of x̃(z), and zeros of the denominator of expression (6.2.2) are called poles
of x̃(z).

Remark: Since x̃(z) is often an improper fraction, it is more convenient to
expand x̃(z)/z rather than x̃(z) into sums of partial fractions.
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Example 6.7. Simple Poles

Solve the difference equation

x(n + 2) + 3x(n + 1) + 2x(n) = 0, x(0) = 1, x(1) = −4.

Solution Taking the Z-transform of both sides of the equation, we get

x̃(z) =
z(z − 1)

(z + 1)(z + 2)
.

We expand x̃(z)/z into partial fractions as follows:

x̃(z)/z =
(z − 1)

(z + 1)(z + 2)
=

a1

z + 1
+

a2

z + 2
.

Clearing fractions, we obtain

z − 1 = a1(z + 2) + a2(z + 1).

This reduces to

z − 1 = (a1 + a2)z + (2a1 + a2).

Comparing coefficients of like powers of z, we get

a1 + a2 = 1,

2a1 + a2 = −1.

Hence a1 = −2, a2 = 3. Consequently,

x̃(z) =
−2z

z + 1
+

3z

z + 2
.

Thus

x(n) = −2(−1)n + 3(−2)n.

Remark: If x̃(z) has a large number of poles, a computer may be needed to
determine the constants a1, a2, . . . .

Example 6.8. Repeated Poles

Solve the difference equation

x(n + 4) + 9x(n + 3) + 30x(n + 2) + 44x(n + 1) + 24x(n) = 0,
x(0) = 0, x(1) = 0, x(2) = 1, x(3) = 10.

Solution Taking the Z-transform, we get

x̃(z) =
z(z − 1)

(z + 2)3(z + 3)
.

It is convenient here to expand x̃(z)/z into partial fractions as follows:

x̃(z)/z =
z − 1

(z + 2)3(z + 3)
=

b

z + 3
+

a1

(z + 2)3
+

a2

(z + 2)2
+

a3

z + 2
. (6.2.3)
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This time we use a smarter method to find a1, a2, a3, and a4. To find b we
multiply (6.2.3) by (z + 3) and then evaluate at z = −3. This gives

b =
(z − 1)
(z + 2)3

∣∣∣∣
z=−3

= 4.

To find a1 we multiply (6.2.3) by (z + 2)3 to get

z − 1
z + 3

= a3(z + 2)2 + a2(z + 2) + a1 + 4
(z + 2)3

(z + 3)
(6.2.4)

and evaluate at z = −2. This gives

a1 =
z − 1
z − 3

∣∣∣∣
z=−2

= −3.

To find a2 we differentiate (6.2.4) with respect to z to get

4
(z + 3)2

= 2a3(z + 2) + a2 +
r(2z + 7)(z + 2)2

(z + 3)2
(6.2.5)

and again evaluate at z = −2. This gives

a2 =
d

dz

(
z − 1
z + 3

)∣∣∣∣
z=−2

= 4.

Finally, to find a3 we differentiate (6.2.5) to obtain

−8
(z + 3)3

= 2a3 + 4
d2

dz2

(z + 2)3

(z + 3)
,

and if we let z = −2, then we have

a3 =
1
2

d2

dz2

(
z − 1
z + 3

)∣∣∣∣
z=−2

= −4.

Hence

x̃(z) =
−4z

z + 2
+

4z

(z + 2)2
− 3z

(z + 2)3
+

4z

z + 3
.

The corresponding sequence is (Table 6.1, at the end of this chapter)

x(n) = −4(−2)n − 2n(−2)n +
3
4
n(n − 1)(−2)n + 4(−3)n

=
(

3
4
n2 − 11

4
n − 4

)
(−2)n + 4(−3)n.

Remark: The procedure used to obtain a1, a2, and a3 in the preceding
example can be generalized. If x̃(z)/z has a pole of multiplicity m at z =
z0, then the corresponding terms in the partial fraction expansion can be
written

· · · +
a1

(z − z0)m
+ · · · +

am

z − z0
+ · · · ,



286 6. The Z-Transform Method and Volterra Difference Equations

and a1, a2, . . . , am can be found using the formula

ar =
1

(r − 1)!
dr−1

dzr−1

[
z − z0)m x̃(z)

z

]∣∣∣∣
z=z0

.

Example 6.9. Complex Poles

Solve the difference equation

x(n + 3) − x(n + 2) + 2x(n) = 0, x(0) = 1, x(1) = 1.

Solution Taking the Z-transform of the equation, we get

x̃(z) =
z3

(z2 − 2z + 2)(z + 1)
.

Next we expand x̃(z)/z as a sum of the partial fraction in the form

x̃(z)/z =
z2

(z2 − 2z + 2)(z + 1)
=

a1

[z − (1 + i)]
+

a2

[z − (1 − i)]
+

a3

(z + 1)
.

Using the method of the preceding example we obtain

a3 =
z2

z2 − 2z + 2

∣∣∣∣
z=−1

=
1
5
,

a1 =
z2

[z − (1 − i)](z + 1)

∣∣∣∣
z=1+i

=
1

2 + i
=

2
5

− 1
5
i,

a2 = ā1 =
2
5

+
1
5
i.

Hence

x̃(z) =
1
5z

z + 1
+

a1z

z − λ
+

ā1z

z − λ̄
,

where λ = 1 + i. Thus

x(n) =
1
5
(−1)n + a1λ

n + ā1λ̄
n.

But

a1λ
n + ā1λ̄

n = 2 Re(a1λ
n) = 2|ā1|(

√
2)n cos

(nπ

4
+ arg a1

)
,

where |a1| = 1
5

√
5 and arg a1 = tan−1( 1

2 ) = 0.46 radians. Thus

x(n) =
1
5
(−1)n +

2
5

√
5(

√
2)n cos

(nπ

4
+ 0.46

)
.
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6.2.3 The Inversion Integral Method1

From the definition of the Z-transform, we have

x̃(z) =
∞∑

i=0

x(i)z−i.

Multiplying both sides of the above equation by zn−1, we get

x̃(z)zn−1 =
∞∑

i=0

x(i)zn−i−1

= x(0)zn−1 + x(1)zn−2 + · · · + x(n)z−1 + x(n + 1)z−2 + · · · .
(6.2.6)

Equation (6.2.6) gives the Laurent series expansion of x̃(z)zn−1 around
z = 0.

Consider a circle C, centered at the origin of the z-plane, that encloses
all poles of x̃(z)zn−1. Since x(n) is the coefficient of z−1, it follows by the
Cauchy integral formula [20] that

x(n) =
1

2πi

∮
c

x̃(z)zn−1 dz, (6.2.7)

and by the residue theorem [20] we obtain

x(n) = sum of residues ofx̃(z)zn−1. (6.2.8)

Suppose that

x̃(z)zn−1 =
h(z)
g(z)

.

In evaluating the residues of x̃(z)zn−1, there are two cases to consider:

(i) g(z) has simple zeros (i.e., x̃(z)zn−1 has simple poles) (see Figure 6.4).
In this case the residue Ki at a pole zi is given by

Ki = lim
z→zi

[
(z − zi)

h(z)
g(z)

]
. (6.2.9)

(ii) g(z) has multiple zeros (i.e., x̃(z)zn−1 has multiple poles). If g(z) has
a multiple zero zi of order r, then the residue Ki at zi is given by

Ki =
1

(r − 1)!
lim

z→zi

dr−1

dzr−1

[
(z − zi)r h(z)

g(z)

]
.

1Requires some knowledge of residues in complex analysis [20].
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FIGURE 6.4. Poles of x̃(z).

Example 6.10. Obtain the inverse Z-transform of

x̃(z) =
z(z − 1)

(z − 2)2(z + 3)
.

Solution Notice that

x̃(z)zn−1 =
(z − 1)zn

(z − 2)2(z + 3)
.

Thus x̃(z)zn−1 has a simple pole at z1 = −3 and a double pole at z2 = 2.
Thus from formula (6.2.8), we get x(n) = K1 + K2, where K1, K2 are the
residues of x(z)zn−1 at z1, z2, respectively. Now,

K1 = lim
z→−3

[
(z + 3)(z − 1)zn

(z − 2)2(z + 3)

]
=

−4
25

(−3)n,

K2 =
1

(2 − 1)!
lim
z→2

d

dz

[
(z − 2)2(z − 1)zn

(z − 2)2(z + 3)

]
= lim

z→2

zn−1[(z + 3)(z + nz − n) − z(z − 1)]
(z + 3)2

=
(8 + 5n)

25
(2)n−1.

Thus

x(n) =
−4
25

(−3)n +
(8 + 5n)

25
(2)n−1, n = 0, 1, 2, . . . .

Example 6.11. Electric Circuits or a Ladder Network

Consider the electric network shown in Figure 6.5. Here i(n) is the current
in the nth loop; R is the resistance, which is assumed to be constant in
every loop; and V is the voltage. By Ohm’s law, the voltage (or electric
potential) between the ends of a resistor R may be expressed as V = iR.
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R            R                          R            R            R                          R

R
R            R           R            R           R            R            R

V

i(0)        i(1)                        i(n)       i(n+1)      i(n+2)                     i(k)

FIGURE 6.5. A ladder network.

Now, Kirchhoff’s2 second law states that “in a closed circuit the impressed
voltage is equal to the sum of the voltage drops in the rest of the circuit.”
By applying Kirchhoff’s law to the loop corresponding to i(n+1) we obtain

R[i(n + 1) − i(n + 2)] + R[i(n + 1) − i(n)] + Ri(n + 2) = 0,

or

i(n + 2) − 3i(n + 1) + i(n) = 0. (6.2.10)

For the first loop on the left we have

V = Ri(0) + R(i(0) − i(1)),

or

i(1) = 2i(0) − V

R
. (6.2.11)

Taking the Z-transform of (6.2.10) with the data (6.2.11) yields the
equation

ı̃(z) =
z[zi(0) − 3i(0) + i(1)]

z2 − 3z + 1
=

⎡⎣z2 −
(
1 + V

Ri(0)

)
z

z2 − 3z + 1

⎤⎦ i(0). (6.2.12)

Let ω > 0 be such that cosh ω = 3
2 . Then sinh ω =

√
5

2 . Then expression
(6.2.12) becomes

ĩ(z) = i(0)
[

z2 − z cosh ω

z2 − 2z cosh ω + 1

]
+
(

i(0)
2

+
V

R

)(
2√
5

)[
z sinhω

z2 − 2z cosh ω + 1

]
.

2Gustav Kirchhoff, a German physicist (1824–1887), is famous for his
contributions to electricity and spectroscopy.
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Taking the inverse Z-transform (Table 6.1, at the end of this chapter), we
obtain

i(n) = i(0) cosh(ωn) +
(

i(0)
2

+
V

R

)(
2√
5

)
sinh(ωn).

Exercises 6.2

1. Use the partial fractions method to find the inverse Z-transform of:

(a) z

(z− 1
2 )(z+1)

.

(b) z(z+1)
(z+2)2(z−1) .

2. Use the power series method to find the inverse Z-transform of:

(a) z−2
(z−1)(z+3) .

(b) e−az
(z−e−a)2 .

3. Use the inversion integral method to find the inverse Z-transform of:

(a) z(z−1)
(z+2)3 .

(b) z(z+2)
(z− 1

2 )(z+i)(z−i)
.

4. Use the partial fractions method and the inversion integral method to
find the inverse Z-transform of:

(a) z(z+1)
(z−2)2 .

(b) z2+z+1
(z−1)(z2−z+1) .

In Problems 5 through 7, use the Z-transform method to solve the given
difference equation.

5. (The Fibonacci Sequence). x(n + 2) = x(n + 1) + x(n), x(0) =
0, x(1) = 1.

6. x(n + 2) − 3x(n + 1) + 2x(n) = δ0(n), x(0) = x(1) = 0.

7. (n + 1)x(n + 1) − nx(n) = n + 1, x(0) = 0.

8. Consider the continued fraction

K = K

(
an

bn

)
=

a0

b0
+

a1

b1 + a2
b2+

a3
b3+...

=
a0

b0+
a1

b1+
a2

b2+
. . . .

Let ai = bi = 1 for all i ∈ Z
+, and x(n) = a1

b1+
a2

b2+
. . . an

bn+ .

(a) Show that x(n + 1) = 1 + 1
x(n) . Find x(n).
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(b) Find K = 1 + limn→∞ x(n).

9. Prove that the convolution product is commutative and associative
(i.e., x ∗ y = y ∗ x;x ∗ (y ∗ f) = (x ∗ y) ∗ f).

10. Solve, using convolution, the equation x(n+1) = 2+4
∑n

r=0(n−r)x(r).

11. Solve the equation x(n) = 1 −∑n−1
r=0 en−r−1x(r).

6.3 Volterra Difference Equations of Convolution
Type: The Scalar Case3

Volterra difference equations of convolution type are of the form

x(n + 1) = Ax(n) +
n∑

j=0

B(n − j)x(j), (6.3.1)

where A ∈ R and B : Z+ → R is a discrete function. This equa-
tion may be considered as the discrete analogue of the famous Volterra
integrodifferential equation

x′(t) = Ax(t) +
∫ t

0
B(t − s)x(s) ds. (6.3.2)

Equation (6.3.2) has been widely used as a mathematical model in popu-
lation dynamics. Both (6.3.1) and (6.3.2) represent systems in which the
future state x(n+1) does not depend only on the present state x(n) but also
on all past states x(n−1), x(n−2), . . . , x(0). These systems are sometimes
called hereditary. Given the initial condition x(0) = x0, one can easily gen-
erate the solution x(n, x0) of (6.3.1). If y(n) is any other solution of (6.3.1)
with y(0) = x0, then it is easy to show that y(n) = x(n) for all n ∈ Z

+

(Exercises 6.3, Problem 8).
One of the most effective methods of dealing with (6.3.1) is the

Z-transform method. Let us rewrite (6.3.1) in the convolution form

x(n + 1) = Ax(n) + B ∗ x. (6.3.3)

Taking formally the Z-transform of both sides of (6.3.3), we get

zx̃(z) − zx(0) = Ax̃(z) + B̃(z)x̃(z),

which gives

[z − A − B̃(z)]x̃(z) = zx(0),

or

x̃(z) = zx(0)/[z − A − B̃(z)]. (6.3.4)

3This section requires some rudiments of complex analysis [20].
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Let

g(z) = z − A − B̃(z). (6.3.5)

The complex function g(z) will play an important role in the stability
analysis of (6.3.1). Before embarking on our investigation of g(z) we need
to present a few definitions and preliminary results.

Definition 6.12. Let E be the space of all infinite sequences of com-
plex numbers (or real numbers) x = (x(0), x(1), x(2), . . .). There are three
commonly used norms that may be defined on subsets of E. These are

(i) the l1 norm: ‖x‖1 =
∑∞

i=0 |x(i)|;
(ii) the l2, or, Euclidean norm: ‖x‖2 =

[∑∞
i=0 |x(i)|2]1/2 ;

(iii) the l∞ norm: ‖x‖∞ = supi≥0 |x(i)|.
The corresponding normed spaces are called l1, l2, and l∞, respectively.
One may show easily that (Exercises 6.3, Problem 6)

l1 ⊂ l2 ⊂ l∞.

Definition 6.13. A complex function g(z) is said to be analytic in a region
in the complex plane if it is differentiable there. The next result establishes
an important property of l1 sequences.

Theorem 6.14. If x(n) ∈ l1, then:

(i) x̃(z) is an analytic function for |z| ≥ 1;

(ii) |x̃(z)| ≥ ‖x‖ for |z| ≥ 1.

Proof.

(i) Since x(n) ∈ l1, the radius of convergence of x̃(z) =
∑∞

n=0 x(n)z−n is
R = 1. Hence x̃(z) can be differentiated term by term in its region of
convergence |z| > 1. Thus x̃(z) is analytic on |z| > 1. Furthermore,
since x(n) ∈ l1, x̃(z) is analytic for |z| = 1.

(ii) This is left as Exercises 6.3, Problem 9. �

We now turn our attention to the function g(z) = z−A−B̃(z) in formula
(6.3.5). This function plays the role of the characteristic polynomial of
linear difference equations. (See Chapter 2.) In contrast to polynomials,
the function g(z) may have infinitely many zeros in the complex plane.
The following lemma sheds some light on the location of the zeros of g(z).

Lemma 6.15 [39]. The zeros of

g(z) = z − A − B̃(z)

all lie in the region |z| < c, for some real positive constant c. Moreover,
g(z) has finitely many zeros z with |z| ≥ 1.
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Proof. Suppose that all the zeros of g(z) do not lie in any region |z| < c
for any positive real number c. Then there exists a sequence {zi} of zeros
of g(z) with |zi| → ∞ as i → ∞. Now,

|zi − A| = |B̃(zi)| ≤
∞∑

n=0

|B(n)||zi|−n. (6.3.6)

Notice that the right-hand side of inequality (6.3.6) goes to B(0) as i →
∞, while the left-hand side goes to ∞ as i → ∞, which is a contradiction.
This proves the first part of the lemma. �

To prove the second part of the lemma, we first observe from the first
part of the lemma that all zeros z of g(z) with |z| ≥ 1 lie in the annulus
1 ≤ |z| ≤ c for some real number c. From Theorem 6.14 we may conclude
that g(z) is analytic in this annulus (1 ≤ |z| ≤ c). Therefore, g(z) has only
finitely many zeros in the region |z| ≥ 1 [39].

Next we embark on a program that will reveal the qualitative behavior
of solutions of (6.3.1). In this program we utilize (6.3.4), which may be
written as

x̃(z) = x(0)zg−1(z). (6.3.7)

Let γ be a circle that includes all the zeros of g(z). The circle γ is guaranteed
to exist by virtue of Lemma 6.15. By formula (6.2.7) we obtain

x(n) =
1

2πi

∮
γ

x(0)zng−1(z) dz, (6.3.8)

and by formula (6.2.8) we get

x(n) = sum of residues of [x(0)zng−1(z)]. (6.3.9)

This suggests that

x(n) =
∑

pr(n)zn
r , (6.3.10)

where the sum is taken over all the zeros of g(z) and where pr(n) is a
polynomial in n of degree less than k − 1 if zr is a multiple root of order k.
To show the validity of formula (6.3.10), let zr be a zero of g(z) of order k.
We write the following Laurent’s series expansion [20]:

g−1(z) =
∞∑

n=−k

gn(z − zr)n, for some constants gn,

zn = [zr − (zr − z)]n =
n∑

i=0

(
n

i

)
zn−i

r (z − zr)i.
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The residue of x(0)zng−1 at zr is x(0) times the coefficient of (z − zr)−1 in
g−1(z)zn. The coefficient of (z − zr)−1 in g−1(z)zn is given by

g−k

(
n

k − 1

)
zn−k+1

r +g−k+1

(
n

k − 2

)
zn−k+2

r +· · ·+g−1

(
n

0

)
zn

r . (6.3.11)

It follows from formula (6.3.9) that x(n) may be given by formula (6.3.10).
Formula (6.3.10) has the following important consequences.

Theorem 6.16 [39]. The zero solution of (6.3.1) is uniformly stable if
and only if:

(a) z − A − B̃(z) �= 0 for all |z| > 1, and

(b) if zr is a zero of g(z) with |zr| = 1, then the residue of zng−1(z) at zr

is bounded as n → ∞.

Proof. Suppose that conditions (a) and (b) hold. If zr is a zero of g(z)
with |zr| < 1, then from formula (6.3.10) its contribution to the solution
x(n) is bounded. On the other hand, if zr is a zero of g(z) with |zr| = 1 at
which the residue of x(0)zng−1(z) is bounded as n → ∞, then from formula
(6.3.9) its contribution to the solution x(n) is also bounded. This shows that
|x(n)| ≤ L|x(0)| for some L > 0, and thus we have uniform stability. The
converse is left to the reader as Exercises 6.3, Problem 10. �

We observe here that a necessary and sufficient condition for condition
(b) is that each zero z of g(z) with |z| = 1 must be simple (Exercises 6.3,
Problem 11).

The next result addresses the question of asymptotic stability.

Theorem 6.17 [39]. The zero solution of (6.3.1) is uniformly asymptot-
ically stable if and only if

z − A − B̃(z) �= 0, for all |z| ≥ 1. (6.3.12)

Proof. The proof follows easily from formula (6.3.10) and is left to the
reader as Exercises 6.3, Problem 12. �

Exercises 6.3

1. Solve the Volterra difference equation x(n+1) = 2x(n)+
∑n

r=0 2n−rx(r),
and then determine the stability of its zero solution.

2. Solve the Volterra difference equation x(n + 1) = − 1
2x(n) +∑n

r=0 3r−n x(r), and then determine the stability of its zero solution.

3. Use Theorems 6.16 and 6.17 to determine the stability of the zero
solutions of the difference equations in Problems 1 and 2.
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4. Without finding the solution of the equation

x(n + 1) = −1
4
x(n) +

n∑
r=0

(
1
2

)r−n

x(r),

determine the stability of its zero solution.

5. Determine the stability of the zero solution of x(n + 1) = 2x(n) −
12
∑n

r=0(n − r)x(r), using Theorem 6.16 or 6.17.

6. Prove that l1 ⊂ l2 ⊂ l∞.

7. Let x = {xn} and y = {yn} be two l1 sequences. Prove that x ∗ y ∈ l1
by following these steps:

(i) If
∑∞

i=0 x(i) = a,
∑∞

i=0 y(i) = b, and c(n) =
∑n

i=1 x(n −
i)y(i), show that

∑∞
i=0 c(i) = ab.

(ii) Prove that
∑∞

n=0 |c(n)| ≤ (
∑∞

i=0 |x(i)|)
(∑∞

j=0 |y(j)|
)

.

8. Prove the uniqueness of solutions of (6.3.1), that is, if x(n) and y(n)
are solutions of (6.3.1) with x(0) = y(0), then x(n) = y(n) for all
n ∈ Z

+.

9. If x(n) ∈ l1 show that |x̃(z)| ≤ ‖x‖1 for |z| ≥ 1.

*10. Suppose that the zero solution of (6.3.1) is uniformly stable. Prove
that:

(a) g(z) = z − A − B̂(z) �= 0 for all |z| > 1.

(b) If zr is a zero of g(z) with |zr| = 1, then the residue of zng−1(z)
at zr is bounded.

11. Prove that a necessary and sufficient condition for condition (b) in
Theorem 6.16 is that zr be a simple root of g(z).

*12. Prove Theorem 6.17.

6.4 Explicit Criteria for Stability
of Volterra Equations

The stability results in Section 6.3 are not very practical, since locating the
zeros of g(z) is more or less impossible in most problems. In this section
we provide explicit conditions for the stability of (6.3.1). The main tools
in this study are Theorems 6.17 and Rouché’s Theorem (Theorem 5.13).
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Theorem 6.18 [39]. Suppose that B(n) does not change sign for n ∈ Z
+.

Then the zero solution of (6.3.1) is asymptotically stable if

|A| +

∣∣∣∣∣
∞∑

n=0

B(n)

∣∣∣∣∣ < 1. (6.4.1)

Proof. Let β =
∑∞

n=0 B(n) and D(n) = β−1B(n). Then
∑∞

n=0 D(n) =
1. Furthermore, D̃(1) = 1 and |D̃(z)| ≤ 1 for all |z| ≥ 1. Let us write g(z)
in the form

g(z) = z − A − βD̃(z). (6.4.2)

To prove uniform asymptotic stability of the zero solution of (6.3.1), it
suffices to show that g(z) has no zero z with |z| ≥ 1. So assume that
there exists a zero zr of g(z) with |zr| ≥ 1. Then by (6.4.2) we obtain
|zr − A| = |βD̃(z)| ≤ |β|. Using condition (6.4.1) one concludes that |zr| ≤
|A| + |β| < 1, which is a contradiction. This concludes the proof of the
theorem. �

Unfortunately, we are not able to show that condition (6.4.1) is a neces-
sary condition for asymptotic stability. However, in the next result we give
a partial converse to the above theorems.

Theorem 6.19 [39]. Suppose that B(n) does not change sign for n ∈ Z
+.

Then the zero solution of (6.3.1) is not asymptotically stable if any one of
the following conditions holds:

(i) A +
∑∞

n=0 B(n) ≥ 1.

(ii) A +
∑∞

n=0 B(n) ≤ −1 and B(n) > 0 for some n ∈ Z
+.

(iii) A+
∑∞

n=0 B(n) < −1 and B(n) < 0 for some n ∈ Z
+, and

∑∞
n=0 B(n)

is sufficiently small.

Proof. Let β and D(n) be as defined in the proof of Theorem 6.18.

(i) Assume condition (i). If A + β = 1, then clearly z = 1 is a root of g(z)
defined in (6.4.2). Hence by Theorem 5.17 the zero solution of (6.3.1)
is not asymptotically stable. If A + β > 1, say A + β = 1 + δ, then
there are two areas to consider.

(a) If β < 0, then we let γ be the circle in the complex plane with
center at A and radius equal to |β| + 1

2δ. Then on γ (Figure 6.6)
we have |z| > 1 and thus

|βD̃(z)| ≤ |β| < |z − A|. (6.4.3)

Let h(z) = −βD̃(z), f(z) = z − A. Then from inequality (6.4.3)
|h(z)| < |f(z)| on γ. Hence by Rouché’s Theorem (Theorem 5.13),
g(z) = f(z)+h(z) and f(z) have the same number of zeros inside
γ. Since A is the only zero of f(z) inside γ, then g(z) has exactly
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Im z

1 1 + δ A

Re z

B  + 1 δ
2

FIGURE 6.6. A circle with center A and radius |β| + δ
2 .

one zero z0 inside γ with |z0| > 1. Again by using Theorem 6.16,
the zero solution of (6.3.1) is not asymptotically stable.

(b) Suppose that β > 0. Since A + β > 1, it follows that g(z) =
1 − A − β < 0. Moreover, |D̃(A + β)| ≤ 1. Thus g(A + β) =
β[1 − D̃(A + β)] ≥ 0. Therefore, g(z) has a zero between 1 and
A + β and, consequently, by Theorem 6.17, the zero solution of
(6.3.1) is not asymptotically stable. This completes the proof of
condition (i).

Parts (ii) and (iii) are left to the reader as Exercises 6.4, Problems 7
and 8. �

The above techniques are not expendable to uniform stability. This is
mainly due to the lack of easily verifiable criteria for condition (b) of The-
orem 6.16. Therefore, new techniques are needed to tackle the problem of
uniform stability. These techniques involve the use of Liapunov functionals
(functions), which we have encountered in Chapter 4.

Let E by the space of all infinite sequences of complex numbers as
defined in Definition 6.12. Then a function V : E → R is said to
a Liapunov functional if, for x = {x(n)} ∈ E,

(i) V (x) is positive definite (Chapter 4),

(ii) ∆V (x) ≤ 0,

where ∆V (x) = V (x̂) − V (x) and x̂(n) = x(n + 1) for all n ∈ Z
+.

The next result illustrates the use of Liapunov functionals in stability
theory.

Theorem 6.20 [39]. The zero solution of (6.3.1) is uniformly stable if

|A| +
n∑

j=0

|B(j)| ≤ 1 for all n ∈ Z
+. (6.4.4)
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Proof. For x ∈ E, let

V (x) = |x(n)| +
n−1∑
r=0

∞∑
s=n

|B(s − r)||x(r)|. (6.4.5)

Then

∆V (x) =

∣∣∣∣∣∣Ax(n) +
n∑

j=0

B(n − j)x(j)

∣∣∣∣∣∣+
n∑

r=0

∞∑
s=n+1

|B(s − r)||x(r)|

− |x(n)| −
n−1∑
r=0

∞∑
s=n

|B(s − r)||x(r)| (6.4.6)

≤
⎛⎝|A| +

∞∑
j=0

|B(j)| − 1

⎞⎠ |x(n)|. (6.4.7)

By assumption (6.4.4) we thus have

∆V (x) ≤ 0. (6.4.8)

From (6.4.5) we obtain |x(n)| ≤ V (x). Using inequality (6.4.8) and
expression (6.4.5) again we obtain

|x(n)| ≤ V (x) ≤ |x(0)|.
Consequently, the zero solution is uniformly stable (Chapter 4). �

Exercises 6.4

Use Theorem 6.19 to determine the stability and instability of the zero
solution of the equations in Problems 1, 2, and 3.

1. x(n + 1) = − 1
4x(n) +

∑n
r=0

( 1
3

)n+1−r
x(r).

2. x(n + 1) = 1
2x(n) +

∑n
r=0(n − r)x(r).

3. x(n + 1) = 1
3x(n) +

∑n
r=0 er−nx(r).

4. Find the values of a for which the zero solution of the equation x(n) =∑n−1
r=0 (n − r − 1)an−r−1x(r) is:

(i) uniformly stable,

(ii) asymptotically stable,

(iii) not asymptotically stable.

5. Determine the values of a for which the zero solution of the equation
∆x(n) = − 2

3x(n) +
∑n

r=0(n − r)2an−rx(r) is asymptotically stable.

6. Prove Theorem 6.18 using the method of Liapunov functionals used in
the proof of Theorem 6.20.
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7. Prove part (ii) of Theorem 6.19.

8. Prove part (iii) of Theorem 6.19.

9. Provide details of how inequality (6.4.7) is obtained from inequality
(6.4.6).

10. (Open problem). Discuss the stability of the zero solution of (3.5.1)
under the condition A +

∑∞
n=0 B(n) = −1 and

∑∞
n=0 B(n) < 0.

11. (Open problem). Can we omit the assumption that
∑∞

n=0 B(n) is
sufficiently small in Theorem 6.19, part (iii)?

12. (Open problem). Develop a necessary and sufficient condition for the
asymptotic stability of the zero solution of (6.3.1).

6.5 Volterra Systems

In this section we are mainly interested in the following Volterra system of
convolution type:

x(n + 1) = Ax(n) +
n∑

j=0

B(n − j)x(j), (6.5.1)

where A = (aij) is a k × k real matrix and B(n) is a k × k real matrix
defined on Z

+. It is always assumed that B(n) ∈ l1, i.e.,
∑∞

j=0 |B(j)| < ∞.
The Z-transform for sequences in Rk and matrices Rk×k is defined in the
natural way, that is,

Z[x(n)] =
(
Z(x1(n)), Z(x2(n)), . . . , Z(xk(n))

)T
,

Z[B(n)] = (Z(bij(n)).

Thus all the rules and formulas for the Z-transform of scalar sequences
hold for vector sequences and matrices.

Taking the Z-transform of both sides of (6.5.1), one obtains

zx̃(z) − zx(0) = Ax̃(z) + B̃(z)x̃(z), |z| > R,

which yields

x̃(z) = [zI − A − B̃(z)]−1zx(0), |z| > R. (6.5.2)

Theorem 6.17 for scalar equations has the following counterpart for
systems.

Theorem 6.21. A necessary and sufficient condition for uniform
asymptotic stability is

det(zI − A − B̃(z)) �= 0, for all |z| ≥ 1. (6.5.3)
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Proof. See [39]. �

An application of the preceding theorem will be introduced next. This
will provide explicit criteria for asymptotic stability. But before introducing
our result we need the following lemma concerning eigenvalues of matrices.

Lemma 6.22 [14]. Let G = (gij) be a k×k matrix. If z0 is an eigenvalue
of G, then:

(i) |z0 − gii||z0 − gjj | ≤∑′
r |gir|

∑′
r |gjr|, for some i, j, i �= j, and

(ii) |z0 − gtt||z0 − gss| ≤∑′
r |grt|

∑′
r |grs|, for some t, s, t �= s,

where
∑′

r gir means
(∑k

r=1 gir

)
− gii.

Using the above lemma we can prove the next result. Let

βij =
∞∑

n=0

|bij(n)|, 1 ≤ i, j ≤ k.

Theorem 6.23 [39]. The zero solution of (6.5.1) is uniformly asymptot-
ically stable if either one of the following conditions holds:

(i)
∑k

j=1(|aij | + βij) < 1, for each i, 1 ≤ i ≤ k, or

(ii)
∑k

i=1(|aij | + βij) < 1, for each j, 1 ≤ j ≤ k.

Proof. (i) To prove uniform asymptotic stability under condition (i) we
need to show that condition (6.5.3) holds. So assume the contrary, that is,

det(z0I − A − B̃(z0)) = 0 for some z0 with |z0| ≥ 1.

Then z0 is an eigenvalue of the matrix A + B̃(z0). Hence by condition (i)
in Lemma 6.22, we have

|z0 − aii − b̃ii(z0)||z0 − ajj − b̃jj(z0)| ≤
′∑
r

|air + b̃ir(z0)|
′∑
r

|ajr + b̃jr(z0)|.
(6.5.4)

But

|z0 − aii − b̃ii(z0)| ≥ |z0| − |aii| − |b̃ii(z0)| ≥ 1 − |aii| − |b̃ii(z0)|

>

′∑
r

(|air| + |βir)| (by condition (i)).

Similarly,

|z0 − ajj − b̃jj(z0)| >

′∑
r

(|ajr| + βjr).
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Combining both inequalities, we get

|z0 − aii − b̃ii(z0)||z0 − ajj − b̃jj(z0)| >

′∑
r

(|air| + βir)
′∑
r

(|ajr| + βjr).

It is clear that this contradicts inequality (6.5.4) if one notes that for any
1 ≤ s, m ≤ k,

|ast| + βst ≥ |ast| + |b̃st(z0)| ≥ |ast + b̃st(z0)|. �

As in the scalar case, the above method may be extended to provide
criteria for uniform stability. Again, the method of Liapunov functionals
will come to the rescue.

Theorem 6.24 [39]. The zero solution of (6.5.1) is uniformly stable if

k∑
i=1

|aij | + βij ≤ 1 (6.5.5)

for all j = 1, 2, . . . , k.

Proof. Define the Liapunov functional

V (x) =
k∑

i=1

⎡⎣|xi(n)| +
k∑

j=1

n−1∑
r=0

∞∑
s=n

|bij(s − r)||xj(r)|
⎤⎦ .

Then

∆V(6.5.1)(x) ≤
k∑

i=1

[ k∑
j=1

|aij ||xj(n)| − |xi(n)|

+
k∑

j=1

∞∑
s=n

|bij(s − n)||xj(n)|
]
. (6.5.6)

A crucial but simple step is now in order. Observe that

k∑
i=1

k∑
j=1

|aij ||xj(n)| =
k∑

i=1

k∑
j=1

|aji||xi(n)|,

and

k∑
i=1

k∑
j=1

∞∑
s=n

|bij(s − n)||xj(n)| =
k∑

i=1

k∑
j=1

∞∑
s=n

|bij(s − n)||xi(n)|

(Exercises 6.5, Problem 1).
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Hence inequality (6.5.6) now becomes

∆V(6.5.1)(x) ≤
k∑

i=1

⎡⎣ k∑
j=1

|aji| + bji − 1

⎤⎦ |xi(n)|

≤ 0 (by condition (6.5.5)).

This implies that

|x(n)| ≤ V (x) ≤
k∑

i=1

|xi(0)| = ‖x(0)‖,

which proves uniform stability. �

Example 6.25. An Epidemic Model [89]

Let x(n) denote the fraction of susceptible individuals in a certain popula-
tion during the nth day of an epidemic, and let a(k) > 0 be the measure
of how infectious the infected individuals are during the kth day. Then the
spread of an epidemic may be modeled by the equation

ln
1

x(n + 1)
=

n∑
j=0

(1 + ε − x(n − j))a(j), (6.5.7)

where ε is a small positive number, n ∈ Z
+.

To transform (6.5.7) into a Volterra-type equation, we put x(n) = ēy(n).
Then we obtain

y(n + 1) =
n∑

j=0

a(n − j)(1 + ε − ēy(j)). (6.5.8)

Since x(n) ∈ [0, 1], we have y(n) ≥ 0 for all solutions of (6.5.8). Observe
that during the early stages of the epidemic x(n) is close to 1 and, con-
sequently y(n) is close to zero. Hence it is reasonable to linearize (6.5.8)
around zero. So if we replace ēy(j) by 1 − y(j), (6.5.8) becomes

y(n + 1) =
n∑

j=0

a(n − j)(ε + y(j)), y(0) = 0. (6.5.9)

Taking the Z-transform of both sides of the equation yields

zỹ(z) = ã(z)
εz

z − 1
+ ã(z)ỹ(z),

ỹ(z) =
εz ã(z)

(z + 1)(z − ã(z))
(6.5.10)

If a(n) has a simple form, one may be able to compute y(n). For example,
if a(n) = can, then ã = c z

z−a . Hence

ỹ(z) =
εc z

(z − 1)(z − (a + c))
=

εc

1 − a − c

[
1

z − 1
− a + c

z − a − c

]
.
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Thus

y(n) =
εc

1 − (a + c)
[1 − (a + c)n]. (6.5.11)

Now if 0 < a + c < 1, then lim
n→∞ y(n) =

εc

1 − (a + c)
, and hence the spread

of the disease will not reach epidemic proportions.
Let us now turn our attention to the nonlinear equation (6.5.8). Let ŷ(n)

be the solution of (6.5.8) with ŷ(0) = 0. Then the global stability of ŷ(0)
is established by the following result (Kocic and Ladas [80]).

Theorem 6.26. Assume that

∞∑
n=0

a(n) < 1.

Then ŷ(n) is a globally asymptotically stable solution of (6.5.8).

Proof. We first make the change of variable u(n) = y(n)−ŷ(n) in (6.5.8).
Then we have

u(n + 1) =
n∑

j=0

a(n − j)ēŷ(j)(1 − ēu(j)). (6.5.12)

By induction on n, one may show that u(n) = y(n) − ŷ(n) ≥ 0.
Consider the Liapunov function

V (n, u(n)) = (1 − a)−1(u(n) +
n−1∑
r=0

∞∑
s=n

a(s − r)u(r). (6.5.13)

Then

∆V (n, u(n)) = V (n + 1, u(n + 1)) − V (n, u(n))

= (1 − a)−1
[ n∑

j=0

a(n − j)ēŷ(j)(1 − ēu(j))

+
n∑

r=0

∞∑
s+n+1

a(s − r)u(r)
]

− (1 − a)−1
[
u(n) +

n−1∑
r=0

∞∑
s=n

a(s − r)u(r)
]
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≤ (1 − a)−1
[ n∑

j=0

a(n − j)u(j) +
n−1∑
r=0

∞∑
s=n+1

a(s − r)u(r)

+
∞∑

s=n+1

a(s − n)u(n) − ŷ(n)

−
n−1∑
r=0

∞∑
s=n+1

a(s − r)u(r) −
n−1∑
r=0

a(n − r)u(r)
]

≤ (1 − a)−1
( ∞∑

s=n

a(s − n) − 1
)

u(n)

≤ (1 − a)−1(a − 1)u(n) ≤ −u(n).

Hence by Theorem 4.20,4 the zero solution of (6.5.8) is globally asymptot-
ically stable. �

Exercises 6.5

1. Prove that
k∑

i=1

k∑
j=1

∞∑
s=n

|bij(s − n)||xj(n)| =
k∑

i=1

k∑
j=1

∞∑
s=n

|bji(s − n)||xi(n)|.

In Problems 2 through 6 determine whether the zero solution of the given
equation is uniformly stable or uniformly asymptotically stable.

2. x(n + 1) =
∑n

j=0 B(n − j)x(j), where B(n) =

(
e−n 1
0 e−n

)
.

3. x(n + 1) = Ax(n) +
∑n

j=o B(n − j)x(j), where A =

⎛⎜⎝0
1
5

1
3

1
4

⎞⎟⎠,

B(n) =

(
4−n−1 0

0 3−n−1

)
.

4. x(n + 1) =
∑n

j=0 B(n − j)x(j), where B(n) =

(
−1 4−n−1

0 3−n−1

)
.

5. x(n + 1) =
∑n

j=0 B(n − j)x(j), where B(n) =

(
2−n−1 e−n−1

0 5−n−1

)
.

4Observe that Theorem 4.20 is valid also for nonautonomous equations as well
as Volterra difference equations. The proof is a slight modification of the proof
in the text.
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*6. Theorem ([14]). Let G = (gij) be a real k × k matrix. Then detG > 0
if gii > 0, giigjj >

∑′
r |gir|

∑′
r |gjr|, for all 1 ≤ i, j ≤ k, i �= j.

Assume that νij =
∑∞

n=0 bij(n) < ∞ for 1 ≤ i, j ≤ k. Suppose that
the following two conditions hold:

(i) aii + νii > 1, 1 ≤ i ≤ k.

(ii) (aii+νii−1)(ajj +νjj −1) >
∑′

r |air+νir| for 1 ≤ i, j ≤ k, i �= j.
Prove that:

(a) If k is odd, then the zero solution of (6.5.1) is not
asymptotically stable.

(b) If k is even, then the zero solution of (6.5.1) may or may not
be asymptotically stable.

*7. (Open problem). Discuss the stability of the zero solution of (6.5.1)
under the condition aii + νii ≤ 1, 1 ≤ i ≤ k. Consider the Volterra
system with infinite delay

x(n + 1) = Ax(n) +
∞∑

j=0

B(n − j)x(j). (6.5.14)

8. Mimic the proof of Theorem 6.23 to find criteria for the asymptotic
stability of the zero solution of (6.5.7).

9. Mimic the proof of Theorem 6.24 to find criteria for the uniform
stability of the zero solution of (6.5.7).

10. Prove Theorem 6.23 using the method of Liapunov functionals (as in
Theorem 6.24).

6.6 A Variation of Constants Formula

Associated with the homogeneous system (6.5.1) we contemplate the
following nonhomogeneous system:

y(n + 1) = Ay(n) +
n∑

j=0

B(n − j)y(j) + g(n), (6.6.1)

where g(n) ∈ R
k.

The existence and uniqueness of solutions of system (6.5.1) may be es-
tablished by a straightforward argument (Exercises 6.6, Problem 13). Let
ei = (0, . . . , 1, . . . , 0)T be the standard ith unit vector in R

k, 1 ≤ i ≤ k.
Then there are k vector solutions x1(n), x2(n), x3(n), . . . , xk(n) of system
(6.5.1) with xi(n) = ei, 1 ≤ i ≤ k. The solutions are linearly independent
on Z

+. For if there is a nontrivial linear relation c1x1(n) + c2x2(n) + · · · +
ckxk(n) = 0 on Z

+, then at n = 0 we have c1e1 + c2e2 + · · · + ckek = 0.
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This proves that c1 = c2 = · · · = ck = 0, which is a contradiction. The
k × k matrix X(n) whose ith column is xi(n), is called the fundamental
matrix of system (6.5.1). Notice that X(n) is a nonsingular matrix with
X(0) = I. Moreover, x(n) = X(n)x0 is a solution of system equations
(6.5.1) with x(0) = x0 (Exercises 6.6, Problem 1). Furthermore, the funda-
mental matrix X(n) satisfies the matrix equation (Exercises 6.6, Problem
2)

X(n + 1) = AX(n) +
n∑

j=0

B(n − j)X(j). (6.6.2)

It should be pointed out that the fundamental matrix X(n) enjoys all
the properties possessed by its counterpart in ordinary difference equations
(Chapter 3).

Next we give the variation of constants formula.

Theorem 6.27. Suppose that the Z-transforms of B(n) and g(n) exist.
Then the solution y(n) of system (6.6.1) with y(n0) = y0 is given by

y(n, 0, y0) = X(n)y0 +
n−1∑
r=0

X(n − r − 1)g(r). (6.6.3)

Proof. We first observe that (Why?)

X(n + 1) = AX(n) +
n∑

r=0

B(n − r)X(r). (6.6.4)

Taking the Z-transform of both sides of (6.6.4), we obtain, for some R > 0,

zX̃(z) − zX(0) = AX̃(z) + B̃(z)X̃(z), |z| > R.

This yields

[zI − A − B̃(z)]X̃(z) = zI, |z| > R. (6.6.5)

Since the right-hand side of (6.6.5) is nonsingular, it follows that the matrix
zI − A − B̃(z) is also nonsingular. (Why?) This implies that

X̃(z) = z[zI − A − B̃(z)]−1, |z| > R. (6.6.6)

In the next step of the proof we take the Z-transform of both sides of
system (6.6.1) to obtain

ỹ(z) = [zI − A − B̃(z)]−1[zy0 + g̃(z)], |z| > R1,

for some R1 ≥ R, and by using formula (6.6.6) this gives

ỹ(z) = X̃(z)y0 +
1
2
X̃(z)g̃(z), |z| > R1.
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Thus

y(n) = Z−1[X̃(z)y0] + Z−1
[
1
2
X̃(z)g̃(z)

]
= X(n)y0 +

n−1∑
r=0

X(n − r − 1)g(r)

(using formulas (6.1.4) and (6.1.8)). �

Exercises 6.6

1. Let X(n) be the fundamental matrix of system equation (6.5.1). Prove
that x(n) = X(n)x0 is a solution of (6.5.1) for any vector x0 ∈ R

k.

2. Prove that the fundamental matrix X(n) satisfies (6.6.2).

3. Prove that the zero solution of (6.5.1) is uniformly stable if and only
if |x(n, n0, x0)| ≤ M |x0| for some M > 0.

4. Prove that the zero solution of (6.5.1) is uniformly asymptotically sta-
ble if and only if there exist M > 0, ν ∈ (0, 1) such that |x(n, n0, x0)| ≤
Mνn−n0 .

5. Solve the equation

x(n+1) = −2
√

3x(n)+
n∑

r=0

2n−r
(
3

1
2(n−r+1)

)
x(r)+2n(3n/2), x(0) = 0 :

(a) by the Z-transform method,

(b) by using Theorem 6.27.

6. Solve the equation x(n + 1) = 1
2x(n) +

∑n
r=0(n − r)x(r) + n:

(a) by the Z-transform method,

(b) by using Theorem 6.27.

7. Consider the planar system x(n + 1) = Ax(n) +
∑n

j=0 B(n − j)x(j) +
g(n), x(0) = 0, where

A =

(
−

√
2 0

0 −
√

6

)
, B(n) =

(
2−n/2 0

0 6−n/2

)
.

(a) Find the fundamental matrix X(n) of the homogeneous equation.

(b) Use Theorem 6.27 to solve the equation when g(n) =

(
n

0

)
.

8. Consider the system ∆x(n) =
∑n

j=0 B(n − j)x(j) + g(n), where

B(n) =

(
1 0
0 2n

)
.
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(a) Solve the homogeneous part when g(n) = 0.

(b) Use Theorem 6.27 to find the solution of the nonhomogeneous

equation when g(n) =

(
a

0

)
, where a is a constant.

9. Consider the system

y(n + 1) = Ay(n) + g(n), y(0) = y0. (6.6.7)

Use the Z-transform to show that:

(a) An = Z−1[z(zI − A)−1].

(b)
∑n−1

r=0 An−r−1g(r) = Z−1[(zI − A)−1g̃(z)].

(c) Conclude that the solution of the given equation is given by y(n) =
Z−1[z(zI − A)−1]y0 + Z−1[(zI − A)−1g̃(z)].

10. Use (6.6.5) to show that for some R > 0,det(zI − A − B̃(z)) �= 0 for
|z| > R.

Apply the method of Problem 9 to solve equation (6.6.7) in Problem 9
if A and g(n) are given as follows:

11. A =

(
3 −2
1 0

)
, g(n) =

⎛⎜⎝n

3
0

⎞⎟⎠ , y(0) = 0.

12. A =

(
0.5 1
0 0.5

)
, g(n) = 0.

13. Prove the existence and uniqueness of the solutions of (6.6.1).

6.7 The Z-Transform Versus
the Laplace Transform5

The Laplace transform plays the same role in differential equations as does
the Z-transform in difference equations. For a continuous function f(t), the
Laplace transform is defined by

f̂(s) = L (f(t)) =
∫ ∞

0
e−stf(t) dt.

If we discretize this integral we get
∑∞

n=0 e−snf(n). If further we let
z = es, we get the Z-transform of f(n), namely

∑∞
n=0 f(n)z−n. Hence

5This section may be skipped by readers who are not familiar with the Laplace
transform.
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given s = α + iβ in the s-plane (commonly called the frequency domain in
engineering), then

z = eα+iβ = eα · eiβ = eα · ei(β+2nπ), n ∈ Z.

Hence a point in the z-plane corresponds to infinitely many points in the s-
plane. Observe that the left half of the s-plane corresponds to the interior
of the unit disk |z| < 1 in the z-plane. Thus asymptotic stability of a
differential equation is obtained if all the roots of its characteristic equation
have negative real parts. In difference equations this corresponds to the
condition that all the roots of the characteristic equation lie inside the unit
disk.

There is another method that enables us to carry the stability analysis
from the s-plane to the z-plane, i.e., from differential equations to difference
equations. Suppose that the characteristic equation of a difference equation
is given by

P (z) = a0z
n + a1z

n−1 + · · · + an = 0.

The bilinear transformation defined by

z =
s + 1
s − 1

maps the interior of the unit disk to the left half-plane in the complex plane
(Figure 6.7). To show this we let s = α + iβ. Then

|z| =
∣∣∣∣α + iβ + 1
α + iβ − 1

∣∣∣∣ < 1,

Im z

Re z

z-plane

Im s

Re s

s-plane

FIGURE 6.7. A bilinear transformation.
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or
(α + 1)2 + β2

(α − 1)2 + β2 < 1,

which gives α < 0.
Now substituting z = s+1

s−1 into P (z) we obtain

a0

(
s + 1
s − 1

)n

+ a1

(
s + 1
s − 1

)n−1

+ · · · + an = 0,

or

Q(s) = b0s
n + b1s

n−1 + · · · + bn = 0.

We now can apply the Routh stability criterion [102] to Q(s) to check
whether all the zeros of Q(s) are in the left half-plane. If this is the case,
then we know for sure that the zeros of P (z) all lie inside the unit disk. We
are not going to pursue this approach here, since the computation involved
is horrendous.
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TABLE 6.1. Z-transform pairs.

No.
x(n) for n = 0, 1, 2, 3, . . .

x(n) = 0 for n = −1, −2, −3, . . .
x̃(z) =

∑∞
n=0 x(n)z−n

1. 1 z/z − 1
2. an z/z − a

3. an−1 1
z−a

4. n z/(z − 1)2

5. n2 z(z + 1)/(z − 1)3

6. n3 z(z2 + 4z + 1)/(z − 1)4

7. nk (−1)kDk
(

z
z−1

)
; D = z d

dz

8. nan az/(z − a)2

9. n2an az(z + a)/(z − a)3

10. n3an az(z2 + 4az + a2)/(z − a)4

11. nkan (−1)kDk
(

z
z−a

)
; D = z d

dz

12. sin nω z sin ω/
(z2 − 2z cos ω + 1)

13. cos nω z(z − cos ω)/
(z2 − 2z cos ω + 1)

14. an sin nω az sin nω/
(z2 − 2az cos ω + a2)

15. an cos nω z(z − a cos ω)/
(z2 − 2az cos ω + a2)

16. δ0(n) 1
17. δm(n) z−m

18. an/n! ea/z

19. cosh nω z(z − cosh ω)/
(z2 − 2z cosh ω + 1)

20. sinh nω z sinh ω/
(z2 − 2z cosh ω + 1)

21. 1
n
, n > 0 ln (z/z − 1)

22. e−ωnx(n) x̃ (eωz)
23. n(2) = n(n − 1) 2z/(z − 1)3

24. n(3) = n(n − 1)(n − 2) 3!z/(z − 1)4

25. n(k) = n(n − 1) · · · (n − k + 1) k!z/(z − 1)k+1

26. x(n − k) z−kx̃(z)
27. x(n + k) zkx̃(z) − ∑k−1

r=0 x(r)zk−r



7
Oscillation Theory

In previous chapters we were mainly interested in the asymptotic behav-
ior of solutions of difference equations both scalar and nonscalar. In this
chapter we will go beyond the question of stability and asymptoticity. Of
particular interest is to know whether a solution x(n) oscillates around an
equilibrium point x∗, regardless of its asymptotic behavior. Since we may
assume without loss of generality that x∗ = 0, the question that we will
address here is whether solutions oscillate around zero or whether solutions
are eventually positive or eventually negative.

Sections 7.1 and 7.3 follow closely the paper of Erbe and Zhang [53] and
the book of Gyori and Ladas [63]. In Section 7.2 we follow the approach
in the paper of Hooker and Patula [67]. For more advanced treatment of
oscillation theory the reader is referred to [3], [63], [64], [79].

7.1 Three-Term Difference Equations

In this section we consider the three-term difference equation (of order
k + 1)

x(n + 1) − x(n) + p(n)x(n − k) = 0, n ∈ Z
+, (7.1.1)

where k is a positive integer and p(n) is a sequence defined for n ∈ Z
+.

A nontrivial solution x(n) is said to be oscillatory (around zero) if for
every positive integer N there exists n ≥ N such that x(n)x(n + 1) ≤
0. Otherwise, the solution is said to be nonoscillatory. In other words, a
solution x(n) is oscillatory if it is neither eventually positive nor eventually

313
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negative. The solution x(n) is said to be oscillatory around an equilibrium
point x∗ if x(n) − x∗ is oscillatory around zero. The special case, where
k = 1 and p(n) = p is a constant real number, has been treated previously
in Section 2.5. In this case (7.1.1) may be written in the more convenient
form

x(n + 2) − x(n + 1) + px(n) = 0. (7.1.2)

The characteristic roots of (7.1.2) are given by

λ1,2 =
1
2

± 1
2

√
1 − 4p.

Recall from Section 2.5 that all solutions of (7.1.2) oscillate if and only if
λ1 and λ2 are not positive real numbers. Hence every solution of (7.1.2)
oscillates if and only if p > 1

4 .
Let us now turn our attention back to (7.1.1). This equation is the

discrete analogue of the delay differential equation

x′(t) + p(t)x(t − k) = 0. (7.1.3)

The oscillatory behavior of (7.1.3) is remarkably similar to that of its dis-
crete analogue (7.1.1), with one exception, when k = 0. In this case, the
equation

x′(t) + p(t)x(t) = 0

has the solution

x(t) = x(t0) exp
(

−
∫ t

t0

p(s) ds

)
,

which is never oscillatory. However, the discrete analogue

x(n + 1) = (1 − p(n))x(n)

has the solution x(n) =
[∏n−1

j=n0
(1 − p(j))

]
x(n0), which oscillates if 1 −

p(j) < 0 for all j ≥ n0.
To prepare for the study of the oscillatory behavior of (7.1.1) we first

investigate the solutions of the following associated difference inequalities:

x(n + 1) − x(n) + p(n)x(n − k) ≤ 0, (7.1.4)
x(n + 1) − x(n) + p(n)x(n − k) ≥ 0. (7.1.5)

In the sequel we make use of the notions of the limit superior and the
limit inferior of a sequence {a(n)}, denoted by lim sup

n→∞
a(n) and lim inf

n→∞ a(n),

respectively.

Definition 7.1. Let {a(n)} be a sequence of real numbers. Let β(n) be
the least upper bound of the set {a(n), a(n + 1), a(n + 2), . . .}. Then either
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β(n) = ±∞ for every n, or the sequence {β(n)} is a monotonically decreas-
ing sequence of real numbers, and thus limn→∞ β(n). Similarly, let α(n) be
the greatest lower bound of the set {a(n), a(n + 1), a(n + 2), . . .}. Then:

(i) lim sup
n→∞

a(n) = limn→∞ β(n).

(ii) lim inf
n→∞ a(n) = limn→∞ α(n).

Note that limn→∞ a(n) exists if and only if lim sup
n→∞

a(n) = lim inf
n→∞ a(n) =

lim
n→∞ a(n).

Example 7.2. Find the limit superior and the limit inferior for the
following sequences:

S1 :0, 1, 0, 1, . . . .

S2 :1,−2, 3,−4, . . . , (−1)n+1n, . . . .

S3 :
3
2
,−1

2
,
4
3
,−1

3
,
5
4
,−1

4
,
6
5
,−1

5
, . . . .

Solution

lim sup
n→∞

S1 = 1, lim inf
n→∞ S2 = 0,

lim sup
n→∞

S2 = ∞, lim inf
n→∞ S2 = −∞,

lim sup
n→∞

S3 = 1, lim inf
n→∞ S3 = 0.

Theorem 7.3 [53]. Suppose that

lim inf
n→∞ p(n) = p >

kk

(k + 1)k+1 . (7.1.6)

Then the following statements hold:

(i) Inequality (7.1.4) has no eventually positive solution.

(ii) Inequality (7.1.5) has no eventually negative solution.

Proof. (i) To prove statement (i), assume the contrary, that is, there
exists a solution x(n) of inequality (7.1.4) that is eventually positive. Hence
there exists a positive integer N1 such that x(n) > 0 for all n ≥ N1.
Dividing inequality (7.1.4) by x(n), we get, for n ≥ N1,

x(n + 1)
x(n)

≤ 1 − p(n)
x(n − k)

x(n)
. (7.1.7)
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If we let z(n) = x(n)
x(n+1) , then

x(n − k)
x(n)

=
x(n − k)

x(n − k + 1)
x(n − k + 1)
x(n − k + 2)

, . . . ,
x(n − 1)

x(n)
= z(n − k)z(n − k + 1), . . . , z(n − 1).

Substituting into inequality (7.1.7) yields

1
z(n)

≤ 1 − p(n)z(n − k)z(n − k + 1) · · · z(n − 1), n ≥ N1 + k. (7.1.8)

Now, condition (7.1.6) implies that there exists a positive integer N2 such
that p(n) > 0 for all n ≥ N2. Put N = max{N2, N1 + k}. Then for
n ≥ N, x(n + 1) − x(n) ≤ −p(n)x(n − k) ≤ 0. Consequently, x(n) is non-
increasing, and thus z(n) ≥ 1. Let lim inf

n→∞ z(n) = q. Then from inequality

(7.1.8) we have

lim sup
n→∞

1
z(n)

=
1

lim inf
n→∞ z(n)

= 1/q

≤ 1 − lim inf
n→∞ [p(n)z(n − k)z(n − k − 1), . . . , z(n − 1)],

or
1
q

≤ 1 − pqk,

which yields

p ≤ q − 1
qk+1 . (7.1.9)

Let h(q) = (q − 1)/qk+1. Then h(q) attains its maximum at q = (k + 1)/k.
Hence maxq≥1 h(q) = (kk)/(k + 1)k+1. Hence from inequality (7.1.9) we
have p ≤ (kk)/(k+1)k+1, a contradiction. This completes the proof of part
(i) of the theorem. The proof of part (ii) is left to the reader as Exercises
7.1, Problem 6. �

Corollary 7.4. If condition (7.1.6) holds, then every solution of (7.1.1)
oscillates.

Proof. Suppose the contrary and let x(n) be an eventually positive solu-
tion of (7.1.1). Then inequality (7.1.4) has an eventually positive solution,
which contradicts Theorem 7.3. On the other hand, if (7.1.1) has an eventu-
ally negative solution, then so does inequality (7.1.5), which again violates
Theorem 7.3. �

The above corollary is sharp, as may be evidenced by the following
example, where we let

p(n) =
kk

(k + 1)k+1 .
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Example 7.5. Consider the difference equation

x(n + 1) − x(n) + (kk/(k + 1)k+1)x(n − k) = 0.

Then x(n) =
(

k
k+1

)n−1
, n > 1, is a nonoscillatory solution of the equation.

Next we give a partial converse of Corollary 7.4.

Theorem 7.6 [53]. Suppose that p(n) ≥ 0 and

sup p(n) <
kk

k + 1k+1 . (7.1.10)

Then (7.1.1) has a nonoscillatory solution.

Proof. As in the proof of Theorem 7.3, we let z(n) = x(n)/x(n + 1) in
(7.1.1) to obtain

1/z(n) = 1 − p(n)z(n − k)z(n − k + 1) · · · z(n − 1). (7.1.11)

To complete the proof, it suffices to show that (7.1.11) has a positive
solution. To construct such a solution we define

z(1 − k) = z(2 − k) = · · · = z(0) = a =
k + 1

k
> 1 (7.1.12)

and

z(1) = [1 − p(1)z(1 − k)z(2 − k) · · · z(0)]−1. (7.1.13)

Then z(1) > 1 also. We claim that z(1) < a. To show this, we have

z(1)
a

=
1

a[1 − p(1)z(1 − k) · · · z(0)]

≤ k

(k + 1)
[
1 − kk

(k+1)k+1 · (k+1
k

)k] = 1.

Hence by induction, we may show that 1 < z(n) < a, with n = 1, 2, 3, . . . .
Moreover, z(n) is a solution of (7.1.11). Now let x(1) = 1, x(2) = x(1)/z(1),
x(3) = x(2)/z(2), and so on. Then x(n) is a nonoscillatory solution of
(7.1.1). �

For the special case where p(n) = p is a constant real number we have
the following stronger result.

Theorem 7.7. Consider the equation

x(n + 1) − x(n) + px(n − k) = 0, (7.1.14)

where k is a positive integer and p is a nonnegative real number. Then every
solution of (7.1.14) oscillates if and only if p > kk/(k + 1)k+1.

Proof. Combining the results of Corollary 7.4, Example 7.5, and
Theorem 7.6 yields the proof. �
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Remark: Gyori and Ladas [63] showed that every solution of the kth-order
equation

x(n + k) + p1x(n + k − 1) + · · · + pkx(n) = 0 (7.1.15)

oscillates if and only if its characteristic equation has no positive roots.
Based on this theorem (Exercises 7.1, Problem 8), they were able to show
that every solution of the three-term equation (7.1.14), where k ∈ Z -
{−1, 0}, oscillates if and only if p > kk/(k + 1)k+1.

Exercises 7.1

1. Find the limit superior and limit inferior of the following sequences:

(a) S1 : 2
3 , 1

3 , 3
4 , 1

4 , 4
5 , 1

5 , 5
6 , 1

6 , . . . .

(b) S2 : (−1)n+1.

(c) S3 : αn/(1 + βn).

(d) S4 : 1 + (−1)n+1.

2. Prove the following statements:

(a) lim sup
n→∞

(1/a(n)) = 1/ lim inf
n→∞ a(n).

(b) If a(n) > 0, then lim sup
n→∞

(−a(n)) = − lim inf
n→∞ a(n).

(c) lim inf
n→∞ a(n) ≤ lim sup

n→∞
a(n).

3. Show that the difference equation

∆2x(n − 1) +
1
n

x(n) = 0, n ≥ 1,

is oscillatory on [0, ∞).

4. (a) Show that every solution of the equation

x(n + 1) − x(n) + px(n) = 0

oscillates if and only if p > 1, where p ∈ R.

(b) Show that every solution of the equation

x(n + 1) − x(n) + px(n − 1) = 0

oscillates if and only if p > 1
4 .

5. Consider the difference equation

∆2x(n) + p(n)x(n + 1) = 0,

where p(n) > a > 0 for n ∈ Z
+. Show that every nontrivial solution of

the equation is oscillatory.

6. Prove part (ii) of Theorem 7.3.
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7. The characteristic equation of (7.1.14) is given by

λk+1 − λk + p = 0, where p ≥ 0.

Show that the characteristic equation has no positive roots if and only
if p > kk/(k + 1)k+1. Then give a proof of Theorem 7.7.

8. Show that every solution of (7.1.15) oscillates if and only if its
characteristic equation has no positive real roots.

*9. [53] Assume that

lim inf
n→∞ p(n) = q > 0,

and

lim sup
n→∞

p(n) > 1 − q.

Prove that all conclusions of Theorem 7.3 hold.

In Problems 10 through 12 consider the equation with several delays

x(n + 1) − x(n) +
m∑

j=1

pj(n)x(n − kj) = 0, (7.1.16)

where kj are positive integers.

10. Suppose that pi(n) ≥ 0 and
m∑

i=1

lim inf
n→∞ pi(n)

[
(ki + 1)ki+1

(ki)ki

]
> 1.

Show that every solution of (7.1.16) oscillates.

11. Suppose that pi(n) ≥ 0 and

lim inf
n→∞

⎛⎝ m∑
j=1

pi(n)

⎞⎠ >
(k̄)k̄

(k̄ + 1)k̄+1
,

where k̄ = min{k1, k2, . . . , km} ≥ 1. Show that every solution of
(7.1.16) oscillates.

*12. Suppose that

lim inf
n→∞

m∑
i=1

pi(n) = c > 0

and

lim sup
n→∞

m∑
i=1

pi(n) = 1 − c.

Prove that every solution of (7.1.16) oscillates.
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7.2 Self-Adjoint Second-Order Equations

In this section we consider second-order difference equations of the form

∆[p(n − 1)∆x(n − 1)] + q(n)x(n) = 0, (7.2.1)

where p(n) > 0, n ∈ Z
+. Equation (7.2.1) is called self-adjoint, a name

borrowed from its continuous analogue

[p(t)x′(t)]′ + q(t)x(t) = 0.

Equation (7.2.1) may be written in the more familiar form

p(n)x(n + 1) + p(n − 1)x(n − 1) = b(n)x(n), (7.2.2)

where

b(n) = p(n − 1) + p(n) − q(n). (7.2.3)

As a matter of fact, any equation of the form

p0(n)x(n + 1) + p1(n)x(n) + p2(n)x(n − 1) = 0, (7.2.4)

with p0(n) > 0, and p2(n) > 0, can be written in the self-adjoint form
(7.2.1) or (7.2.2). To find p(n) and q(n) from p0(n), p1(n), and p2(n),
multiply both sides of (7.2.4) by a positive sequence h(n). This yields

p0(n)h(n)x(n + 1) + p1(n)h(n)x(n) + p2(n)h(n)x(n − 1) = 0. (7.2.5)

Comparing (7.2.5) with (7.2.2), we obtain

p(n) = p0(n)h(n),
p(n − 1) = p2(n)h(n).

Thus

p2(n + 1)h(n + 1) = p0(n)h(n),

or

h(n + 1) =
p0(n)

p2(n + 1)
h(n). (7.2.6)

Hence

h(n) =
n−1∏
j=n0

p0(j)
p2(j + 1)

is a solution of (7.2.6). This gives us

p(n) = p0(n)
n−1∏
j=n0

p0(j)
p2(j + 1)

.

Also from (7.2.3) we obtain

q(n) = p1(n)h(n) + p(n) + p(n − 1).
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In [64] Hartman introduced the notion of generalized zeros in order to
obtain a discrete analogue of Sturm’s separation theorem in differential
equations. Next we give Hartman’s definition.

Definition 7.8. A solution x(n), n ≥ n0 ≥ 0, of (7.2.1) has a generalized
zero at r > n0 if either x(r) = 0 or x(r − 1)x(r) < 0. In other words, a
generalized zero of a solution is either an actual zero or where the solution
changes its sign.

Theorem 7.9 (Sturm Separation Theorem). Let x1(n) and x2(n)
be two linearly independent solutions of (7.2.1). Then the following
statements hold:

(i) x1(n) and x2(n) cannot have a common zero, that is, if x1(r) = 0,
then x2(r) �= 0.

(ii) If x1(n) has a zero at n1 and a generalized zero at n2 > n1, then x2(n)
must have a generalized zero in (n1, n2].

(iii) If x1(n) has generalized zeros at n1 and n2 > n1, then x2(n) must have
a generalized zero in [n1, n2].

Proof.

(i) Assume that x1(r) = x2(r) = 0. Then the Casoratian

W (r) =

∣∣∣∣∣ x1(r) x2(r)
x1(r + 1) x2(r + 1)

∣∣∣∣∣ = 0.

It follows from Corollary 2.14 that x1(n) and x2(n) are linearly
dependent, a contradiction.

(ii) Assume that x1(n1) = 0, x1(n2 −1)x(n2) < 0 (or x1(n2) = 0). We may
assume that n2 is the first generalized zero greater than n1. Suppose
that x1(n) > 0 for n1 < n < n2 and x1(n2) ≤ 0.

Now, if x2(n) has no generalized zeros in (n1, n2], then x2(n) is either
positive in [n1, n2] or negative in [n1, n2]. Without loss of generality let
x2(n) > 0 on [n1, n2]. Now pick a positive real number M and r ∈ (n1, n2)
such that x2(r) = Mx1(r) and x2(n) ≥ Mx1(n) in [n1, n2]. By the principle
of superposition, the sequence x(n) = x2(n) − Mx1(n) is also a solution of
(7.2.1) with x(r) = 0 and x(r − 1)x(r + 1) ≥ 0, with r > n1. Letting n = r
in (7.2.1) we obtain

∆[p(r − 1)∆x(r − 1)] + q(r)x(r) = 0.

Since x(r) = 0, we have

p(r − 1)∆2x(r − 1) + ∆x(r)∆p(r − 1) = 0,

or

p(r)x(r + 1) = −p(r − 1)x(r − 1). (7.2.7)
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Since x(r + 1) �= 0, x(r − 1) �= 0, and p(n) > 0, equation (7.2.7) implies
that x(r − 1)x(r + 1) < 0, which is a contradiction. This completes the
proof of part (ii). The proof of part (iii) is left to the reader as Exercises
7.2, Problem 6. �

Remark: Based on the notion of generalized zeros, we can give an alterna-
tive definition of oscillation. A solution of a difference equation is oscillatory
on [n2,∞) if it has infinitely many generalized zeros on [n0,∞). An im-
mediate consequence of the Sturm separation theorem (Theorem 7.9) is
that if (7.2.1) has an oscillatory solution, then all its solutions are oscil-
latory. We caution the reader that the above conclusion does not hold in
general for non-self-adjoint second-order difference equations. For example,
the difference equation x(n + 1) − x(n − 1) = 0 has a nonoscillatory so-
lution x1(n) = 1 and an oscillatory solution x2(n) = (−1)n. Observe that
this equation is not self-adjoint. We are now ready to give some simple
criteria for oscillation.

Lemma 7.10. If there exists a subsequence b(nk) ≤ 0, with nk → ∞ as
k → ∞, then every solution of (7.2.2) oscillates.

Proof. Assume the contrary, that there exists a nonoscillatory solution
x(n) of (7.2.2). Without loss of generality, suppose that x(n) > 0 for n ≥ N .
Then

p(nk)x(nk + 1) + p(nk − 1)x(nk − 1) − b(nk)x(nk) > 0, for nk > N,

which is a contradiction. �

One of the most useful techniques in oscillation theory is the use of the so-
called Riccati transformations. We will introduce only one transformation
that is needed in the development of our results. Two more transformations
will appear in the exercises. In (7.2.2) let

z(n) =
b(n + 1)x(n + 1)

p(n)x(n)
. (7.2.8)

Then z(n) satisfies the equation

c(n)z(n) +
1

z(n − 1)
= 1, (7.2.9)

where

c(n) =
p2(n)

b(n)b(n + 1)
. (7.2.10)

Next we give a crucial result that relates (7.2.2) with (7.2.9).

Lemma 7.11. Suppose that b(n) > 0 for n ∈ Z
+. Then every solution

x(n) of (7.2.2) is nonoscillatory if and only if every solution z(n) of (7.2.9)
is positive for n ≥ N , for some N > 0.
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Proof. Suppose that x(n) is a nonoscillatory solution of (7.2.2). Then
x(n)x(n + 1) > 0 for n ≥ N . Equation (7.2.8) then implies that z(n) > 0.
Conversely, assume that z(n) is a positive solution of (7.2.9). Using this
solution we construct inductively a nonoscillatory solution x(n) of (7.2.2)
as follows: Let x(N) = 1, x(n + 1) = (p(n)/b(n + 1))z(n)x(n), with n > N .
Then one may verify that x(n), with n ≥ N , is indeed a solution of (7.2.2)
that is nonoscillatory. By the Sturm separation theorem, every solution
of (7.2.2) is thus nonoscillatory. We need a comparison result concerning
(7.2.9) that will be needed to establish the main result of this section. �

Lemma 7.12. If c(n) ≥ a(n) > 0 for all n > 0 and z(n) > 0 is a solution
of the equation

c(n)z(n) +
1

z(n − 1)
= 1, (7.2.11)

then the equation

a(n)y(n) +
1

y(n − 1)
= 1 (7.2.12)

has a solution y(n) ≥ z(n) > 1 for all n ∈ Z
+.

Proof. Since c(n) > 0 and z(n) > 0, it follows from (7.2.1) that 1/(z(n−
1)) < 1. This implies that z(n − 1) > 1 for all n ≥ 1. We now define
inductively a solution y(n) of (7.2.12). Choose y(0) ≥ z(0) and let y(n)
satisfy (7.2.11). Now, from (7.2.12) and (7.2.12), we have

a(n)y(n) +
1

y(n − 1)
= c(n)z(n) +

1
z(n − 1)

.

So

a(1)y(1) +
1

y(0)
= c(1)z(1) +

1
z(0)

.

Since y(0) ≥ z(0), we have 1/y(0) ≤ 1/z(0), and hence a(1)y(1) ≥ c(1)z(1),
or

y(1) ≥ c(1)
a(1)

z(1) ≥ z(1) > 1.

Inductively, one may show that

y(n) ≥ z(n) > 1. �

Theorem 7.13. If b(n)b(n+1) ≤ (4− ε)p2(n) for some ε > 0 and for all
n ≥ N , then every solution of (7.2.2) is oscillatory.

Proof. If b(n)b(n−1) ≤ (4−ε)p2(n) for some ε ≥ 4, then b(n)b(n−1) ≤
0. The conclusion of the theorem then follows from Lemma 7.10. Hence we
may assume that 0 < ε < 4. Now assume that (7.2.2) has a nonoscillatory
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solution. Then by Lemma 7.11, (7.2.9) has a positive solution z(n) for
n ≥ N . Using the assumption of the theorem in formula (7.2.10) yields

c(n) =
p2(n)

b(n)b(n + 1)
≥ p2(n)

(4 − ε)p2(n)
=

1
4 − ε

.

Then it follows from Lemma 7.12 that the equation
1

4 − ε
y(n) +

1
y(n − 1)

= 1 (7.2.13)

has a solution y(n), n ≥ N , such that y(n) ≥ z(n) > 1 for all n ≥ N .
Define a positive sequence x(n) inductively as follows: x(N) = 1, x(n+1) =
(1/

√
4 − ε)y(n)x(n) for n ≥ N . Then

y(n) =
√

4 − ε

(
x(n + 1)

x(n)

)
. (7.2.14)

Substituting for y(n) in (7.2.14) into (7.2.13) yields x(n+1)−√
4 − εx(n)+

x(n − 1) = 0, n ≥ N , whose characteristic roots are

λ1,2 =
√

4 − ε

2
± i

√
ε

2
.

Thus its solutions are oscillatory, which gives a contradiction. The proof of
the theorem is now complete. �

It is now time to give some examples.

Example 7.14. Consider the difference equation

y(n + 1) + y(n − 1) =
(

2 +
1
2
(−1)n

)
y(n).

Here p(n) = 1 and b(n) =
(
2 + 1

2 (−1)n
)
:

b(n) b(n + 1) =
(

2 +
1
2
(−1)n

)(
2 +

1
2
(−1)n+1

)
= 3

3
4
.

Thus b(n) b(n + 1) ≤ (4 − 1
5

)
p2(n). By Theorem 7.13, we conclude that

every solution is oscillatory.

The following example will show the sharpness of Theorem 7.13 in the
sense that if ε is allowed to be a sequence tending to zero, then the theorem
fails.

Example 7.15 [67]. Consider the equation

x(n + 1) + x(n) = b(n) x(n − 1), n = 1, 2, 3, . . . ,

where

b(n) =
√

n + 1 +
√

n − 1√
n

.
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Now,

b(n)b(n + 1)

=

√
(n + 1)(n + 2) +

√
(n − 1)(n + 2) +

√
n(n + 1) +

√
n(n − 1)√

n(n + 1)
.

But limn→∞ b(n)b(n + 1) = 4. Hence if one takes εn = 4 − b(n)b(n + 1),
then εn → 0 as n → ∞. However, Theorem 7.13 fails, since x(n) =

√
n, n ≥

1, is a nonoscillatory solution of the equation.

A partial converse of Theorem 7.13 now follows.

Theorem 7.16. If b(n)b(n + 1) ≥ 4p2(n) for n ≥ N , then every solution
of (7.2.2) is nonoscillatory.

Proof. From formula (7.2.10) and the assumption we obtain c(n) ≤ 1
4 .

We now construct inductively a solution z(n) of (7.2.9) as follows: Put
z(N) = 2, and

z(n) =
1

c(n)

(
1 − 1

z(n − 1)

)
, n > N.

Observe that

z(N + 1) =
1

c(N + 1)

(
1 − 1

z(N)

)
≥ 4
(

1 − 1
2

)
= 2.

Similarly, one may show that z(n) ≥ 2 for n ≥ N . Hence by Lemma 7.11,
we conclude that every solution of (7.2.2) is nonoscillatory. �

Example 7.17. Consider the difference equation

∆(n∆x(n − 1) − 1
n

x(n) = 0.

Here p(n) = n + 1 and q(n) = 1
n . Using formula (7.2.3) we obtain

b(n) = 2n + 1 +
1
n

.

Now,

b(n)b(n + 1) =
(

2n + 1 +
1
n

)(
2n + 3 +

1
n + 1

)
= 4n2 + 8n + 7 +

2n + 4
n(n + 1)

≥ 4p2(n) for all n ≥ 1.

Hence by Theorem 7.16, every solution is nonoscillatory.

Exercises 7.2
In Problems 1 through 5 determine the oscillatory behavior of all solutions.

1. ∆[(n − 1)x(n − 1)] + 1
nx(n) = 0.
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2. x(n + 1) + x(n − 1) =
(
2 − 1

n

)
x(n).

3. x(n + 1) + x(n − 1) =
(
2 + 1

n

)
x(n).

4. ∆2[x(n − 1)] + 1
n ln(n)x(n) = 0, n > 1.

5. ∆[(n − 1)x(n − 1)] + x(n) = 0.

6. Prove part (iii) of Theorem 7.9.

7. [112] Show that if b(n) ≤ min{p(n), p(n − 1)} for n ≥ N , for some
positive integer N , then every solution of (7.2.2) is oscillatory.

8. Show that if b(n) ≤ p(n) and p(n) is eventually nonincreasing, then
every solution of (7.2.2) is oscillatory.

9. Show that if b(n) ≤ p(n − 1) and p(n) is eventually nondecreasing,
then every solution of (7.2.2) is oscillatory.

10. (A second Riccati transformation). Let z(n) = x(n+1)/x(n) in (7.2.2).

(i) Show that z(n) satisfies the equation

p(n)z(n) +
p(n − 1)
z(n − 1)

= b(n). (7.2.15)

(ii) Assuming p(n) > 0, show that every solution of (7.2.2) is nonoscil-
latory if and only if (7.2.15) has a positive solution z(n), n ≥ N ,
for some N > 0.

*11. Use the second Riccati transformation in Problem 10 to show that if
b(n) ≤ p(n − 1) and lim sup

n→∞
(p(n))/p(n − 1) > 1

2 , then every solution

of (7.2.2) oscillates.

12. [67] Show that if b(n) ≥ max{p(n − 1), 4p(n)}, for all n ≥ N , for some
N > 0, then every solution of (7.2.2) is nonoscillatory.

13. Show that if p(nk) ≥ b(nk)b(nk + 1) for a sequence nk → ∞, then
every solution of (7.2.2) is oscillatory.

14. As in formula (7.2.10), let

c(n) =
p2(n)

b(n)b(n + 1)
, n ≥ 0.

Show that either one of the following implies that every solution of
(7.2.2) oscillates:

(i) lim sup
n→∞

c(n) > 1.

(ii) lim sup
n→∞

1
n

∑n
j=1 c(j) > 1.
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15. Show that if p(n) is bounded above on [a,∞) and (7.2.1) is nonoscilla-

tory on [a,∞), then either
∞∑

n=a+1
q(n) exists and is finite or it is equal

to −∞.

16. Use Problem 15 to prove that (7.2.1) is oscillatory if either one of the
following conditions hold:

(i) p(n) is bounded on [a,∞) and
∞∑

n=a+1
q(n) = ∞, or

(ii) p(n) is bounded on [a,∞) and

−∞ ≤ lim inf
n→∞

n∑
s=a+1

q(s) ≤ lim sup
n→∞

n∑
s=a+1

q(s) ≤ ∞.

7.3 Nonlinear Difference Equations

In this section we will investigate the oscillatory behavior of the nonlinear
difference equation

x(n + 1) − x(n) + p(n)f(x(n − k)) = 0, (7.3.1)

where k ∈ Z
+ and N ∈ Z

+. The first theorem is due to Erbe and Zhang
[53].

Theorem 7.18. Suppose that f is continuous on R and satisfies the
following assumptions:

(i) xf(x) > 0, x �= 0,

(ii) lim inf
x→0

f(x)
x = L, 0 < L < ∞,

(iii) pL > kk

(k+1)k+1 if k ≥ 1 and pL > 1 if k = 0, where p = lim inf
n→∞ p(n) >

0.

Then every solution of (7.3.1) oscillates.

Proof. Assume the contrary and let x(n) be a nonoscillatory solution of
(7.3.1). Suppose that x(n) > 0 for n ≥ N . This implies by assumption (i)
that f(x(n)) > 0. Hence x(n+1)−x(n) = −p(n)f(x(n−k)) < 0, and thus
x(n) is decreasing. Hence limn→∞ x(n) = c ≥ 0.

Taking the limit of both sides of (7.3.1) yields f(c) = 0, which by as-
sumption (i) gives c = 0. Hence limn→∞ x(n) = 0. Dividing (7.3.1) by x(n)
and letting z(n) = x(n)/x(n + 1) ≥ 1 yields

1
z(n)

= 1 − p(n)z(n − 1) · · · z(n − k)
f(x(n − k))

x(n − k)
. (7.3.2)
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Let lim inf
n→∞ z(n) = r. By taking the limit superior in (7.3.2) we obtain

1
r

≤ 1 − pLrk,

or

pL ≤ r − 1
rk+1 . (7.3.3)

It is easy to see that the function h(r) = (r −1)/rk+1 attains its maximum
at r = (k + 1)/k, and its maximum value is thus kk/(k + 1)k+1. Hence
inequality (7.3.3) becomes

pL ≤ kk

(k + 1)k+1 ,

which contradicts assumption (iii). �

Remark: If we let lim inf
n→∞ f(x)/x = 1, then the linearized equation associated

with (7.3.1), where p(n) is equal to a constant real number p, is given by

y(n + 1) − y(n) + py(n − k) = 0, (7.3.4)

which has been studied in Section 7.1. We may now rephrase Theorem
7.18 as follows: Suppose that assumptions (i) and (ii) hold with L = 1 and
that p(n) is constant. If every solution of (7.3.4) oscillates, then so does
every solution of (7.3.1). Gyori and Ladas [63] considered the more general
equation with several delays

x(n + 1) − x(n) +
m∑

i=1

pifi(x(n − ki)) = 0, (7.3.5)

where pi > 0, ki is a positive integer, and fi is a continuous function on R,
with 1 ≤ i ≤ m. They obtained the following result.

Theorem 7.19. Suppose that the following hold:

(i) pi > 0, ki ∈ Z
+, and

∑m
i=1 (pi + ki) �= 1, 1 ≤ i ≤ m,

(ii) f is continuous on R, and xfi(x) > 0, for x �= 0, 1 ≤ i ≤ m,

(iii) lim inf
x→0

fi(x)
x ≥ 1, 1 ≤ i ≤ m,

(iv)
∑m

i=1 pi
(ki+1)ki+1

k
ki
i

> 1.

Then every solution of (7.3.5) oscillates.

To facilitate the proof of this theorem we present the following lemma.

Lemma 7.20 [63]. Suppose that condition (i) in Theorem 7.19 holds and
let {qi(n) : 1 ≤ i ≤ m} be a set of sequences of real numbers such that

lim inf
n→∞ qi(n) ≥ pi, 1 ≤ i ≤ m. (7.3.6)
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If the linear difference inequality

x(n + 1) − x(n) +
m∑

i=1

qi(n)x(n − ki) ≤ 0, n ∈ Z
+, (7.3.7)

has an eventually positive solution x(n), then the corresponding limiting
equation

y(n + 1) − y(n) +
m∑

i=1

piy(n − ki) = 0 (7.3.8)

also has an eventually positive solution.

Proof. There are two distinct cases to consider
Case (a): Assume that ki = 0, 1 ≤ i ≤ m. Then (7.3.7) and (7.3.8)

simplify to

x(n + 1) ≤
(

1 −
m∑

i=1

qi(n)

)
x(n), (7.3.9)

y(n + 1) =

(
1 −

m∑
i=1

pi

)
y(n). (7.3.10)

Let x(n) be an eventually positive solution of (7.3.9). Then from (7.3.9) it
follows that, for sufficiently large n,

m∑
i=1

qi(n) < 1. (7.3.11)

Now, from assumption (7.3.6) for any ε > 0 there exists N > 0 such that

0 < pi ≤ qi(n) + ε/m for n ≥ N. (7.3.12)

This implies that

0 <
m∑

i=1

pi ≤
m∑

i=1

qi(n) + ε < 1 + ε for n ≥ N.

Since ε was arbitrarily chosen,

0 <
m∑

i=1

pi ≤ 1.

But from assumption (i) in Theorem 7.19, we have
∑m

i=1 pi �= 1. Hence

0 <

m∑
i=1

pi < 1,

and consequently, (7.3.10) has a positive solution.
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Case (b): Assume that k = max{k1, k2, . . . , km} ≥ 1. Let u(n) =
x(n)/x(n − 1). Then

x(n − ki)
x(n − 1)

=
x(n − ki)

x(n − ki + 1)
· x(n − ki + 1)
x(n − ki + 2)

· · · x(n − 2)
x(n − 1)

=
ki−1∏
j=1

1
u(n − j)

.

Making this change of variables in (7.3.7) yields

u(n + 1) ≤ 1 −
m∑

i=1

qi(n)
ki−1∏
j=1

1
u(n − j)

. (7.3.13)

Define u = lim sup
n→∞

u(n). Then it follows from (7.3.13) that 0 < u(n) < 1

and 0 < u < 1. We claim that

u − 1 +
m∑

i=1

piu
−ki ≤ 0. (7.3.14)

Now, from (7.3.6), for every ε ∈ (0, 1) there exists Nε > 0 such that Pi(n) ≥
(1 − ε)pi, 1 ≤ i ≤ m, and n ≥ Nε. Substituting in (7.3.13) yields

u(n + 1) ≤ 1 − (1 − ε)
m∑

i=1

pi

⎛⎝ki−1∏
j=1

1
u(n − j)

⎞⎠ for n ≥ Nε.

Choose Ñε such that Ñε ≥ Nε + k and

u(n) ≤ (1 − ε)u for n ≥ Ñε − k.

Then, for n ≥ Ñε − k,

u(n + 1) ≤ 1 − (1 − ε)
m∑

i=1

piu
−ki(1 + ε)−ki .

Consequently,

u ≤ 1 − (1 − ε)
m∑

i=1

piu
−ki(1 + ε)−ki .

Since ε was arbitrarily chosen, it follows that

u ≤ 1 −
m∑

i=1

piu
−ki ,

which proves claim (7.3.14).
To complete the proof of the lemma we consider the characteristic

polynomial of (7.3.8), p(λ) = λ − 1 +
∑m

i=1 piλ
−ki .

Observe that p(0+) = ∞ and p(u) ≤ 0. This implies by the intermediate
value theorem that p(λ) has a positive root and, consequently, (7.3.8) has
a positive solution. �
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Proof of Theorem 7.19. Assume that (7.3.5) has a nonoscillatory
solution x(n). Without loss of generality, assume that x(n) is eventu-
ally positive. Then it follows from assumption (iii) that x(n + 1) ≤
x(n) −∑m

i=1 pix(n − ki). As in the proof of Theorem 7.18, one may show
that lim

n→∞ x(n) = 0. We now need to put (7.3.5) in the form of (7.3.7). This
can be accomplished by setting

qi(n) =
pi f(x(n − ki))

x(n − ki)
.

Thus from assumption (iii) we obtain

lim inf
n→∞ qi(n) ≥ pi.

By Lemma 7.20, it follows that the limiting equation (7.3.8) also has an
eventually positive solution, which is a contradiction. This completes the
proof of the theorem. �

In fact, under additional conditions it was proved ([63, , Corollary 7.4.1])
that every solution of the nonlinear equation oscillates if and only if every
solution of the corresponding linearized equation oscillates.

We now apply the obtained results to study the oscillatory behavior of
the Pielou logistic delay equation. The stability of this equation has been
determined previously in Example 4.37.

Example 7.21 [63]. Consider the Pielou logistic delay equation

y(n + 1) =
αy(n)

1 + βy(n − k)
, α > 1, β > 0, k a positive integer. (7.3.15)

Show that every positive solution of (7.3.15) oscillates about its positive
equilibrium point y∗ = (α − 1)/β if

α − 1
α

>
kk

(k + 1)k+1 . (7.3.16)

Solution We follow Method 2 in Example 4.37 by letting y(n) = ((α −
1)/β)ex(n) in (7.3.15). We obtain the equation

x(n + 1) − x(n) +
α − 1

α
f(x(n − k)) = 0, (7.3.17)

where

f(x) =
α

α − 1
ln
(

(α − 1)ex + 1
α

)
.

It may be shown that the function f satisfies conditions (i) and (ii) in
Theorem 7.18 with L = 1. Hence by Theorem 7.18 every solution of (7.3.17)
oscillates about 0. This implies that every solution of (7.3.15) oscillates
about the equilibrium point y∗ = (α − 1)/β.
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Exercises 7.3

1. Consider the difference equation

∆x(n) + ex(n−1) − 1 = 0.

Determine the oscillatory behavior of all solutions.

2. Consider the difference equation

x(n + 1) = x(n) exp
[
r

(
1 − x(n)

α

)]
, r > 0, α > 0, x(0) > 0.

(a) Show that x∗ = α is the only positive equilibrium point.

(b) Show that every solution oscillates about α if r > 1.

(c) Show that if r = 1, every solution converges monotonically to α.

3. Consider the difference equation

x(n + 1) = x(n) exp
[
r

(
1 − x(n − 1)

α

)]
, r > 0, α > 0, x(0) > 0.

Show that every solution oscillates about x∗ = α if r > 1
4 .

4. Consider the difference equation

x(n + 1) = x(n) exp
[
r

(
1 − x(n − 1)

α
− x(n − 2)

β

)]
,

r > 0, α > 0, β > 0, x(0) > 0.

Show that every solution oscillates about x∗ = (αβ)/(α + β) if r >
4(α + β)/(27α + 16β).

5. Consider the difference equation

∆x(n) + p(1 + x(n))x(n) = 0, p > 0, 1 + x(n) > 0.

Show that every solution oscillates if p > 1.

6. Consider the difference equation

∆x(n) + p(1 + x(n))x(n − 1) = 0, p > 0, 1 + x(n) > 0.

Show that every solution oscillates if p > 1
4 .

7. [63] Consider the difference equation

∆x(n) + p(n)[1 + x(n)]x(n − k) = 0, p(n) > 0,

for n ≥ 1, x(n)+1 > 0 for n ≥ −k. Prove that every solution oscillates
if lim inf

n→∞ p(n) = c > kk/((k + 1)k+1).
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8. Consider the difference equation

x(n + 1) =
αx(n)

1 + βx(n − k) + γx(n − 1)

with α > 1, β > 0, γ > 0, k ∈ Z
+. Find conditions under which all

solutions oscillate.



8
Asymptotic Behavior of
Difference Equations

In Chapters 4 and 5 we were mainly interested in stability questions. In
other words, we wanted to know whether solutions of a difference equa-
tion converge to zero or to an equilibrium point. In asymptotic theory, we
are concerned rather with obtaining asymptotic formulas for the manner
in which solutions tend to zero or a constant. We begin this chapter by
introducing the reader to the tools of the trade.

8.1 Tools of Approximation

The symbols ∼, o, and O are the main tools of approximating functions and
are widely used in all branches of science. For the benefit of our readers,
we shall give our definitions for functions defined on the real or complex
numbers. Hence sequences will be treated as a special case of the general
theory.

We start with the symbol O (big oh).

Definition 8.1. Let f(t) and g(t) be two functions defined on R or C.
Then we say that f(t) = O(g(t)), t → ∞, if there is a positive constant M
such that

|f(t)| ≤ M |g(t)| for all t ≥ t0.

Equivalently, f(t) = O(g(t)) if
∣∣∣ f(t)

g(t)

∣∣∣ is bounded for t ≥ t0. In other
words, f = O(g) if f is of order not exceeding g.

335
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Example 8.2.

(a) Show that(
n

t2 + n2

)n

= O

(
1
tn

)
, n → ∞, for n ∈ Z

+.

Solution Without loss of generality we assume t > 1. We have t2+n2 =
(t − n)2 + 2nt ≥ 2nt. Hence(

n

t2 + n2

)n

≤ 1
(2t)n

=
1
2n

(
1
tn

)
≤ 1

tn
, for n ∈ Z

+, ≈ > �.

It follows that (
n

t2 + n2

)n

= O

(
1
tn

)
with the constant M = 1 being independent of n.

(b) Show that

sin
(

nπ +
1
n

)
= O

(
1
n

)
, n → ∞.

Solution Recall that sin
(
nπ + 1

n

)
= (−1)n sin 1

n . Thus∣∣∣∣∣ sin
(
nπ + 1

n

)
1/n

∣∣∣∣∣ =
∣∣∣∣ sin 1

n

1/n

∣∣∣∣ .
If we let u = 1

n , then limn→∞
∣∣∣ sin 1

n

1/n

∣∣∣ = limu→0
∣∣ sin u

u

∣∣ = 1.

Hence we conclude that
∣∣(sin 1

n

)
/(1/n)

∣∣ is bounded, which gives the
required result.

(c) Show that t2 log t + t3 = O(t3), t → ∞.

Solution
∣∣∣ t2 log t+t3

t3

∣∣∣ = 1 +
∣∣∣ log t

t

∣∣∣.
Using the first derivative test one may show that the function y = log t/t
attains its maximum value 1

e as t = e. Hence |log t/t| ≤ 1
e < 1, and thus∣∣(t2 log t + t3)/t3

∣∣ ≤ 2. This proves the required result.

Remark: We would like to point out here that the relation defined by O
is not symmetric, i.e., if f = O(g), then it is not necessarily true that
g = O(f). To illustrate this point we cite some simple examples such as
x = O(x2), x → ∞, but x2 �= O(x), x → ∞, or e−x = O(1), x → ∞, but
1 �= O(e−x), x → ∞, since 1/e−x → ∞, x → ∞.

However, it is true that the relation O is transitive, that is to say if
f = O(g) and g = O(h), then f = O(h) (Exercises 8.1, Problem 1). In this
case we say that f = O(h) is a better approximation of f than f = O(g).
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Next we give the definition of the symbol o (little oh).

Definition 8.3. If limt→∞
f(t)
g(t) = 0, then we say that

f(t) = o(g(t)), t → ∞.

Example 8.4.

(a) Show that t2 log t + t3 = o(t4), t → ∞.

Solution limt→∞
t2 log t + t3

t4
= limt→∞

log t

t2
+ limt→∞

1
t
.

Using L’Hôpital’s rule we have

lim
t→∞

log t

t2
= lim

t→∞
1

2t2
= 0.

Hence

lim
t→∞

t2 log t + t3

t4
= 0,

and the required conclusion follows.

(b) Show that o(g(t)) = g(t)o(1), t → ∞.

Solution Let f(t) = o(g(t)), t → ∞. Then

lim
t→∞

f(t)
g(t)

= 0,

which implies that f(t)
g(t) = o(1), t → ∞. Consequently, f(t) = g(t)o(1),

t → ∞.

The reader may sense correctly that the symbol o plays a much less
important role than the symbol O.

Finally, we introduce the asymptotic equivalence relation ∼.

Definition 8.5. If limt→∞
f(t)
g(t) = 1, then we say that f is asymptotic to

g, t → ∞, and we write f ∼ g, t → ∞.

Notice that if f ∼ g as t → ∞, then

lim
t→∞

f(t) − g(t)
g(t)

= 0.

This implies from Definition 8.3 that f(t) − g(t) = o(g(t)) = g(t)o(1)
(Example 8.4). Hence we have

f(t) = g(t)[1 + o(1)].

Thus, it appears that the symbol ∼ is superfluous, since, as has been
demonstrated above, f ∼ g can be conveniently written as f = g(1+ o(1)).



338 8. Asymptotic Behavior of Difference Equations

Example 8.6.

(a) Show that sinh t ∼ 1
2
et, t → ∞.

Solution lim
t→∞

sinh t
1
2et

= lim
t→∞

1
2 (et − e−t)

1
2et

= 1.

(b) Show that t2 log t + t3 ∼ t3, t → ∞.
Solution

lim
t→∞

t2 log t + t3

t3
= 1 + lim

t→∞
log t

t

= 1 + 0 (using L’Hôpital’s rule)
= 1.

Notice that from Examples 8.2(c) and 8.6(b) we have t3 ∼ t2 log t + t3

and t2 log t + t3 = O(t3). It is also true that t2 log t + 2t3 = O(t3), but
t2 log t + 2t3 is not asymptotic to t3, since

lim
t→∞

t2 log t + 2t3

t3
= 2.

Before ending this section we will entertain the curious reader by intro-
ducing the prime number theorem, well known in the discipline of number
theory. It says that the number of primes π(t) that are less than the real
number t is asymptotic to t/(log t), t → ∞, that is,

π(t) ∼ t

log t
, t → ∞.

For a proof of this result the reader may consult [144].
Another interesting asymptotic result is Stirling’s formula

n! ∼ nn
√

2πn e−n, n → ∞.

A proof of this formula may be found in [127].

Exercises 8.1

1. Show that
t2

1 + t3
+ log(1 + t2) = O(log t), t → ∞.

2. Show that sinh t = O(et), t → ∞.

3. Show that O(g(t)) = g(t)O(1), t → ∞.

4. Show that:

(i)
1

t − 1
=

1
t

[
1 +

1
t

+ O

(
1
t2

)]
, t → ∞,

(ii)
1

t − 1
=

1
t

[
1 +

1
t

+ o

(
1
t

)]
, t → ∞.
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5. Show that sinh
(

1
t

)
= o(1), t → ∞.

6. Show that:

(i) [O(t)]2 = O(t2) = o(t3),

(ii) t + o(t) = O(t).

7. Show that:

(i) sin(O(t−1)) = O(t−1),

(ii) cos(t + α + o(1)) = cos(t + α) + o(1), for any real number α.

8. Prove that ∼ is an equivalence relation.

9. Prove that both relations o and O are transitive.

10. Suppose that f(t) = O(t), t → ∞, and g(t) = O(t2), t → ∞. Show that
for any nonzero constants a, b, af(t) + bg(t) = O(g(t)), t → ∞.

11. If f = O(g), t → ∞, show that:

(i) O(o(f)) = o(O(f)) = o(g),

(ii) O(f)o(g) = o(f)o(g) = o(fg).

12. Let f be a positive nonincreasing function of t, and let f(t) ∼ g(t),
t → ∞. Prove that sups>t f(s) ∼ g(t), t → ∞.

13. Suppose that the functions f and g are continuous and have convergent
integrals on [1,∞). If f(t) ∼ g(t), t → ∞, prove that∫ ∞

t

f(s) ds ∼
∫ ∞

t

g(s) ds, t → ∞.

14. Consider the exponential integral En(x) defined by

En(x) =
∫ ∞

1

e−xt

tn
dt, (x > 0), where n is a positive integer.

(a) Show that En(x) satisfies the difference equation

En+1(x) =
1
n

[
e−x − xEn(x)

]
.

(b) Use integration by parts to show that

En(x) =
e−x

x

(
1 + 0

(
1
x

))
, x → ∞.

(c) Show that

En(x) =
e−x

n − 1

[
1 + O

(
1

n − 2

)]
, n → ∞.
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15. Show that ∫ ∞

0

e−1

x + t
=

1
x

[
1 − 1

x
+ O

(
1
x2

)]
, x → ∞.

16. Show that

n∑
k=1

kk = nn

[
1 + O

(
1
n

)]
, n → ∞.

8.2 Poincaré’s Theorem

In this section we introduce to the reader the theorems of Poincaré and
Perron. Both theorems deal with the asymptotic behavior of linear differ-
ence equations with nonconstant coefficients. It is widely accepted among
researchers in difference equations that the theorem of Poincaré [123]
marks the beginning of research in the qualitative theory of linear differ-
ence equations. Thirty-six years later, Perron [117] made some significant
improvements to Poincaré’s theorem.

To motivate our study we will take the reader on a short excursion to
the much simpler linear equations with constant coefficients of the form

x(n + k) + p1x(n + k − 1) + · · · + pkx(n) = 0, (8.2.1)

where the pi’s are real or complex numbers. The characteristic equation of
(8.2.1) is given by

λk + p1λ
k−1 + · · · + pk = 0. (8.2.2)

Let λ1, λ2, . . . , λk be the characteristic roots of (8.2.2). Then there are two
main cases to consider.

Case 1. Suppose that distinct characteristic roots have distinct moduli, i.e.,
if λi �= λj , then |λi| �= |λj | for all 1 ≤ i, j ≤ k.

For the convenience of the reader we will divide Case 1 into two subcases.
Subcase (a) Assume that all characteristic roots are distinct. So, by

relabeling them, one may write the characteristic roots in descending order

|λ1| > |λ2| > · · · > |λk|.

Then the general solution of (8.2.1) is given by

x(n) = c1λ
n
1 + c2λ

n
2 + · · · + ckλn

k . (8.2.3)
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Hence if c1 �= 0, we have

lim
n→∞

x(n + 1)
x(n)

= lim
n→∞

c1λ
n+1
1 + c2λ

n+1
2 + · · · + ckλn+1

k

c1λn
1 + c2λn

2 + · · · + ckλn
k

= lim
n→∞ λ1

⎡⎢⎣c1 + c2

(
λ2
λ1

)n+1
+ · · · + ck

(
λk

λ1

)n+1

c1 + c2

(
λ2
λ1

)n

+ · · · + ck

(
λk

λ1

)n

⎤⎥⎦
= λ1, since

∣∣∣∣ λi

λ1

∣∣∣∣ < 1, i = 2, . . . , k.

Similarly, if c1 = 0, c2 �= 0, we obtain

lim
n→∞

x(n + 1)
x(n)

= λ2.

And, in general, if c1 = c2 = · · · = ci−1 = 0, ci �= 0, then

lim
n→∞

x(n + 1)
x(n)

= λi.

Subcase (b) Now suppose that there are some repeated characteristic
roots. For simplicity assume that λ1 is of multiplicity r, so λ1 = λ2 = · · · =
λr, |λ1| = |λ2| = · · · = |λr| > |λr+1| > · · · > |λk|. Then the general solution
of (8.2.1) is given by

x(n) = (c1 + c2n + · · · + crn
r−1)λn

1 + cr+1λ
n
r+1 + · · · + ckλn

k .

Then one may show easily that this case is similar to Subcase (a) (Exercises
8.2, Problem 1).

Case 2. There exist two distinct characteristic roots λr, λj with |λr| = |λj |.
This may occur if λr and λj are conjugates, i.e., λr = α+iβ, λj = α−iβ for
some real numbers α and β. For simplicity, let us assume that r = 1, j = 2,
so λr ≡ λ1 and λj ≡ λ2. We write λ1 = α+ iβ = reiθ, λ2 = α− iβ = re−iθ,

where r = (α2+β2)1/2, θ = tan−1
(

β
α

)
. Then the general solution of (8.2.1)

is given by

x(n) = c1r
neinθ + c2r

ne−inθ + c3λ
n
3 + · · · + ckλn

k .

Hence

lim
n→∞

x(n + 1)
x(n)

= lim
n→∞

rn+1(c1e
i(n+1)θ + c2e

−i(n+1)θ) + c3λ
n+1
3 + · · · + ckλn+1

k

rn(c1einθ + c2e−inθ) + c3λn
3 + · · · + ckλn

k

. (8.2.4)

Since einθ = cos nθ + i sinnθ, e−inθ = cos nθ − i sinnθ do not tend to
definite limits as n → ∞, we conclude that the limit (8.2.4) does not exist.
For particular solutions the limit may exist. For example, if |λ1| = |λ2| >
|λ3| > · · · > |λk|, and
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(a) c1 �= 0, c2 = 0, then lim
n→∞

x(n + 1)
x(n)

= reiθ = λ1,

(b) c1 = 0, c2 �= 0, then lim
n→∞

x(n + 1)
x(n)

= re−iθ = λ2.

Case 2 may also occur if λi = −λj . It is left to the reader as Exercises 8.2,
Problem 2, to verify that in this case, too, limn→∞ x(n + 1)/x(n) does not
exist.

We now summarize the above discussion in the following theorem.

Theorem 8.7. Let x(n) be any nonzero solution of (8.2.1). Then

lim
n→∞

x(n + 1)
x(n)

= λm (8.2.5)

for some characteristic root λm, provided that distinct characteristic roots
have distinct moduli. Moreover, if there are two or more distinct roots λr, λj

with the same modulus (|λr| = |λj |), the limit (8.2.5) may not exist in
general, but particular solutions can always be found for which the limit
(8.2.5) exists and is equal to a given characteristic root λm.

Example 8.8. Consider the difference equation

x(n + 2) + µx(n) = 0.

(a) If µ = β2, then the characteristic equation is given by

λ2 + β2 = 0.

Hence the characteristic roots are λ1 = βi = βeiπ/2 and λ2 = −βi =
βe−iπ/2. The general solution is given by

x(n) = c1β
neinπ/2 + c2β

ne−inπ/2.

So

lim
n→∞

x(n + 1)
x(n)

= β

(
c1e

i(n+1)π/2 + c2e
−i(n+1)π/2

c1einπ/2 + c2e−inπ/2

)
,

which does not exist. However, if we pick the particular solution

x(n) = c1β
neinπ/2,

then

lim
n→∞

x(n + 1)
x(n)

= βeinπ/2 = βi.

Similarly, for the solution x̂(n) = c2β
ne−inπ/2,

lim
n→∞

x̂(n + 1)
x̂(n)

= −βi.
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(b) If µ = −β2, then the characteristic roots are λ1 = β, λ2 = −β. The
general solution is given by x(n) = c1β

n + c2(−β)n.

Hence

lim
n→∞

x(n + 1)
x(n)

= lim
n→∞

c1β
n+1 + c2(−β)n+1

c1βn + c2(−β)n

= β lim
n→∞

c1 + c2(−1)n+1

c1 + c2(−1)n
. (8.2.6)

The limit (8.2.6) does not exist, since x(n + 1)/x(n) oscillates between
β(c1 + c2)/(c1 − c2) and β(c1 − c2)/(c1 + c2). Notice that for the solution
x(n) = c1β

n,

lim
n→∞

x(n + 1)
x(n)

= β,

and for the solution x̃(n) = c2(−β)n,

lim
n→∞

x̃(n + 1)
x̃(n)

= −β.

In 1885 the French mathematician Henri Poincaré [123] extended the
above observations to equations with nonconstant coefficients of the form

x(n + k) + p1(n)x(n + k − 1) + · · · + pk(n)x(n) = 0 (8.2.7)

such that there are real numbers pi, 1 ≤ i ≤ k, with

lim
n→∞ pi(n) = pi, 1 ≤ i ≤ k. (8.2.8)

We shall call an equation of the form (8.2.7), (8.2.8) a difference equation
of Poincaré type. The characteristic equation associated with (8.2.7) is

λk + p1λ
k−1 + · · · + pk = 0. (8.2.9)

The underlying idea behind Poincaré’s theorem is that since the coefficients
of a difference equation of Poincaré type are nearly constant for large n,
one would expect solutions of (8.2.7) to exhibit some of the properties of
the solutions of the corresponding constant coefficient difference equation
(8.2.1) as stated in Theorem 8.7.

An important observation which carries over from autonomous to nonau-
tonomous systems is the following. If lim

n→∞
x(n+1)

x(n) = α, then α must be a

characteristic root, i.e., a root of (8.2.9).

Theorem 8.9 (Poincaré’s Theorem). Suppose that condition (8.2.8)
holds and the characteristic roots λ1, λ2, . . . , λk of (8.2.9) have distinct
moduli. If x(n) is a solution of (8.2.7), then either x(n) = 0 for all large
n or
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lim
n→∞

x(n + 1)
x(n)

= λi (8.2.10)

for some i, 1 ≤ i ≤ k.

Proof. The proof will be given in Section 8.8. �

Note that Poincaré’s Theorem does not tell us whether or not each char-
acteristic root λi can be written in the form (8.2.10). In 1921, Oscar Perron
[117] gave an affirmative answer to this question.

Theorem 8.10 (Perron’s First Theorem). Assume that pk(n) �= 0
for all n ∈ Z

+ and the assumptions of Theorem 8.9 hold. Then (8.2.7) has
a fundamental set of solutions {x1(n), x2(n), . . . , xk(n)} with the property

lim
n→∞

xi(n + 1)
xi(n)

= λi, 1 ≤ i ≤ k. (8.2.11)

Proof. A proof of this theorem may be found in Meschkowski [99, p. 10].
Theorem 8.10 is commonly referred to as the Poincaré–Perron Theorem.
Perron [117] later formulated and proved a result of a different nature that
does not suffer from the restriction on the characteristic roots. �

Theorem 8.11 (Perron’s Second Theorem). Suppose that pk(n) �=
0 for all n ∈ Z

+. Then (8.2.7) has a fundamental set of solutions
{x1(n), x2(n), . . . , xk(n)} such that

lim
n→∞ sup n

√
|xi(n)| = |λi|. (8.2.12)

It is questionable whether Poincaré–Perron Theorem remains valid if
(8.2.7) has characteristic roots with equal moduli. Perron himself addressed
this question and gave the following example, which shows that Poincaré’s
theorem may fail in this case.

But in order to understand this example we need to make a detour to
infinite products.

8.2.1 Infinite Products and Perron’s Example
An expression of the form

∞∏
n=1

(1 + a(n)), a(n) �= −1 for all n ∈ Z
+, (8.2.13)

is called an infinite product. The partial products are
n∏

j=1

(1 + a(j)). The

infinite product (8.2.13) is said to converge if limn→∞
∏n

j=1(1 + a(j)) is
finite and nonzero. Otherwise, it is said to be divergent.



8.2 Poincaré’s Theorem 345

Theorem 8.12. Consider the infinite series
∞∑

n=1

a(n), (8.2.14)

∞∑
n=1

a2(n). (8.2.15)

Then the following statements hold:

(i) The convergence of any two of (8.2.13), (8.2.14), (8.2.15) implies that
of the third.

(ii) If
∑∞

n=1 |a(n)| converges, then both (8.2.13) and (8.2.15) converge.

(iii) If (8.2.14) converges conditionally, then:

(a) (8.2.13) converges if (8.2.15) converges,

(b) (8.2.13) diverges to zero if (8.2.15) diverges.

Proof. See [109]. �

Example 8.13. Consider the difference equation

x(n + 2) −
(

1 +
(−1)n

n + 1

)
x(n) = 0, n ≥ 0. (8.2.16)

Then the associated characteristic equation of (8.2.16) is λ2 −1 = 0. Hence
the characteristic roots are λ1 = 1 and λ2 = −1, with |λ1| = |λ2| = 1. We
now have two cases to consider:

(i) For n = 2k, x(2k + 2) =
(
1 + 1

2k+1

)
x(2k), and hence

x(2k) =
k∏

j=1

(
1 +

1
2j − 1

)
x(0). (8.2.17)

(ii) For n = 2k − 1, x(2k + 1) =
(
1 + 1

2k

)
x(2k − 1), and hence

x(2k − 1) =
k−1∏
j=1

(
1 − 1

2j

)
x(1). (8.2.18)

Hence

lim
k→∞

x(2k)
x(2k − 1)

= lim
k→∞

⎡⎣ k∏
j=1

(
1 +

1
2j − 1

)
x(0)

/ k−1∏
j=1

(
1 − 1

2j

)
x(1)

⎤⎦ .

(8.2.19)
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In the sequel we will show that this limit does not exist. To accomplish
this task, we need to evaluate the infinite products

∞∏
j=1

(
1 +

1
2j − 1

)
(8.2.20)

and
∞∏

j=1

(
1 − 1

2j

)
. (8.2.21)

Let us now apply Theorem 8.12(i) to the infinite product (8.2.20). Since∑∞
j=1

1
(2j−1)2 converges, it follows by Theorem 8.12(i) that if (8.2.20) con-

verges, then so does
∑∞

j=1
1

2j−1 , which is false. Thus the infinite product

(8.2.20) diverges to ∞, since each term
(
1 + 1

2j−1

)
is greater than 1.

Next we consider the infinite product (8.2.21). By a similar argument,
we show that it diverges to zero, since each term

(
1 − 1

2j

)
is less than 1.

It follows that the limit (8.2.21) does not exist.

Example 8.14. Consider the difference equation

x(n + 2) − n

n + 1
x(n + 1) +

1
n

x(n) = 0.

The associated characteristic equation is given by

λ2 − λ = 0

with characteristic roots λ1 = 1, λ2 = 0. Hence by Perron’s theorem there
exist solutions x1(n), x2(n) such that

lim
n→∞

x1(n + 1)
x1(n)

= 1 and lim
n→∞

x2(n + 1)
x2(n)

= 0.

What can we conclude about the solutions x1(n) and x2(n)? The solution
x1(n) may be equal to a constant c, a polynomial in n such as

aknk + ak−1n
k−1 + · · · + a0,

or a function such as 1
n , log n, among others. The solution x2(n) may be

equal to 0, e−2n

, e−n2
, etc.

The reader may correctly conclude from the preceding examples that
Poincaré’s or Perron’s theorem provides only partial results about the
asymptotic behavior of solutions of linear difference equations. The ques-
tion remains whether we can use Perron’s theorem to write an asymptotic
expression of solutions of equations of Poincaré type. Using null sequences,
Wimp [145] devised an elegant and simple method to address the above
question. Recall that ν(n) is called a null sequence if limn→∞ ν(n) = 0.
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Lemma 8.15. Suppose that limn→∞
x(n+1)

x(n) = λ.

(a) If λ �= 0, then

x(n) = ±λnenν(n) (8.2.22)

for some null sequence ν(n).

(b) If λ = 0, then

|x(n)| = e−n/µ(n) (8.2.23)

for some positive null sequence µ(n).

Proof.

(a) Let

y(n) =
∣∣∣∣x(n)

λn

∣∣∣∣ .
Then

lim
n→∞

y(n + 1)
y(n)

= lim
n→∞

∣∣∣∣ 1λ x(n + 1)
x(n)

∣∣∣∣ = 1.

If we let z(n) = log y(n), then we have

lim
n→∞ z(n + 1) − z(n) = lim

n→∞ log
(

y(n + 1)
y(n)

)
= log lim

n→∞
y(n + 1)

y(n)
= 0.

Hence for a given ε > 0 there exists a positive integer N such that

|z(n + 1) − z(n)| < ε/2 for all n ≥ N .

Moreover, for n ≥ N , we obtain

|z(n) − z(N)| ≤
n∑

r=N+1

|z(r) − z(r − 1)| <
ε

2
(n − N).

Hence ∣∣∣∣z(n)
n

∣∣∣∣ < ε

2

(
1 − N

n

)
+
∣∣∣∣z(N)

n

∣∣∣∣
<

ε

2
+

ε

2
= ε,

for sufficiently large n. It follows that limn→∞
z(n)

n = 0 or z(n) = nν(n)
for some null sequence ν(n).

(b) This is left to the reader as Exercises 8.2, Problem 6. �
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Example 8.16. Use Lemma 8.15 and the Poincaré–Perron Theorem to
find asymptotic estimates of a fundamental set of solutions of the difference
equation

y(n + 2) +
n + 1
n + 2

y(n + 1) − 2n

n + 2
y(n) = 0.

Solution The associated characteristic equation is given by

λ2 + λ − 2 = 0

with roots λ1 = 1, λ2 = −2. By Perron’s Theorem, there is a fundamental
set of solutions y1(n), y2(n) with

lim
n→∞

y1(n + 1)
y1(n)

= 1, lim
n→∞

y2(n + 1)
y2(n)

= −2.

Thus by Lemma 8.15 we obtain

y1(n) = enν(n), y2(n) = (−2)nenµ(n),

for some null sequences ν(n) and µ(n).
For the curious reader we note that an exact fundamental set of solutions

is given by

y1(n) =
1
n

, y2(n) =
(−2)n

2
.

Exercises 8.2

1. Prove that each nontrivial solution x(n) of the second-order difference
equation

x(n + 2) + p1x(n + 1) + p2x(n) = 0

with double characteristic roots λ1 = λ2 = λ satisfies limn→∞(x(n +
1))/x(n) = λ.

2. Suppose that the characteristic roots λ1, λ2 of

x(n + 2) + p1x(n + 1) + p2x(n) = 0

are such that λ1 = −λ2. Prove that limn→∞(x(n + 1))/x(n) does not
exist for some solution x(n).

3. Consider the difference equation

x(n+3)− (α+β +γ)x(n+2)+(αβ +βγ +γα)x(n+1)−αβγu(x) = 0,

where α, β, γ are constants.

(a) Show that the characteristic roots are λ1 = α, λ2 = β, and λ3 = γ.
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(b) If |α| > |β| > |γ|, find a fundamental set of solutions x1(n), x2(n),
and x3(n) with

lim
n→∞

x1(n + 1)
x1(n)

= α, lim
n→∞

x2(n + 1)
x2(n)

= β,

lim
n→∞

x3(n + 1)
x3(n)

= γ.

(c) If |α| = |β|, α �= β, |α| > |γ|, find a fundamental set of solu-
tions x1(n), x2(n), and x3(n) such that limn→∞ x1(n+1)/x1(n) =
α, limn→∞ x2(n + 1)/x2(n) = β, limn→∞ x3(n + 1)/x3(n) = γ.

4. Consider the difference equation

x(n + 2) +
1

n + 4
x(n + 1) − n + 1

n + 4
x(n) = 0.

Use iteration to show that limn→∞ x(n + 1)/x(n) does not exist for
every solution x(n).

5. Consider the equation

x(n + 2) − ((n + 2) + 2(−1)n)/(n + 2)3(n + 3)x(n) = 0.

Use iteration to show that limn→∞(x(n + 1))/x(n) does not exist for
any solution x(n).

6. Prove part (b) of Lemma 8.15.

7. Show that the difference equation

x(n + 1) − n + 7
n + 5

x(n) − n2 + 1
n2 + 4

x(n − 1) = 0

has an oscillatory solution and a nonoscillatory solution.

8. Consider the difference equation

x(n+2)−
(

3 +
2n − 1

n2 − 2n − 1

)
x(n+1)+2

(
1 +

2n − 1
n2 − 2n − 1

)
x(n) = 0.

(a) Use Lemma 8.15 and Perron’s theorem to find asymptotic
estimates of a fundamental set of solutions of the equation.

(b) Verify that x1(n) = 2n and x2(n) = n2 constitute a fundamental
set of solutions.

9. Let x(n) be a nontrivial solution of (8.2.7) such that limn→∞ x(n +
1)/x(n) = α. Show that α is a characteristic root, i.e., a root of (8.2.9).

10. Let α be a number whose modulus is greater than all of the charac-
teristic roots of a difference equation of Poincaré type (8.2.7). Prove
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that

lim
n→∞

x(n)
αn

= 0

for any solution x(n) of the equation.

11. Suppose that limn→∞ x(n + 1)/x(n) = λ > 0. Prove that for any
δ ∈ (0, λ):

(i) |x(n)| = O(λ + δ)n, and

(ii) (λ + δ)n = O(x(n)).

12. Consider the equation x(n + 2) − (n + 1)x(n + 1) − 2n2x(n) = 0.

(a) Transform the equation into an equation of Poincaré type by
letting x(n) = (n − 1)! y(n).

(b) Use part (a) to get an asymptotic estimate of a fundamental set
of solutions.

13. Use the scheme of Problem 11 to find an asymptotic set of a
fundamental set of solutions of the equation

x(n + 2) + 4nx(n + 1) + 4n(n − 1)x(n) = 0.

14. Prove Theorem 8.12.

15. Consider the equation

(n + 2)x(n + 2) − (n + 3)x(n + 1) + 2x(n) = 0. (8.2.24)

(a) Show that 1, 0 are the characteristic roots of the equation.

(b) Put

x(n + 1)
x(n)

= 1 + µ(n) (8.2.25)

in (8.2.23), where µ(n) is a null sequence, and show that the
equation becomes

(n + 2)µ(n + 1) = 1 − 2
1 + µ(n)

. (8.2.26)

(c) Show that

2
1 + µ(n)

= 2 + O(µ(n)).

(d) Use part (c) to show that (8.2.27) is equivalent to

µ(n + 1) = − 1
n + 1

+ O

(
1
n2

)
. (8.2.27)
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(e) Show that

x(n + 1) =
n

n + 1

(
1 + O

(
1
n2

))
x(n). (8.2.28)

(f) Prove that x(n) ∼ c
n , n → ∞.

16. Show that (8.2.24) has another solution x ∼ c 2n

n! , n → ∞.

17. Use the scheme of Problem 15 to find asymptotic estimates of a
fundamental set of solutions of the equation

(n + 1)x(n + 2) − (n + 4)x(n + 1) + x(n) = 0.

18. Show that the equation x(n + 2) − (n + 1)x(n + 1) + (n + 1)x(n) = 0
has solutions x1(n), x2(n) with asymptotic estimates

x1(n) ∼ c(n − 2)!, x2(n) = an, n → ∞.

*19. (Hard). Consider the equation of Poincaré type

x(n + 2) − (2 + p1(n))x(n + 1) + (1 + p2(n))x(n) = 0,

where p1(n) ≥ p2(n) for all n ∈ Z
+. Show that if x(n) is a solution

that is not constantly zero for large values of n, then limn→∞(x(n +
1))/x(n) = 1.

*20. (Hard). Consider the equation

x(n + 2) + P1(n)x(n + 1) + P2(n)x(n) = 0

with limn→∞ P1(n) = p1, limn→∞ P2(n) = p2. Let η be a positive
constant such that |x(n + 1)/x(n)|2 > |p2| + η for sufficiently large n.
Suppose that the characteristic roots λ1, λ2 of the associated equation
are such that |λ1| ≥ |λ2|.
Prove that limn→∞ x(n + 1)/x(n) = λ1.

8.3 Asymptotically Diagonal Systems

In this section we derive conditions under which solutions of a perturbed
diagonal system are asymptotic to solutions of the unperturbed diagonal
system. As a byproduct we obtain asymptotic results for nonautonomous
kth-order scalar difference equations.

We begin our study by considering the perturbed diagonal system

y(n + 1) = (D(n) + B(n))y(n) (8.3.1)

and the unperturbed diagonal system

x(n + 1) = D(n)x(n), (8.3.2)
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where D(n) = diag(λ1(n), λ2(n), . . . , λk(n)), λi(n) �= 0, for all n ≥ n0 ≥
0, 1 ≤ i ≤ k, and B(n) is a k × k matrix defined for n ≥ n0 ≥ 0. The
fundamental matrix of system (8.3.2) is given by

Φ(n) = diag

(
n−1∏
r=n0

λ1(r),
n−1∏
r=n0

λ2(r), . . . ,
n−1∏
r=n0

λk(r)

)
. (8.3.3)

Let S be a subset of the set {1, 2, 3, . . . , k}. Define

Φ1(n) = diag(µ1(n), µ2(n), . . . , µk(n)) (8.3.4)

by letting

µi(n) =

⎧⎪⎪⎨⎪⎪⎩
n−1∏
r=n0

λi(r), if i ∈ S,

0, otherwise.

Define Φ2(n) = Φ(n) − Φ1(n).
We are now ready for the definition of the important notion of dichotomy.

Definition 8.17. System (8.3.2) is said to possess an ordinary dichotomy
if there exists a constant M such that:

(i) ‖Φ1(n)Φ−1(m)‖ ≤ M, for n ≥ m ≥ n0,

(ii) ‖Φ2(n)Φ−1(m)‖ ≤ M, for m ≥ n ≥ n0.

Notice that if D(n) is constant, then system (8.3.2) always possesses an
ordinary dichotomy.

After wading through the complicated notation above, here is an
example.

Example 8.18. Consider the difference system x(n+1) = D(n)x(n) with

D(n) =

⎛⎜⎜⎜⎜⎜⎜⎝
1 +

1
n + 1

0 0 0

0 0.5 0 0
0 0 n + 1 0

0 0 0
1

n + 2

⎞⎟⎟⎟⎟⎟⎟⎠ .

Then a fundamental matrix of the system may be given by

Φ(n) = diag

⎛⎝n−1∏
j=0

(
1 +

1
j + 1

)
, (0.5)n,

n−1∏
j=0

(j + 1),
n−1∏
j=0

(
1

j + 2

)⎞⎠
= diag

(
n + 1, (0.5)n, n!,

1
(n + 1)!

)
.
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From this we deduce that

Φ1(n) = diag
(

0, (0.5)n, 0,
1

(n + 1)!

)
and

Φ2(n) = diag(n + 1, 0, n!, 0).

Finally,

Φ1(n)Φ−1(m) = diag
(

0, (0.5)n−m, 0,
1

(n + 1)(n) · · · (m + 2)

)
.

Hence

‖Φ1(n)Φ−1(m)‖ ≤ 1, for n ≥ m ≥ 0.

Similarly,

Φ2(n)Φ−1(m) = diag
(

n + 1
m + 1

, 0,
n!
m!

, 0
)

, for m ≥ n ≥ n0.

Hence

‖Φ2(n)Φ−1(m)‖ ≤ 1, for m ≥ n ≥ n0.

We are now ready to establish a new variation of constants formula that
is very useful in asymptotic theory.

Theorem 8.19 (Variation of Constants Formula). Suppose that
system (8.3.2) possesses an ordinary dichotomy and the following condition
holds:

∞∑
n=n0

‖B(n)‖ < ∞. (8.3.5)

Then for each bounded solution x(n) of (8.3.2) there corresponds a bounded
solution y(n) of (8.3.1) given by

y(n) = x(n) +
n−1∑
j=n0

Φ1(n)Φ−1(j + 1)B(j)y(j)

−
∞∑

j=n

Φ2(n)Φ−1(j + 1)B(j)y(j).
(8.3.6)

The converse also holds; for each bounded solution y(n) of (8.3.1) there
corresponds a bounded solution x(n) of (8.3.2).

Proof. Let x(n) be a bounded solution of (8.3.2). By using the method
of successive approximation, we will produce a corresponding bounded so-
lution y(n) of (8.3.1). We define a sequence {yi(n)} (i = 1, 2, . . .) by letting
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y1(n) = x(n) and

yi+1(n) = x(n) +
n−1∑
j=n0

Φ1(n))Φ−1(j + 1)B(j)yi(j)

−
∞∑

j=n

Φ2(n)Φ−1(j + 1)B(j)yi(j). (8.3.7)

First we prove that yi(n) is bounded on the discrete interval [n0,∞). This
task will be accomplished by induction on i. From our assumption we have
|y1(n)| = |x(n)| ≤ c1, for some constant c1. Now assume that |yi(n)| ≤ ci,
for some constant ci. Then by Definition 8.17 we have

|yi+1(n)| ≤ c1 + Mci

∞∑
j=n0

‖B(j)‖ = ci+1.

Hence yi(n) is bounded for each i.
In the next step we show that the sequence {yi(n)} converges uniformly

on the discrete interval [n0,∞).
Using (8.3.7) we have, for i = 1, 2, . . .,

|yi+2(n) − yi+1(n)| ≤ M

∞∑
j=n0

‖B(j)‖|yi+1(j) − yi(j)|.

Hence by induction on i (Exercises 8.3, Problem 8)

|yi+1(n) − yi(n)| ≤
⎡⎣M

∞∑
j=n0

‖B(j)‖
⎤⎦i

c1. (8.3.8)

We choose n0 sufficiently large such that

M
∞∑

j=n0

‖B(j)‖ = η < 1. (8.3.9)

Thus |yi+1(n) − yi(n)| ≤ c1η
i and, consequently,

∑∞
i=1{yi+1(n) − yi(n)}

converges uniformly on n ≥ n0 (by the Weierstrass M -test).1

We define

y(n) = y1(n) +
∞∑

i=1

{yi+1(n) − yi(n)} = lim
i→∞

yi(n).

1Weierstrass M-test: Let un(x), n = 1, 2, . . . , be defined on a set A with
range in R. Suppose that |un(x)| ≤ Mn for all n and for all x ∈ A. If the series
of constants

∑∞
n=1 Mn converges, then

∑∞
n=1 un(x) and

∑∞
n=1 |un(x)| converge

uniformly on A.
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Hence |y(n)| ≤ L, for some constant L. Letting i → ∞ in (8.3.7), we obtain
(8.3.6). The second part of the proof of the theorem is left to the reader as
Exercises 8.3, Problem 10. �

If the condition of ordinary dichotomy is strengthened, then we obtain
the following important result in asymptotic theory.

Theorem 8.20. Suppose that the following assumption holds:

Condition (H)

⎧⎨⎩(i) Systems (8.3.2) posses an ordinary dichotomy;

(ii) lim
n→∞ Φ1(n) = 0.

If, in addition, condition (8.3.5) holds, then for each bounded solution x(n)
of (8.3.2) there corresponds a bounded solution y(n) of (8.3.1) such that

y(n) = x(n) + o(1). (8.3.10)

Proof. Let x(n) be a bounded solution of (8.3.2). Then by using formula
(8.3.6) we obtain, for a suitable choice of m (to be determined later),

y(n) = x(n) + Φ1(n)
m−1∑
j=n0

Φ−1(j + 1)B(j)y(j) + Ψ(n), (8.3.11)

where

Ψ(n) = Φ1(n)
n−1∑
j=m

Φ−1(j + 1)B(j)y(j) −
∞∑

j=n

Φ2(n)Φ−1(j + 1)B(j)y(j).

(8.3.12)
Now recall that from Theorem 8.20, ‖y‖ ≤ L, for some L > 0. Hence from
formula (8.3.12) it follows that

|Ψ(n)| ≤ ML

∞∑
j=m

‖B(j)‖.

Thus for ε > 0, there exists a sufficiently large m such that |Ψ(n)| <
ε/2. Since Φ1(n) → 0 as n → ∞, it follows from formula (8.3.11) that
|y(n) − x(n)| < ε, for sufficiently large n. Therefore, y(n) = x(n) + o(1).

Our next objective is to apply the preceding theorem to produce a dis-
crete analogue of Levinson’s theorem [91], [36]. We start our analysis by
making the change of variables

y(n) =
n−1∏
r=n0

λi(r)z(n), for a specific i, 1 ≤ i ≤ k. (8.3.13)

Then (8.3.1) becomes

z(n + 1) = (Di(n) + Bi(n))z(n), (8.3.14)
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where

Di(n) = diag
(

λ1(n)
λi(n)

, . . . , 1, . . . ,
λk(n)
λi(n)

)
,

Bi(n) =
1

λi(n)
B(n).

Associated with (8.3.14) is the unperturbed diagonal system

x(n + 1) = Di(n)x(n). (8.3.15)�

To make the proof of our main theorem more transparent we introduce
the following lemma.

Lemma 8.21 [9]. Assumption (H) hold for every equation (8.3.15), 1 ≤
i ≤ k, if the following conditions hold.

There exist constants µ > 0 and K > 0 such that for each pair λi, λj,
i �= j, either

Condition (L)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∏
r=0

∣∣∣∣λi(r)
λj(r)

∣∣∣∣→ +∞, as n → ∞,

and
n2∏

r=n1

∣∣∣∣λi(r)
λj(r)

∣∣∣∣ ≥ µ > 0, for all 0 ≤ n1 ≤ n2,

or
n2∏

r=n1

∣∣∣∣λi(r)
λj(r)

∣∣∣∣ ≤ K, for all 0 ≤ n1 ≤ n2.

The proof is omitted and left to the reader to do as Exercises 8.3, Problem
7.

Example 8.22. Consider the diagonal matrix

D(n) = diag(λ1(n), λ2(n), λ3(n))

where

λ1(n) = 2 + sin
(

2n + 1
2

)
π,

λ2(n) = 2 − sin
(

2n + 1
2

)
π,

λ3(n) = 2.

Notice that:

(i)

n2∏
r=n1

∣∣∣∣λ1(r)
λ2(r)

∣∣∣∣ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

3 if both n1 and n2 are even,

1 if n1 is odd and n2 is even or vice versa,
1
3

if both n1 and n2 are odd,
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and
n∏

r=0

∣∣∣∣λ1(r)
λ3(r)

∣∣∣∣→ ∞ as n → ∞.

(ii)

n2∏
r=n1

∣∣∣∣λ2(r)
λ1(r)

∣∣∣∣ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
3

if both n1 and n2 are even,

1 if n1 is odd and n2 is even or vice versa,

3 if both n1 and n2 are odd,

and
n∏

r=0

∣∣∣∣λ2(r)
λ3(r)

∣∣∣∣→ ∞ as n → ∞.

(iii)
n∏

r=0

∣∣∣∣λ3(r)
λ1(r)

∣∣∣∣→ ∞ as n → ∞,

but no subsequence of the product converges to zero, and
n∏

r=0

∣∣∣∣λ3(r)
λ2(r)

∣∣∣∣→ ∞ as n → ∞,

but no subsequence of the product converges to zero.

Thus the system x(n + 1) = D(n)x(n) satisfies Condition (L) and,
consequently, it satisfies Condition (H).

Next we give the fundamental theorem in the asymptotic theory of
difference equations; the discrete analogue of Levinson’s theorem [91].

Theorem 8.23. Suppose that Condition (L) holds and for each i, 1 ≤ i ≤
k,

∞∑
n=n0

1
|λi(n)| ‖B(n)‖ < ∞. (8.3.16)

Then system (8.3.1) has a fundamental set of k solutions yi(n) such that

yi(n) = (ei + o(1))
n−1∏
r=n0

λi(r), (8.3.17)

where ei is the standard unit vector in R
k where its components are all

zero, except that the ith component is 1.

Proof. Notice that under Condition (L) it follows from Lemma 8.21 that
(8.3.15) satisfies Condition (H). Moreover, from assumption (8.3.16), Bi(n)
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satisfies condition (8.3.5). Thus we can apply Theorem 8.20 to (8.3.14)
and (8.3.15). Observe that since the ith diagonal element in Di(n) is 1, it
follows that x(n) = ei is a bounded solution of (8.3.15). By Theorem 8.20,
there corresponds a solution z(n) of (8.3.14) such that z(n) = ei + o(1).
Now conclusion (8.3.17) follows immediately by substituting for z(n) from
formula (8.3.13). �

Theorem 8.23 will be referred to as the Benzaid–Lutz theorem.

Example 8.24. Consider the difference system y(n+1) = A(n)y(n), where

A(n) =

⎛⎜⎜⎜⎜⎝
n2 + 2
2n2 0

1
n3

0 1 0
1
2n

0 n

⎞⎟⎟⎟⎟⎠ .

To apply Theorem 8.23 we need to write A(n) in the form D(n) + B(n)
with D(n) a diagonal matrix and B(n) satisfying condition (8.3.16). To
achieve this we let

D(n) =

⎛⎜⎜⎝
1
2

0 0

0 1 0
0 0 n

⎞⎟⎟⎠ , B(n) =

⎛⎜⎜⎜⎝
1
n2 0

1
n3

0 0 0
1
2n

0 0

⎞⎟⎟⎟⎠ .

Hence λ1 = 1
2 , λ2 = 1, and λ3 = n. Thus for n0 = 2, our system satisfies

the hypotheses of Theorem 8.23. Consequently, there are three solutions:

y1(n) ∼
(

1
2

)n

⎛⎜⎝1
0
0

⎞⎟⎠ ,

y2(n) ∼

⎛⎜⎝0
1
0

⎞⎟⎠ ,

y3(n) ∼
⎛⎝n−1∏

j=1

j

⎞⎠
⎛⎜⎝0

0
1

⎞⎟⎠ = (n − 1)!

⎛⎜⎝0
0
1

⎞⎟⎠ .

Remark: Before ending this section we make one further comment on the
conditions in Theorem 8.23. This comment concerns the necessity for some
condition on B(n) such as (8.3.16). Certainly, condition (8.3.16) holds when
B(n) = O(n−α), n → ∞, for some α > 1, i.e., nα‖B(n)‖ ≤ L for all
n ≥ n0. On the other hand, the condition B(n) = O(n−1) is not sufficient
for formula (8.3.17) to hold, and a simple example illustrates this point.
Let us take k = 1, D(n) = 1, and B(n) = 1

n . Then (8.3.1) takes the
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form y(n+1) =
(

n+1
n

)
y(n) =

(
1 + 1

n

)
y(n), which has the general solution

y(n) = cn, for some constant c. Hence no solution satisfies formula (8.3.17).

Exercises 8.3

In Problems 1 through 5 find asymptotic estimates (using Theorem 8.23)
for a fundamental set of solutions of the given system.

1. y(n + 1) = (D(n) + B(n))y(n), where

D(n) =

⎛⎝ 3
n + 2

0

0 n + 1

⎞⎠ , B(n) =

⎛⎜⎝
1
n2

3
n3

0
5

n3/2

⎞⎟⎠ .

2. y(n + 1) = (D(n) + B(n))y(n), where

D(n) =

⎛⎜⎜⎝
cos πn 0 0

0
n

n + 1
0

0 0 3

⎞⎟⎟⎠ , B(n) =

⎛⎜⎜⎜⎜⎜⎝
sinn

n3

n

en
0

0 0
n

3n

1
2n

0
n

n3 + 5

⎞⎟⎟⎟⎟⎟⎠ .

3. y(n + 1) = A(n)y(n), where

A(n) =

⎛⎜⎜⎜⎜⎝
1 +

1
n

0
1

n(n + 1)

0
1
n

0

0 0 1 + (−1)n cos nπ

⎞⎟⎟⎟⎟⎠ .

4. y(n + 1) = A(n)y(n), where

A(n) =

⎛⎜⎝ n e−n 0

0 3 − e−2n 0
2−n 0 1 + n

⎞⎟⎠ .

5. Give an example of a two-dimensional difference system where
Theorem 8.20 does not hold.

6. Define a diagonal matrix P = diag(a1, a2, . . . , ak), where

ai =

{
0 if i �∈ S,

1 if i ∈ S,
where S is a subset of the set {1, 2, . . . , k}.

Prove the following statements:

(a) P 2 = P (a projection matrix).

(b) Φ(n)P = Φ1(n) as defined in (8.3.4).
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(c) Φ(n)(I − P ) = Φ2(n), where Φ2(n) = I − Φ1(n).

(d) Φ1(n)P = Φ1(n),Φ2(n)(I − P ) = Φ2(n).

7. Prove Lemma 8.21.

8. Prove formula (8.3.8) using mathematical induction on i.

9. Prove that the solution y(n) of (8.3.1) defined by (8.3.6) is bounded
for n ≥ n0 ≥ 0.

10. Prove that under the assumption of Theorem 8.19, for each bounded
solution y(n) of (8.3.1), there exists a bounded solution x(n) of (8.3.2).

*11. (Open Problem). Improve Theorem 8.19 by relaxing condition (8.3.5),
requiring only conditional convergence of

∑∞
n=n0

B(n).

*12. (Hard). Extend Theorem 8.19 to the case where D(n) is a constant
matrix in a one-block Jordan form, then extend it to the case when
D(n) is a constant matrix in the general Jordan form.

*13. (Hard). Extend Theorem 8.19 to the case where D(n) has an eigenvalue
equal to zero.

*14. (Open Problem). Suppose that there are r distinct eigenvalues λ1(n),
λ2(n),. . . , λr(n) with distinct moduli. Prove that with the conditions
of Theorem 8.19 holding for 1 ≤ i ≤ r, there are solutions yi(n),
1 ≤ i ≤ r, of system equation (8.3.1) that satisfy formula (8.3.12).

8.4 High-Order Difference Equations

In this section we turn our attention to the kth-order scalar equations of
the form

y(n + k) + (a1 + p1(n))y(n + k − 1) + · · · + (ak + pk(n))y(n) = 0, (8.4.1)

where ai ∈ R and pi(n), 1 ≤ i ≤ k, are real sequences. As we have seen
in Chapter 3, (8.4.1) may be put in the form of a k-dimensional system
of first-order difference equations that is asymptotically constant. Thus we
are led to the study of a special case of (8.4.1), namely, the asymptotically
constant system

y(n + 1) = [A + B(n)]y(n), (8.4.2)

where A is a k × k constant matrix that is not necessarily diagonal. This
system is, obviously, more general than the system induced by (8.4.1). The
first asymptotic result concerning system equation (8.4.2) is a consequence
of Theorem 8.23.

Theorem 8.25 [9]. Suppose that the matrix A has k linearly independent
eigenvectors ξ1, ξ2, . . . , ξk and k corresponding eigenvalues λ1, λ2, . . . , λk.
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If condition (8.3.16) holds for B(n), then system equation (8.4.2) has
solutions yi(n), 1 ≤ i ≤ k, such that

yi(n) = [ξi + o(1)]λn
i . (8.4.3)

Proof. In order to be able to apply Theorem 8.23 we need to diagonalize
the matrix A. This may be accomplished by letting

y = Tz (8.4.4)

in (8.4.2), where

T = (ξ1, ξ2, . . . , ξk), (8.4.5)

that is, the ith column of T is ξi.
Then we obtain

Tz(n + 1) = [A + B(n)]Tz(n),

or

z(n + 1) = [D + B̃(n)]z(n), (8.4.6)

where D = T−1AT = diag(λ1, λ2, . . . , λk) and B̃(n) = T−1B(n)T . It is
easy to see that B̃(n) satisfies condition (8.3.16). Now formula (8.4.3)
follows by applying Theorem 8.23. �

Example 8.26. Find an asymptotic estimate of a fundamental set of
solutions of

y(n + 1) = [A + B(n)]y(n), (8.4.7)

where

A =

⎛⎜⎝2 2 1
1 3 1
1 2 1,

⎞⎟⎠ ,

B(n) =

⎛⎜⎝1/n2 + 1 0 (0.5)n

0 (0.2)n 0

e−n 0 log n/n2

⎞⎟⎠ .

Solution The eigenvalues of A are λ1 = 5, λ2 = 1, and λ3 = 1, and the cor-

responding eigenvectors are ξi =

⎛⎜⎝1
1
1

⎞⎟⎠ , ξ2 =

⎛⎜⎝ 1
0

−1

⎞⎟⎠, and ξ3 =

⎛⎜⎝ 1
0

−2

⎞⎟⎠.

Furthermore, B(n) satisfies condition (8.3.16). Thus by Theorem 8.25,
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equation (8.4.7) has the solutions

y1(n) = (1 + o(1))(5n)

⎛⎜⎝1
1
1

⎞⎟⎠ ∼

⎛⎜⎝1
1
1

⎞⎟⎠ (5n),

y2(n) = (1 + o(1))

⎛⎜⎝ 1
0

−1

⎞⎟⎠ ∼

⎛⎜⎝ 1
0

−1

⎞⎟⎠ ,

y3(n) = (1 + o(1))

⎛⎜⎝ 1
0

−2

⎞⎟⎠ ∼

⎛⎜⎝ 1
0

−2

⎞⎟⎠ .

Next, we apply Theorem 8.23 to establish the following asymptotic result
for (8.4.1).

Corollary 8.27. Suppose that the polynomial

p(λ) = λk + a1λ
k−1 + · · · + ak (8.4.8)

has distinct roots λ1, λ2, . . . , λk and that
∞∑

n=1

|pi(n)| < ∞, for 1 ≤ i ≤ k. (8.4.9)

Then (8.4.1) has k solutions y1(n), y2(n), . . . , yk(n) with

yi(n) = [1 + o(1)]λn
i . (8.4.10)

Proof. First we put (8.4.1) into the form of a k-dimensional system

z(n + 1) = [A + B(n)]z(n), (8.4.11)

where

A =

⎛⎜⎜⎜⎜⎝
0 1 . . . 0
0 0 1 0
...

...
−ak −ak−1 . . . −a1

⎞⎟⎟⎟⎟⎠ ,

B(n) =

⎛⎜⎝ 0 0 . . . 0
0 0 . . . 0

−pk(n) −pk−1(n) . . . −p1(n)

⎞⎟⎠ ,

z(n) = (y(n), y(n + 1), . . . , y(n + k − 1))T .

Notice that polynomial (8.4.8) is the characteristic polynomial of the matrix
A. Furthermore, for each eigenvalue λi there corresponds the eigenvector
ξi = (1, λi, λ

2
i , . . . , λ

k−1
i )T . In addition, the matrix B(n) satisfies condition
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(8.3.16). Hence one may apply Theorem 8.25 to conclude that there are k
solutions z1(n), z2 (n), . . . , zk(n) of (8.4.11) such that, for 1 ≤ i ≤ k,

zi(n) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

yi(n)
yi(n + 1)
yi(n + 2)

...
yi(n + k − 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= (1 + o(1))λn

i

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
λi

λ2
i

...

λk−1
i

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Hence yi(n) = [1 + o(1)]λn
i . �

Example 8.28. Find asymptotic estimates of fundamental solutions to
the difference equation

y(n + 3) − (2 + e−n−2) y(n + 2) −
(

1 +
1

n2 + 1

)
y(n + 1) + 2y(n) = 0.

Solution The characteristic equation is given by λ3 − 2λ2 − λ + 2 = 0 with
roots λ1 = 2, λ2 = 1, λ3 = −1. Notice that p1(n) = −e−n−2, p2(n) =
− 1

n2+1 , and p3(n) = 0 all satisfy condition (8.4.8). Hence Corollary 8.27
applies to produce solutions y1(n), y2(n), and y3(n) defined as follows:

y1(n) = [1 + o(1)]2n, y2(n) = 1 + o(1), y3(n) = [1 + o(1)](−1)n.

Corollary 8.27 is due to Evgrafov. It says that for each characteristic root
of polynomial (8.4.8), at least one solution behaves as in formula (8.4.10),
provided that the rate of convergence of the coefficients is not too slow.

What happens if all the roots of the characteristic equation (8.4.8)
are equal? This same question was addressed by Coffman [22], where he
obtained the following result.

Theorem 8.29. Suppose that the polynomial (8.4.8) has a k-fold root of
1 and that

∞∑
n=1

nk−1|pi(n)| < ∞, for 1 ≤ i ≤ k. (8.4.12)

Then (8.4.1) has k solutions y1(n), y2(n), . . . , yk(n) with

yi(n) = ni−1(1 + o(1)), n → ∞. (8.4.13)

We remark here that the actual result of Coffman is stronger than the
statement of Theorem 8.29. Indeed, he proved that

∆myi(n) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
n

i − m

)
+ o

(
i − m

n

)
for 1 ≤ m ≤ i,

o

(
i − m

n

)
for i ≤ m ≤ k − 1.
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The curious reader might wonder whether Coffman’s theorem (Theorem
8.29) applies if the polynomial (8.4.8) has a k-fold root not equal to 1.
Luckily, by a very simple trick, one is able to do exactly that. Assume that
the characteristic equation (8.4.8) has a k-fold root µ �= 1. Then polynomial
(8.4.8) may be written as

(λ − µ)k = 0. (8.4.14)

Letting y(n) = µnx(n) in (8.4.1), we obtain

µn+kx(n+k)+µn+k−1(a1+p1(n))x(n+k−1)+· · ·+µn(ak+pk(n))x(n) = 0,

or

x(n+k)− 1
µ

(a1+p1(n))x(n+k−1)+· · ·+ 1
µk

(ak+pk(n))x(n) = 0. (8.4.15)

The characteristic equation (8.4.15) is given by

λk +
a1

µ
λk−1 +

a2

µ2 λk−2 + · · · +
ak

µk
= 0,

which has a k-fold root λ = 1. Moreover, if pi(n), 1 ≤ i ≤ k, satisfies
condition (8.4.1), then so does (1/µi)pi(n). Hence Theorem 8.29 applies to
(8.4.15) to yield solutions x1(n), x2(n), . . . , xk(n) with

xi(n) = ni−1(1 + o(1)), n → ∞.

Consequently, there are solutions y1(n), y2(n), . . . , yk(n) of (8.4.1) such that

yi(n) = ni−1(1 + o(1))µn.

We now summarize the above observations in the following corollary.

Corollary 8.30. Suppose that the polynomial (8.4.8) has a k-fold
root µ and that condition (8.4.12) holds. Then (8.4.1) has k solutions
y1(n), y2(n), . . . , yk(n) such that

yi(n) = ni−1(1 + o(1))µn. (8.4.16)

Example 8.31. Investigate the asymptotic behavior of solutions of the
difference equation

y(n + 3) − (6 + e−n−2)y(n + 2) +
(

12 − 1
(n + 1)4

)
y(n + 1) − 8y(n) = 0.

Solution The characteristic equation is given by λ3−6λ2+12λ−8 = 0 with
roots λ1 = λ2 = λ3 = 2. Also, p1(n) = −e−n−2, p2(n) = −1/(n + 1)4, and
p3(n) = 0 all satisfy condition (8.4.12). Hence, by Corollary 8.30 there are
three solutions y1(n) = (1 + o(1))2n, y2(n) = n(1 + o(1))2n, and y3(n) =
n2(1 + o(1))2n.

Example 8.32. Consider the difference equation

x(n + 2) + p1(n)x(n + 1) + p2(n)x(n) = 0, (8.4.17)
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where

p1(n) �= 0, n ≥ n0 ≥ 0,

and where

lim
n→∞

4p2(n)
p1(n)p1(n − 1)

= p (8.4.18)

exists. Let α(n) be defined by

α(n) =
4p2(n)

p1(n)p1(n − 1)
− p. (8.4.19)

Assume that p �= 0, p < 1, and
∞∑

j=n0

|α(j)| < ∞. (8.4.20)

Show that (8.4.17) has two solutions,

x±(n) ∼
(

−1
2

)n n−1∏
j=n0

p1(j)
(

1 ± ν ∓
(

α(j)
2ν

))
, (8.4.21)

where ν =
√

1 − p.

Solution Let

x(n) =
(

−1
2

)n
⎛⎝ n−2∏

j=n0

p1(j)

⎞⎠ y(n). (8.4.22)

Then (8.4.17) is transformed to

y(n + 2) − 2y(n + 1) + (p + α(n))y(n) = 0. (8.4.23)

Let z(n) = (z1(n), z2(n))T = (y(n), y(n + 1))T . Then (8.4.23) may be put
into a system of the form(

z1(n + 1)
z2(n + 1)

)
=

(
0 1

ν2 − 1 − α(n) 2

)(
z1(n)
z2(n)

)
. (8.4.24)

Again we let (
z1(n)
z2(n)

)
=

(
1 1

−(ν − 1) ν + 1

)(
u1(n)
u2(n)

)
.

Then (8.4.24) becomes(
u1(n + 1)
u2(n + 1)

)
=

(
(1 − ν + (α(n)/2ν)) α(n)/2ν

−α(n)/2ν (1 + ν − (α(n)/2ν))

)(
u1(n)
u2(n)

)
.

(8.4.25)
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If we let u(n) = (u1(n), u2(n))T , then we may write (8.4.25) in the form

u(n + 1) = (D(n) + B(n))u(n), (8.4.26)

where

D(n) =

(
(1 − ν + α(n)/2ν) 0

0 (1 + ν − (α(n)/2ν))

)
,

B(n) =

(
0 α(n)/2ν

−α(n)/2ν 0

)
.

By Theorem 8.23, there are two solutions of (8.4.26) given by

u+(n) ∼
⎡⎣ n−1∏

j=n0

(1 − ν + (α(j)/2ν))

⎤⎦(1
0

)
,

u−(n) ∼
⎡⎣ n−1∏

j=n0

(1 + ν − (α(j)/2ν))

⎤⎦(0
1

)
.

These two solutions produce two solutions of (8.4.24),

z+(n) =

(
y+(n)

y+(n + 1)

)

=

(
1 1

−(ν − 1) ν + 1

)⎛⎝ n−1∏
j=n0

(1 − ν + (α(j)/2ν))

⎞⎠(1
0

)
,

z−(n) =

(
y−(n)

y−(n + 1)

)

=

(
1 1

−(ν − 1) ν + 1

)⎛⎝ n−1∏
j=n0

(1 + ν − (α(j)/2ν))

⎞⎠(1
0

)
.

Hence

y+(n) ∼
n−1∏
j=n0

(1 − ν + (α(j)/2ν)),

y−(n) ∼
n−1∏
j=n0

(1 + ν − (α(j)/2ν)).

Using (8.4.22) we obtain

x+(n) ∼
(

−1
2

)n n−2∏
j=n0

p1(j)
n−1∏
j=n0

(1 − ν + (α(j)/2ν)). (8.4.27)
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Similarly, one may show that

x−(n) ∼
(

−1
2

)n n−2∏
j=n0

p1(j)
n−1∏
j=n0

(1 + ν − (α(j)/2ν)). (8.4.28)

(See Exercises 8.4, Problem 11.)

Exercises 8.4

In Problems 1 through 4 find an asymptotic estimate of a fundamental set
of solutions of the given equation y(n + 1) = [A + B(n)]y(n).

1. A =

(
2 0
0 3

)
, B(n) =

⎛⎝ e−n 0
1

(n + 1)2
(0.1)n

⎞⎠.

2. A =

(
1 6
5 2

)
, B(n) =

(
0 e−n−1

2−n n

en

)
.

3. A =

⎛⎜⎝−1 0 0
0 1 0
0 0 4

⎞⎟⎠ , B(n) =

⎛⎜⎜⎜⎜⎝
3−n 0 2−n

sinn

(n + 1)2
0 0

0 e−n 1
(n + 1)3

⎞⎟⎟⎟⎟⎠.

4. A =

⎛⎜⎝5 4 2
4 5 2
2 2 2

⎞⎟⎠ , B(n) =

⎛⎜⎜⎝
0 (0.2)n 0

(0.1)n 0 e−n2

0
1

n2 + 1
0

⎞⎟⎟⎠.

In Problems 5 through 10 investigate the asymptotic behavior of solutions
of the given equation.

5. y(n + 2) − (5 + e−n)y(n + 1) +
(

6 − 1
(n + 1)2

)
y(n) = 0.

6. y(n + 2) − (4 + ne−n)y(n) = 0.

7. y(n + 2) + (4 + ne−n)y(n) = 0.

8. y(n + 3) − 6y(n + 2) + (11 + (sinn)e−n)y(n + 1) − 6y(n) = 0.

9. y(n + 3) − (3 + 2−n)y(n + 2) + 3y(n + 1) − y(n) = 0.

10. y(n + 3) − 15y(n + 2) + 75y(n + 1) − (125 + (0.1)n)y(n) = 0.

11. Complete the proof of Example 8.32 by verifying formula (8.4.28).
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*12. Consider the second-order difference equation

x(n + 2) + p1(n)x(n + 1) + p2(n)x(n) = 0. (8.4.29)

Assume that p1(n) �= 0 for n ≥ n0 and that:

(i) limn→∞ 4p2(n)/(p1(n)p1(n − 1)) = p,

(ii)
∑∞

n=n0
|α(n)| < ∞, where

α(n) = [4p2(n)/(p1(n)p1(n − 1)] − p). (8.4.30)

If p is neither 0 nor 1, show that (8.4.29) has two solutions

x±(n) ∼
(

−1
2

)n
⎛⎝ n−2∏

j=n0

p1(j)

⎞⎠ (1 ± ν)n, (n → ∞),

where ν =
√

1 − p.

13. In Problem 12, suppose that p = 1 and that all the assumptions
there hold except that the condition

∑∞
n=n0

|α(n)| < ∞ is replaced
by
∑∞

n=n0
n|α(n)| < ∞.

Show that there are two solutions x1(n) ∼ (− 1
2

)n ∏n−2
j=n0

p1(j) and
x2(n) ∼ n

(−1
2

)n∏n−2
j=n0

p1(j), n → ∞.

14. Consider the difference equation (8.4.29) such that p1(n) �= 0 for n ≥
n0. Assume that limn→∞(p2(n))/(p1(n)p1(n − 1)) = 0 and α(n) =
(p2(n))/(p1(n)p1(n − 1)).

(a) Use the transformation x(n) =
(− 1

2

)n∏n−2
j=n0

p1(j)z(n) to trans-
form (8.4.29) to z(n + 2) − 2z(n + 1) + α(n)z(n) = 0.

(b) Show that (8.4.29) has two solutions x1(n) ∼ (−1)n
∏n−2

j=n0
p1(j)

and x2(n) = o(νn|x1(n)|) for any ν with 0 < ν < 1.

*15. Consider the difference (8.4.17) with conditions (8.4.17) and (8.4.18)
satisfied. If p is real and p > 1, show that formula (8.4.21) remains
valid if we assume that

∞∑
j=n0

j|α(j)| < ∞. (8.4.31)

*16. Show that formula (8.4.21) remains valid if one replaces hypothesis
(8.4.20) by

∞∑
j=n0

|α(j)|σ < ∞ (8.4.32)

for some real number σ with 1 ≤ σ ≤ 2.
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*17. Show that the conclusions of Problem 16 remain valid if condition
(8.4.32) is replaced by

∞∑
j=n0

|α(j)|σjτ−1

for some real numbers σ and τ such that 1 ≤ σ ≤ 2 and τ > σ.

8.5 Second-Order Difference Equations

The asymptotics of second-order difference equations play a central role in
many branches of pure and applied mathematics such as continued frac-
tions, special functions, orthogonal polynomials, and combinatorics. In this
section we will utilize the special characteristics of second-order equations
to obtain a deeper understanding of the asymptotics of their solutions.
Consider the difference equation

x(n + 2) + p1(n)x(n + 1) + p2(n)x(n) = 0. (8.5.1)

One of the most effective techniques to study (8.5.1) is to make the
change of variables

x(n) =
(

−1
2

)n−1
⎛⎝ n−2∏

j=n0

p1(j)

⎞⎠ y(n). (8.5.2)

Then (8.5.1) is transformed to

y(n + 2) − 2y(n + 1) +
4p2(n)

p1(n)p1(n − 1)
y(n) = 0. (8.5.3)

Put

q = lim
n→∞

4p2(n)
p1(n)p1(n − 1)

, α(n) =
4p2(n)

p1(n)p1(n − 1)
− q. (8.5.4)

Then the characteristic roots associated with (8.5.3) are λ1 = 1−√
1 − q

and λ2 = 1 +
√

1 − q.
Here there are several cases to consider:

Case I. If −∞ < q < 1, then λ1 and λ2 are real distinct roots with
|λ1| �= |λ2|. Case I may be divided into subcases.

(a) If α(n) → 0, then by invoking the Poincaré–Perron theorem we obtain
two linearly independent solutions y1(n) and y2(n) such that

lim
n→∞

y1(n + 1)
y1(n)

= λ1, lim
n→∞

y2(n + 1)
y2(n)

= λ2. (8.5.5)

Although this does not provide us with explicit representations of the
solutions y1(n) and y2(n) it does guarantee the existence of a special
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solution, called a minimal solution. As we will see later, minimal solu-
tions play a central role in the convergence of continued fractions and
the asymptotics of orthogonal polynomials.

Definition 8.33. A solution ϕ(n) of (8.5.1) is said to be minimal
(subdominant, recessive) if

lim
n→∞

ϕ(n)
x(n)

= 0

for any solution x(n) of (8.5.1) that is not a multiple of ϕ(n). A non-
minimal solution is called dominant. One may show that a minimal
solution is unique up to multiplicity (Exercises 8.5, Problem 1).

Returning to (8.5.3), let us assume that |λ1| < |λ2|. Then there exist
µ1, µ2 such that |λ1| < µ1 < µ2 < |λ2|. By (8.5.5) it follows that, for
sufficiently large n,

|y1(n + 1)|
|y1(n)| ≤ µ1 and

|y2(n + 1)|
|y2(n)| ≥ µ2.

Hence

|y1(n)| ≤ µn
1 |y1(0)|, |y2(n)| ≥ µn

2 |y2(0)|,
which implies that

lim
n→∞

|y1(n)|
|y2(n)| = lim

n→∞

(
µ1

µ2

)n |y1(0)|
|y2(0)| = 0. (8.5.6)

Therefore, y1(n) is a minimal solution of (8.5.3) (Why?) (Exercises
8.5, Problem 1).

(b) If α(n) ∈ l1(Z+), that is,
∞∑
n0

|α(n)| < ∞, then by Corollary 8.27,

(8.5.3) has a fundamental set of solutions y1(n) and y2(n) such that

y1(n) = λn
1 (1 + o(1)), y2(n) = λn

2 (1 + o(1)).

Hence

x1(n) =
(

−1
2

)n−1
⎛⎝ n−2∏

j=n0

p1(j)

⎞⎠λn
1 (1 + o(1)),

x2(n) =
(

−1
2

)n−1
⎛⎝ n−2∏

j=n0

p1(j)

⎞⎠λn
2 (1 + o(1)).

Notice that we have treated this case thoroughly in Example 8.32,
where we obtained formulas (8.4.27) and (8.4.28).
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(c) Suppose that α(n) ∈ l2(Z+), that is,
∑∞

n0
α2(n) < ∞. Then using

the scheme of Example 8.32, Elaydi [38] showed that (8.5.1) has two
linearly independent solutions x1(n), x2(n) obeying formulas (8.4.27)
and (8.4.28). In other words,

x1(n) =
(

−1
2

)n
⎛⎝ n−2∏

j=n0

p1(j)

⎞⎠ n−1∏
j=n0

(1 − ν + (α(j)/2ν))(1 + o(1)),

(8.5.7)

x2(n) =
(

−1
2

)n
⎛⎝ n−2∏

j=n0

p1(j)

⎞⎠ n−1∏
j=n0

(1 + ν − (α(j)/2ν))(1 + o(1)).

(8.5.8)

Moreover, x1(n) is a minimal solution, and x2(n) is a dominant
solution.

We remark here that the above results may be extended to systems as
well as to higher-order difference equations [38].

Case II. If q = 1, then λ1 = λ2 = 1. In this case we use Coffman’s result
(Theorem 8.29) to produce two solutions of (8.5.3),

y1(n) ∼ 1 and y2(n) ∼ n,

provided that
∞∑
n0

n|α(n)| < ∞.

Case III. If q > 1, then λ1 and λ2 are complex conjugates λ̄1 = λ2,
|λ1| = |λ2|. In this case we use another result from [43].

Theorem 8.34 [43]. Suppose that q > 1 and the following condition
holds.

∞∑
n=n0

|α(n + 1) − α(n)| < ∞.

Then (8.5.3) has two solutions y1(n), y2(n) with

yi(n) = (1 + o(1))
n−1∏

m=n0

βi(m), i = 1, 2, . . . , (8.5.9)

where

β1(n) = 1 −
√

1 − q + α(n), β2(n) = 1 +
√

1 − q + α(n),

provided that Re
√

1 − q + α(n) is semidefinite for a fixed branch of the
square root (0 ≤ arg

√
z < π).
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8.5.1 A Generalization of the Poincaré–Perron Theorem
[57] In many applications related to (8.5.1) the coefficients p1(n) and p2(n)
are of the form

p1(n) ∼ anα, p2(n) ∼ bnβ , ab �= 0, α, β real; n → ∞.

The asymptotics of the solutions of (8.5.1) can be determined by means
of the Newton–Puiseux diagram formed with the points P0(0, 0), P1(1, α),
P2(2, β) (Figure 8.1)

Theorem 8.35 [114], [82].

(a) If the point P1 is above the line P0P2 (i.e., α > β/2), then (8.5.1) has
a fundamental set of solutions x1(n) and x2(n) such that

lim
n→∞

x1(n + 1)
x1(n)

= −anα, lim
n→∞

x2(n + 1)
x2(n)

=
−b

a
n(β−α). (8.5.10)

Moreover, x2(n) is a minimal solution.

(b) Suppose that the points P0, P1, P2 are collinear (i.e., α = β/2). Let
λ1, λ2 be the roots of the equation λ2+aλ+b = 0, such that |λ1| ≥ |λ2|.
Then (8.5.1) has a fundamental set of solutions x1(n) and x2(n) with

lim
n→∞

x1(n + 1)
x1(n)

= λ1n
α, lim

n→∞
x2(n + 1)

x2(n)
= λ2n

α, (8.5.11)

provided that |λ1| �= |λ2|. Moreover, x2(n) is a minimal solution.

If |λ1| = |λ2|, then

lim
n→∞ sup

[ |x(n)|
(n!)α

]1/n

= |λ1| (8.5.12)

for all nontrivial solutions x(n) of (8.5.1).

(c) If the point P1 lies below the line segment P0P2, then

lim
n→∞ sup

[ |x(n)|
(n!)β/2

]1/n

=
√

|b| (8.5.13)

for all nontrivial solutions of (8.5.1).

Proof. Let p1(n) = anα + ν(n), P2(n) = bnβ + µ(n), where ν(n) and
µ(n) are null sequences. Then we may write (8.5.1) as

x(n + 2) + (a nα + ν(n)) x(n + 1) + (b nβ + µ(n)) x(n) = 0. (8.5.14)
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β

α

β

P

P

/2

1

P

2

1

00

1

FIGURE 8.1. Newton–Puiseux diagram for (8.5.14).

Making the change of variable x(n) = (n!)αy(n) in (8.5.14) yields

y(n + 2) +
[
a

(
n

n + 2

)α

+
ν(n)

(n + 2)α

]
y(n + 1)

+
[

bnβ

(n + 1)α(n + 2)α
+

µ(n)
(n + 1)α(n + 2)α

]
y(n) = 0. (8.5.15)

(a) If 2α > β, the characteristic equation of (8.5.14) is λ2 + aλ = 0. The
first solution x1(n) in (8.5.1) corresponds to λ1 = −a in the Poincaré–
Perron theorem. The second solution x2(n) may be obtained by using
formula (2.2.18) and is left to the reader as Exercises 8.5, Problem 2.

The proofs of parts (b) and (c) are left to the reader as Problem 2. �

Remark: The above theorem is valid for kth-order scalar difference
equations. The interested reader may consult [113], [82], [146].

Exercises 8.5

1. Consider a kth-order scalar difference equation of Poincaré type (8.2.7)
such that its characteristic roots have distinct moduli.

(a) Show that the equation has a minimal solution.

(b) Show that the minimal solution is unique up to multiplicity.

2. Complete the proofs of parts (a), (b), (c) in Theorem 8.35.

3. Investigate the asymptotic behavior of the equation

y(n + 2) − 2y(n + 1) +
(

1 − 1
n3

)
y(n) = 0.

4. Investigate the asymptotic behavior of solutions of the equation

∆2y(n) =
(−1)n

nα+1 y(n + 1)

where α > 1.

5. Investigate the asymptotic behavior of solutions of

∆2y(n) =
p(n)
nα+1 y(n + 1),
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where α > 1, and ∣∣∣∣∣∣
n∑

j=1

p(j)

∣∣∣∣∣∣ ≤ M < ∞

for all n > 1.

6. Show that the difference equation

∆2x(n) = p(n)x(n + 1)

has two linearly independent solutions x1(n) and x2(n) such that

det

[
x1(n) x2(n)

∆x1(n) ∆x2(n)

]
= −1.

7. (Multiple Summation). Show that for any sequence f(n), n ∈ Z
+,

n−1∑
r=n0

r−1∑
j=n0

f(j) =
n−1∑
j=n0

(n − j)f(j). (8.5.16)

8. Consider the second-order difference equation [34], [35]

∆2y(n) + p(n)y(n) = 0 (8.5.17)

such that
∞∑

j=1

j|p(j)| < ∞. (8.5.18)

Show that (8.5.17) has two solutions y1(n) ∼ 1 and y2(n) ∼ n as n →
∞, without using Coffman’s theorem (Theorem 8.29). You may use the
following steps:

r

j=r

j

n−1

n
n n−1

0

0

FIGURE 8.2.
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(a) Use ∆2y(n) = −p(n)y(n) to show that

y(n) = c1 + c2(n) −
n−1∑
r=1

r−1∑
j=1

p(j)y(j).

(b) Use formula (8.5.16) to show that

|y(n)|
n

≤ |c1| + |c2| +
n−1∑
j=1

j|p(j)| |y(j)|
j

.

(c) Use the discrete Gronwall’s inequality (Lemma 4.32) to show that

|y(n)| ≤ c3n.

(d) Substitute back into

∆y(n) = c1 −
n−1∑
j=1

p(j)y(j)

to obtain

lim
n→∞ ∆y(n) = c2 − M.

*9. (Generalized Gronwall’s Inequality). Suppose that

u(n) ≤ a + b

n−1∑
j=n0

c(j)uγ(j),

where 1 �= γ > 0, a ≥ 0, b > 0, c(j) > 0, and u(j) > 0, for j ≥ n0.

Prove that

u(n) ≤
⎡⎣a1−γ + b(1 − γ)

n−1∑
j=n0

c(j)

⎤⎦1/(1−γ)

, (8.5.19)

provided that, for γ > 1,

a1−γ + b(1 − γ)
n−1∑
j=n0

c(j) > 0 for n ≥ n0.

*10. Generalize the result of Problem 8 to the so-called Emden–Fowler
equation

∆2y(n) + p(n)|y(n)|γ sgn y(n) = 0, (8.5.20)

where γ �= 1 is a positive real number, and

sgn y(n) =

{
1 if y(n) > 0,

−1 if y(n) < 0.
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Show that if
∞∑

j=n0

jγp(j) = M < ∞,

then each solution y(n) with the initial condition y(n0) with[
∆y(n0) +

∣∣∣∣y(n0)
n0

− ∆y(n0)
∣∣∣∣]1−γ

+ 2(1 − γ)M > 0

is such that y(n) ∼ n as n → ∞. You may use the following steps.

(a) Let A(n) = ∆y(n), B(n) = y(n) − n∆y(n). Show that y(n) =
nA(n) + B(n).

(b) Show that

∆A(n) = p(n)[|nA(n) + B(n)|]γ sgn y(n),
∆B(n) = (n + 1)p(n)[|nA(n) + B(n)|]γ sgn y(n).

(c) Use the antidifference operator ∆−1 to obtain A(n) and B(n) and
then use the generalized Gronwall’s inequality.

(d) Suppose that x1(n) and x2(n) are two linearly independent
solutions of the equation

∆2x(n) = p(n)x(n + 1).

In addition, assume that for a sequence q(n) we have
∞∑

j=n0

|q(j)|u(j) = M < ∞,

where for a specific m ∈ Z
+,

u(n) = max
{|x1(n + 1)||x1(n)|2m+1, |x1(n + 1)||x2(n)|2m+1,

|x2(n + 1)||x1(n)|2m+1, |x2(n + 1)||x2(n)|2m+1} .

Show that there exist solutions y(n) of the equation

∆2y(n) = p(n)y(n + 1) + q(n)y2m+1(n)

such that

y(n) = α(n)x1(n) + β(n)x2(n),

with

lim
n→∞ α(n) = a, lim

n→∞ β(n) = b,

for some constants a, b.
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8.6 Birkhoff’s Theorem

Consider again the second-order difference equation

x(n + 2) + p1(n)x(n + 1) + p2(n)x(n) = 0, (8.6.1)

where p1(n) and p2(n) have asymptotic expansions of the form

p1(n) ∼
∞∑

j=0

aj

nj
, p2(n) ∼

∞∑
j=0

bj

nj
, (8.6.2)

with b0 �= 0.

The characteristic equation associated with (8.6.1) is λ2 + a0λ + b0 = 0
with roots

λ1, λ2 = −1
2
a0 ±

√
1
4
a2
0 − b0. (8.6.3)

Extensive work by Birkhoff [11], [12] Birkhoff and Trjitzinsky [13], and
Adams [2] has been done concerning the asymptotics of equations of type
(8.6.1) with expansions (8.6.2). Due to the limitations imposed by the intro-
ductory nature of this book, we will restrict our exposition to second-order
difference equations. Our presentation here follows closely the excellent
papers by Wong and Li [147], [148].

Theorem 8.36 (Birkhoff–Adams).

(a) If λ1 �= λ2, i.e., a2
0 �= 4b0, then equation (8.6.1) has two linearly inde-

pendent solutions x1(n), x2(n), which will be called normal solutions,
of the form

xi(n) ∼ λn
i nαi

∞∑
r=0

ci(r)
nr

, i = 1, 2, (8.6.4)

αi =
a1λi + b1

a0λi + 2b0
, i = 1, 2, (8.6.5)

s−1∑
j=0

⎡⎣λ2
i 2

s−j

(
αi − j

s − j

)
+ λi

s∑
r=j

(
αi − j

r − j

)
as−r + bs−j

⎤⎦ (8.6.6)

ci(j) = 0, ci(0) = 1.

In particular, we obtain

ci(1) =
−2λ2

i αi(αi − 1) − λi(a2 + λia1 + αi(αi − 1)a0/2) − b2

2λ2
i (αi − 1) + λi(a1 + (λi − 1)a0) + b1

.
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(b) If λ1 = λ2 = λ but λ = − 1
2a0 is not a root of the equation a1λ+b1 = 0

(i.e., 2b1 �= a0a1), then equation (8.6.1) has two linearly independent
solutions, x1(n), x2(n), which will be called subnormal solutions, of the
form

xi(n) ∼ λneγi
√

nnα
∞∑

j=0

ci(j)
nj/2 , i = 1, 2, (8.6.7)

where

α =
1
4

+
b1

2b0
, γ1 = 2

√
a0a1 − 2b1

2b0
, γ2 = −2

√
a0a1 − 2b1

2b0
, (8.6.8)

c0 = 1, ci(1) =
1

24b2
0γi

(a2
0a

2
1 − 24a0a1b0 + 8a0a1b1

− 24a0a2b0 − 9b2
0 − 32b2

1 + 24b0b1 + 48b0b2).
(8.6.9)

(The general recursive formula for ci(n) is too complicated to be
included here. The interested reader is referred to Wong and Li [147].)

(c) If λ1 = λ2 = λ and 2b1 = a0a1, then we consider the equation

α(α − 1)λ2 + (a1α + a2)λ + b2 = 0.

Let α1, α2 (Re α2 ≥ Re α1) be the roots of this equation. Then there
are three subcases to contemplate.

(c1) If α2 − α1 �= 0, 1, 2, . . . , then equation (8.6.1) has two linearly
independent solutions of the form

xi(n) ∼ λnnαi

∞∑
j=0

ci(j)
nj

. (8.6.10)

(c2) If α2 − α1 = 1, 2, . . . , then equation (8.6.1) has two solutions, x1(n)
given by (8.6.10) and x2(n) = z(n)+c(ln n)x1(n), where c is a constant
that may be zero, and

z(n) ∼ λnnα2

∞∑
s=0

ds

ns
. (8.6.11)

(c3) If α2 = α1, then equation (8.6.1) has two solutions: x1(n) given by
(8.6.10), and x2(n) = z(n) + c(lnn)x1(n), c �= 0,

z(n) ∼ λnnα1−r+2
∞∑

s=0

ds

ns
, (8.6.12)

where r is an integer ≥ 3.
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Proof. The main idea of the proof is to substitute the formal solu-
tions (8.6.4) and (8.6.7) back into (8.6.1) and then compare coefficients
of powers of n in the resulting expression. Details of the proof will not be
included here, and we refer the interested reader to the paper of Wong and
Li [147]. �

Example 8.37. The Apéry Sequence

The sequence [141]

u(n) =
n∑

k=0

(
n

k

)2(
n + k

k

)2

satisfies the second-order difference equation

(n+2)3u(n+2)− (34n3 +153n2 +231n+117)u(n+1)+ (n+1)3u(n) = 0.
(8.6.13)

Writing (8.6.13) in the form (8.6.1), we have

p1(n) =
−(34n3 + 153n2 + 231n + 117)

(n + 2)3

= a0 +
a1

n
+

a2

n2 + · · · , (8.6.14)

p2(n) =
(

n + 1
n + 2

)3

= b0 +
b1

n
+

b2

n2 + · · · . (8.6.15)

To find a0 we just take the limit of both sides of (8.6.14) to obtain a0 = −34.
Subtracting a0 from both sides, multiplying by n, and then taking the limit
as n → ∞ yields a1 = 51. Repeating this process, we obtain a2 = −129.
Similarly, one may obtain b0 = 1, b1 = −3, b2 = 9. Hence by formula (8.6.3)
the characteristic roots are λ1, λ2 = 17 ± 12

√
2. From formula (8.6.5) we

have

α1 =
51(17 + 12

√
2) − 3

(−34)(17 + 12
√

2) + 2
=

−3
2

,

α2 =
51(17 − 12

√
2) − 3

(−34)(17 − 12
√

2) + 2
=

−3
2

.

Hence we have two solutions u1(n) and u2(n) such that

u1(n) ∼ (17 + 12
√

2)nn−3/2
[
1 +

c1(1)
n

+
c1(2)
n2 + · · ·

]
,

with c1(1) ≈ −15.43155325, and

u2(n) ∼ (17 − 12
√

2)nn−3/2
[
1 +

c2(1)
n

+
c2(2)
n2 + · · ·

]
,

with c2(1) ≈ −1.068446129. Since u2(n) → 0, it follows that u(n) = cu1(n)
for some constant c.



380 8. Asymptotic Behavior of Difference Equations

Example 8.38. Laguerre Polynomials [147]

Laguerre polynomials Lβ
n(x) are defined for β > −1, 0 < x < ∞, by the

following formula, called Rodrigues’ formula:

Lβ
n(x) =

1
n!

exx−β dn

d xn

(
e−x xn+α

)
=

n∑
m=0

(−1)m

(
n + β

n − m

)
xm

m!
.

It can be shown (see Appendix F) that Lβ
n(x) satisfies a second-order

difference equation of the form

ny(n) + (x − 2n − β + 1)y(n − 1) + (n + β − 1)y(n − 2) = 0.

Writing this equation in the form (8.6.1) yields

y(n + 2) +
x − 2n − β − 3

n + 2
y(n + 1) +

n + β + 1
n + 2

y(n) = 0. (8.6.16)

Following the procedure in the preceding example, we obtain

an = −2 +
x − β + 1

n
− 2(x − β + 1)

n2 + · · · ,

bn = 1 +
β − 1

n
− 2(β − 1)

n2 + · · · .

The characteristic equation is λ2 − 2λ + 1 = 0, which has a multiple root
λ1 = λ2 = 1. This root does not satisfy (x−α+1)λ+α−1 = 0, and hence
we have two subnormal solutions of the form (8.6.7). Using formula (8.6.8)
we obtain α = 1

2 , β − 1
4 , γ1 = 2

√
xi, γ2 = −2

√
xi. Hence it follows from

formula (8.6.7) that we have two solutions

yr(n) = e(−1)r+12
√

nxinβ/2−1/4
∞∑

j=0

cr(j)
nj/2 , r = 1, 2, (8.6.17)

with c1(0) = c2(0) = 1,

cr(1) =
(−1)ri

48
√

x

(
4x2 − 12β2 − 24xβ − 24x + 3

)
, r = 1, 2.

Thus y2(n) = y1(n). But we know from [98, p. 245] that

Lβ
n(x) = π−1/2ex/2x−β/2−1/4nβ/2−1/4 cos

(
2
√

nx − 1
2
βπ − 1

4

)
+ O(nβ/2−3/4).
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Thus

Lβ
n(x) =

1
2
π−1/2ex/2x−β/2−1/4

{
ē(βπ/2+π/4)iy1(n) + e(βπ/2+π/4)iy2(n)

}
= π1/2ex/2x−β/2−1/4nβ/2−1/4

{
cos
(

2
√

nx − 1
2
βπ − 1

4
π

) ∞∑
s=0

As(x)
ns/2

+ sin
(

2
√

nx − 1
2
βπ − 1

4
π

) ∞∑
s=0

Bs(x)
ns/2

}
,

where A0(x) = 1, A1(x) = 0, B0(x) = 0, and

B1(x) =
1

48
√

x
(4x2 − 12β2 − 24xβ − 24x + 3).

Remark: In [148] the authors extended their analysis to equations of the
form

x(n + 2) + nrp1(n)x(n + 1) + nsp2(n)x(n) = 0,

with r and s integers and p1(n), p2(n) of the form (8.6.2).

Exercises 8.6

1. (Binomial Sums)

(a) Verify that the sequence u(n) =
∑n

k=0

(
n
k

)3 satisfies the equation

(n + 2)2u(n + 2) − (7n2 + 21n + 16)u(n + 1) − 8(n + 1)2u(n) = 0.

(b) Find an asymptotic representation of u(n).

2. (a) Verify that the sequence u(n) =
∑n

k=0

(
n
k

)4 satisfies the equation

(n + 2)3u(n + 2) − 12
(

n +
3
2

)(
n2 + 3n +

7
3

)
u(n + 1)

− 64
(

n +
3
4

)
(n + 1)

(
n +

5
4

)
u(n) = 0.

(b) Find an asymptotic representation of u(n).

3. Find asymptotic representations for the solutions of the equation

(n + 2)5u(n + 2) − ((n + 2)5 + (n + 1)5)u(n + 1) + (n + 1)5u(n) = 0.

4. Find asymptotic representations for the solutions of the difference
equation

u(n + 2) − u(n + 1) − (n + 1)u(n) = 0.
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5. Find asymptotic representations for the solutions of the difference
equation

(n + 1)(n + 2)x(n + 2) − (n + 1)[(2n + b + c + 1) + z]
× x(n + 1) + n + b)(n + c)x(n) = 0, z �= 0.

6. Find asymptotic representations for the solutions of the second-order
difference equation

(n+1)(n+2)y(n+2)− (n+1)(2n+2b+1)y(n+1)+(n+ b)2y(n) = 0.

8.7 Nonlinear Difference Equations

In this section we consider the nonlinearly perturbed system

y(n + 1) = A(n)y(n) + f(n, y(n)) (8.7.1)

along with the associated unperturbed system

x(n + 1) = A(n)x(n), (8.7.2)

where A(n) is an invertible k × k matrix function on Z
+ and f(n, y) is

a function from Z
+ × R

k → R
k that is continuous in y. Let Φ(n) be the

fundamental matrix of system (8.7.2). The first step in our analysis is to
extend the variation of constants formula (Theorem 8.19) to system (8.7.1).
Since A(n) is not assumed here to be a diagonal matrix, we need to replace
Definition 8.17 by a more general definition of dichotomy.

Definition 8.39. System (8.7.2) is said to possess an ordinary dichotomy
if there exists a projection matrix P and a positive constant M such that

|Φ(n)PΦ−1(m)| ≤ M, for n0 ≤ m ≤ n,

|Φ(n)(I − P )Φ−1(m)| ≤ M, for n0 ≤ n ≤ m. (8.7.3)

Notice that if A(n) = diag(λ1(n), . . . , λk(n)), then this definition reduces
to Definition 8.17 if we let Φ1(n) = Φ(n)P and Φ2(n) = Φ(n)(I − P ).

Theorem 8.40 [44], [121], [131]. Suppose that system (8.7.2) possesses
an ordinary dichotomy. If, in addition,

∞∑
j=n0

|f(j, 0)| < ∞ (8.7.4)

and

|f(n, x) − f(n, y)| ≤ γ(n)|x − y|, (8.7.5)

where γ(n) ∈ l1([n0,∞)) i.e.,
∑∞

j=n0
γ(j) < ∞, then for each bounded

solution x(n) of (8.7.2) there corresponds a bounded solution y(n) of (8.7.1)
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and vice versa. Furthermore, y(n) is given by the formula

y(n) = x(n) +
n−1∑
j=n0

Φ(n)PΦ−1(j + 1)f(j, y(j))

−
∞∑

j=n

Φ(n)(I − P )Φ−1(j + 1)f(j, y(j)). (8.7.6)

Proof. The proof mimics that of Theorem 8.19 with some obvious mod-
ifications. Let x(n) be a bounded solution of (8.7.2). Define a sequence
{yi(n)} (i = 1, 2, . . .) successively by letting y1(n) = x(n) and

yi+1(n) = x(n) +
n−1∑
j=n0

Φ(n)PΦ−1(j + 1)f(j, yi(j))

−
∞∑

j=n

Φ(n)(I − P )Φ−1(j + 1)f(j, yi(j)). (8.7.7)

We use mathematical induction to show that yi(n) is bounded on [n0,∞)
for each i. First we notice that by assumption, |y1(n)| ≤ c1. Now suppose
that |yi(n)| ≤ ci. Then it follows from (8.7.4), (8.7.5), and (8.7.7) that

|yi+1(n)| ≤ c1 + M

∞∑
j=n0

[γ(j)|yi(j)| + |f(j, 0)|]

≤ c1 + M

⎡⎣ ∞∑
j=n0

ciγ(j) + M̃

⎤⎦ = ci+1,

where
∞∑

j=n0

|f(j, 0)| = M̃.

Hence yi(n) is bounded for each i.
As in the proof of Theorem 8.19, one may show that the sequence {yi(n)}

converges uniformly on [n0,∞) to a bounded solution y(n) of (8.7.1). Con-
versely, let y(n) be a bounded solution of (8.7.1). Then one may verify
easily that

ỹ(n) =
n−1∑
j=n0

Φ(n)PΦ−1(j+1)f(j, ỹ(j))−
∞∑

j=n

Φ(n)(I−P )Φ−1(j+1)f(j, ỹ(j))

is another bounded solution of (8.7.1). Hence x(n) = y(n) − ỹ(n) is a
bounded solution of (8.7.2). �

The preceding result does not provide enough information about the
asymptotic behavior of solutions of system equation (8.7.1). In order to
obtain such results we need one more assumption on (8.7.2).
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Theorem 8.41 [44]. Let all the assumptions of Theorem 8.40 hold. If
Φ(n)P → 0 as n → ∞, then for each bounded solution x(n) of (8.7.2)
there corresponds a bounded solution y(n) of (8.7.1) such that

y(n) = x(n) + o(1), (8.7.8)

or

y(n) ∼ x(n).

Proof. The proof is similar to the proof of Theorem 8.20 and is left to
the reader as Exercises 8.7, Problem 7. �

Example 8.42. Consider the equation(
y1(n + 1)
y2(n + 1)

)
=

(
3 0
0 1/2

)(
y1(n)
y2(n)

)
+

(
sin y1(n)/n2

(1 − cos y2(n))/n2

)
. (8.7.9)

Here

A(n) =

(
3 0
0 1/2

)
, f(n, y) =

(
sin y1/n2

(1 − cos y2)/n2

)
.

Using the Euclidean norm we obtain
∑∞

j=1 |f(j, 0)| = 0. Moreover, for

x =

(
x1

x2

)
, y =

(
y1

y2

)
,

we have

|f(n, x) − f(n, y)| =
1
n2

∣∣∣∣∣sinx1 − sin y1

cos x2 − cos y2

∣∣∣∣∣
=

1
n2

√
(sinx1 − sin y1)2 + (cos x2 − cos y2)2. (8.7.10)

By the Mean Value Theorem,

|sinx1 − sin y1|
|x1 − y1| = |cos c|, for some c between x1 and y1,

≤ 1,

and
|cos x2 − cos y2|

|x2 − y2| ≤ 1.

Hence substituting into (8.7.10), we obtain

|f(n, x) − f(n, y)| ≤ 1
n2 |x − y|.

The associated homogeneous equation

x(n + 1) = A(n)x(n)
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has a fundamental matrix Φ(n) =
( 3n 0
0 (1/2)n

)
and two solutions; one

bounded, x1(n) =
(0
1

)
( 1
2 )n, and one unbounded, x2(n) =

(1
0

)
3n. If we let

the projection matrix be

P =

(
0 0
0 1

)
,

then

Φ(n)P =

(
0 0
0 (1/2)n

)
→ 0

as n → ∞.
Hence all the conditions of Theorem 8.41 hold. Thus corresponding to

the bounded solution x1(n) =
(0
1

)
( 1
2 )n there corresponds a solution y(n) of

(8.7.9) such that

y(n) ∼
(

0
1

)(
1
2

)n

.

Next we specialize Theorem 8.41 to the following kth-order nonlinear
equation of Poincaré type:

y(n + k) + (a1 + p1(n))y(n + k − 1) + · · · + (ak + pk(n))y(n) = f(n, y(n)).
(8.7.11)

Corollary 8.43. Suppose that the characteristic equation λk + a1λ
k−1 +

· · · + ak = 0 has distinct roots λi, 1 ≤ i ≤ k, and
∑∞

n=1 |pj(n)| < ∞, 1 ≤
j ≤ k. Assume further that conditions (8.7.4) and (8.7.5) hold. Then for
each λj with |λj | ≤ 1 there corresponds a solution yj of (8.7.11) such that
yj(n) ∼ λn

j .

Proof. By Corollary 8.27, the homogeneous part of (8.7.11),

x(n + k) + (a1 + p1(n))x(n + k − 1) + · · · + (ak + pk(n))x(n) = 0,

has solutions x1(n), x2(n), . . . , xk(n) with xj(n) ∼ λn
j . If |λj | ≤ 1, then

xj(n) is bounded. Corresponding to this bounded solution xj(n) there is a
solution yj(n) of (8.7.11) with yj(n) ∼ xj(n). Thus yj(n) ∼ λn

j . �

Example 8.44. Investigate the asymptotic behavior of solutions of the
equation

y(n + 2) − 3
2
y(n + 1) +

1
2
y(n) =

e−n

1 + y2(n)
. (8.7.12)

Solution The characteristic equation is given by

λ2 − 3
2
λ +

1
2

= 0

with distinct roots

λ1 = 1, λ2 =
1
2
.
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Now,
∞∑

n=0

f(n, 0) =
∞∑

n=0

e−n < ∞.

Moreover,

|f(n, x) − f(n, y)| = e−n

∣∣∣∣ 1
1 + x2 − 1

1 + y2

∣∣∣∣
= e−n |x + y|

(1 + x2 + y2 + x2y2)
· |x − y|

≤ |x − y|.
Hence all the assumptions of Corollary 8.43 are satisfied. Consequently,
(8.7.12) has two solutions y1(n) ∼ 1 and y2(n) ∼ (1

2 )n.

Exercises 8.7

In Problems 1 through 3 investigate the asymptotic behavior of solutions
of the equation y(n + 1) = A(n)y(n) + f(n, y(n)).

1. A(n) =

⎛⎜⎝
1
2

0

0
1

n + 2

⎞⎟⎠ , f(n, y) =

(
e−n cos y1

0

)
.

2. A(n) =

(
2 3
3 −1

)
, f(n, y) =

⎛⎝ 1
n3

0

⎞⎠.

3. A(n) =

(
3 2
2 1

)
, f(n, y) =

(
y1ne−n

y2e
−n

)
.

4. Study the asymptotic behavior of solutions of

y(n + 2) +
(

3
2

+
1
n2

)
y(n + 1) − (1 + e−n)y(n) =

sin y(n)
n2 .

5. Study the asymptotic behavior of solutions of

y(n + 2) − 4y(n + 1) + 3y(n) =
1

n2 + y2 , n ≥ 1.

6. Study the asymptotic behavior of solutions of y(n+2)+(1+e−n)y(n) =
e−n.

7. Prove Theorem 8.41.

In Problems 8 through 10 investigate the asymptotic behavior of the
difference equation.
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8. ∆2y(n) + e−ny3(n) = 0.

9. ∆2y(n) − 1
n2 (|y(n)|)1/2 = 0.

10. ∆2y(n) +
1
n2 (y(n))1/3 = 0.

In Problems 11 and 12 we consider the nonlinear equation

x(n + 1) = f(x(n)) (8.7.13)

with f(0) = 0, 0 < |f ′(0)| < 1, and f ′ continuous at 0.

11. Show that there exist δ > 0 and 0 < α < 1 such that

|x(n)| ≤ αn|x(0)|, n ∈ Z
+,

for all solutions x(n) of (8.7.13) with |x(0)| < δ.

12. Suppose that f ′′ is bounded near 0, and |f ′(x0)| < 1 for |x0| < δ.
Prove that for any solution x(n) of (8.7.11) with |x(0)| < δ we have
x(n) ∼ cx(0)(f ′(0))n as n → ∞, where c depends on x(0).

13. Use Problem 12 to find an asymptotic representation of solutions of
the equation

x(n + 1) = x(n)/(1 + x(n)), x(0) = 0.1.

14. Find an asymptotic representation of solutions of the equation

u(n + 1) = u(n) +
1

u(n)
.

8.8 Extensions of the Poincaré and Perron
Theorems

8.8.1 An Extension of Perron’s Second Theorem
Coffman [22] considers the nonlinear system

y(n + 1) = Cy(n) + f(n, y(n)) (8.8.1)

where C is a k × k matrix and f : Z
+ × R

k → R
k is continuous. The

following result extends Perron’s Second Theorem to nonlinear systems.

Theorem 8.45 [22]. Suppose that ‖f(n,y)‖
‖y‖ → 0 as (n, y) → (∞, 0). If

y(n) is a solution of (8.8.1) such that y(n) �= 0 for all large n and y(n) → 0
as n → ∞, then

lim
n→∞

n
√

‖y(n)‖ = |λi| (8.8.2)

for some eigenvalue λi of A. Moreover, |λi| ≤ 1.
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Using the above theorem, Pituk [122] was able to improve Perron’s Sec-
ond Theorem such that conclusion (8.2.12) is now valid for all nontrivial
solutions. As a bonus we get a system version of this new result.

Consider again the perturbed linear system

y(n + 1) = [A + B(n)]y(n) (8.8.3)

such that A is a k × k constant matrix and

lim
n→∞ ‖B(n)‖ = 0. (8.8.4)

Theorem 8.46 [122]. Under condition (8.8.4), for any solution y(n) of
(8.8.3), either y(n) = 0 for all large n or

lim
n→∞

n
√

‖y(n)‖ = |λi| (8.8.5)

for some eigenvalue λi of A.

Proof. Let y(n) be a solution of (8.8.3). Clearly if y(N) = 0 for some N ,
then y(n) = 0 for all n ≥ N . Hence we assume without loss of generality
that y(n) �= 0 for n ≥ n0. Let λ1, λ2, . . . , λk be the eigenvalues of A. Let
µ > max

1≤i≤k
|λi| and let

z(n) = x(n)/µn, n ≥ n0. (8.8.6)

Substituting in (8.8.3) yields z(n + 1) =
[

1
µ

A +
1
µ

B(n)
]

z(n) or

z(n + 1) = Cz(n) + E(n)z(n) (8.8.7)

where C = 1
µA, E(n) = 1

µB(n). Notice that the eigenvalues of C are
1
µλ1,

1
µλ2, . . . ,

1
µλk, where λi, 1 ≤ i ≤ k, are the eigenvalues of A. Moreover∣∣∣ 1µλi

∣∣∣ < 1, for 1 ≤ i ≤ k. By virtue of (8.8.4), ‖f(n,z)‖
‖z‖ ≤ µ−1‖B(n)‖ →

0 as n → ∞. Hence by Corollary 4.34, the zero solution of (8.8.7) is (glob-
ally) exponentially stable. Thus z(n) → 0 as n → ∞ for every solution z(n)
of (8.8.7). By Coffman’s Theorem 8.45 we have limn→∞ n

√‖z(n)‖ = 1
µ |λi|,

for some 1 ≤ i ≤ k. This implies that limn→∞ n
√‖y(n)‖ = |λi|, for some

1 ≤ i ≤ k. �

Now we specialize the preceding result to the scalar difference equation
of Poincaré type

x(n + k) + p1(n)x(n + k − 1) + · · · + pk(n)x(n) = 0. (8.8.8)

Using the l∞-norm ‖y(n)‖∞ = max{|xi(n)| | 1 ≤ i ≤ k}, we obtain the
following extension of Perron’s Second Theorem.
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Theorem 8.47. Consider the difference equation of Poincaré type (8.8.8).
If x(n) is a solution, then either x(n) = 0 for all large n or

lim sup
n→∞

n
√

|x(n)| = |λi|, (8.8.9)

for some characteristic root λi of (8.8.8). 2 3

Proof. We first convert (8.8.8) to a system of the form (8.8.3), where
y(n) = (x(n), x(n + 1), . . . , x(n + k − 1))T . Notice that ‖y(n)‖∞ =
max{|x(n)|, |x(n + 1)|, . . . , |x(n + k − 1)|}. Conclusion (8.8.9) follows from
Theorem 8.46. �

Using the l1-norm ‖y(n)‖1 we obtain the following interesting result.

Theorem 8.48. If x(n) is a solution of the difference equation of Poincaré
type (8.8.8), then either x(n) = 0 for all large n or

lim
n→∞

n
√

|x(n)| + |x(n + 1)| + · · · + |x(n + k − 1)|.

Remarks:

(i) The conclusion (8.8.9) cannot be improved, the lim sup cannot be
replaced by lim as shown by considering the equation

x(n + 2) − x(n) = 0.

This equation has the solution x(n) = 1 + (−1)n, where
lim supn→∞

n
√|x(n)| = 1 = |λ1| = |λ2|. However, limn→∞ n

√|x(n)|
does not exist.

(ii) For a direct proof of Theorem 8.46 without the use of Coffman’s
Theorem, the reader may consult the paper by Pituk [122].

8.8.2 Poincaré’s Theorem Revisited
The main objective of this subsection is to extend Poincaré’s Theorem
to systems of the form (8.8.3). So as a by-product we prove Poincaré’s
Theorem for scalar difference equations. The exposition here is based on a
recent paper by Abu-Saris, Elaydi, and Jang [1]. The following definitions
were developed in a seminar at Trinity University led by Ulrich Krause of
the University of Bremen and the author.

2This was conjectured by U. Krause and S. Elaydi in a seminar at Trinity
University.

3Mihály Pituk, a Professor of Mathematics at the University of Veszprém,
received the best paper award (2002) from the International Society of Difference
Equations for proving Theorem 8.47 and other related results.



390 8. Asymptotic Behavior of Difference Equations

Definition 8.49. Let y(n) be a solution of (8.8.3). Then y(n) is said to
be of:

(1) Weak Poincaré type (WP) if

lim
n→∞

n
√

‖y(n)‖ = |λ|

for some eigenvalue λ of A.

(2) Poincaré type (P) if

lim
n→∞

‖y(n + 1)‖
‖y(n)‖ = |λ|

for some eigenvalue λ of A.

(3) Strong Poincaré type (SP) if

lim
n→∞

y(n)
λn

= C

for some eigenvalue λ of A and a nonzero vector C.

(4) Ergodic Poincaré type (EP) if

lim
n→∞

y(n)
‖y(n)‖ = v

for some eigenvector v of A.

The following examples [1] illustrate the interrelationship among the
above concepts.

Example 8.50. Consider the system

y(n + 1) =

(
1 2
0 1

)
y(n), n ≥ 0.

Then

y(n) = α(−1)n

(
1
0

)
+ β

(
1
1

)
=

(
β + α(−1)n

β

)
is a solution. Notice that

lim
n→∞

n
√

‖y(n)‖ = 1

but

lim
n→∞

‖y(n + 1)‖
‖y(n)‖ =

{
β/(β + α) if n is even,

(β + α)/β if n is odd.

Hence y(n) is weak Poincaré but not Poincaré.
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Example 8.51. Consider the system

y(n + 1) =

⎛⎝−n + 1
2n

0

0 1

⎞⎠ y(n), n ≥ 1, y(1) =

(
1
0

)
.

The solution is given by

y(n) =
(−1)n−1n

2n−1

(
1
0

)
, n ≥ 1.

Notice that limn→∞
‖y(n+1)‖

‖y(n)‖ = 1
2 , where − 1

2 is an eigenvalue. How-

ever, limn→∞
y(n)

‖y(n)‖ = limn→∞(−1)n−1

(
1
0

)
does not exist. Thus y(n) is

Poincaré but not ergodic Poincaré.

Example 8.52. Contemplate the system

y(n + 1) =

⎛⎝n + 1
n

0

0 1

⎞⎠ y(n), n ≥ 1, y(1) =

(
1
0

)
.

The solution is given by

y(n) = n

(
1
0

)
, n ≥ 1.

Notice that y(n)
‖y(n)‖ =

(
1
0

)
, where

(
1
0

)
is an eigenvector that corresponds

to the eigenvalue 1. However limn→∞
y(n)
1n diverges. Hence y(n) is ergodic

Poincaré but not strong Poincaré.

To facilitate the proof of the main result we present a definition and two
lemmas.

Definition 8.53. A solution y(n) = (y1(n), y2(n), . . . , yi(n))T of (8.8.3) is
said to have the index for maximum property (IMP) if there exists an index
r ∈ {1, 2, . . . , k} such that, for sufficiently large n,

‖y(n)‖ = max
1≤i≤k

|yi(n)| = |yr(n)|.

Observe that solutions in Examples 8.51 and 8.52 possess the IMP, while
the solution in Example 8.50 does not possess the IMP.

Lemma 8.54. Suppose that A = diag(λ1, λ2, . . . , λk) such that 0 < |λ1| <
|λ2| < · · · < |λk| and (8.8.4) holds. Then every solution of (8.8.3) possesses
the IMP.
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Proof. Since limn→∞ ‖B(n)‖ = 0, for any ε > 0, there exists N1 > 0
such that ‖B(n)‖ = max1≤i≤k

∑k
j=1 |bij(n)| < ε for n ≥ N1. We choose

ε > 0 such that

|λi| + ε

|λj | − ε
< 1 for 1 ≤ i < j ≤ k.

Let y(n) be a nontrivial solution of (8.8.3) and let rn be the first index
such that

‖y(n)‖ = |yrn
(n)|.

We claim that rn is nondecreasing. To see this suppose that rn+1 < rn,
then

|yi(n + 1)| ≤ |λi||yi(n)| + ε|yrn
(n)|,

|yi(n + 1)| ≥ |λi||yi(n)| − ε|yrn
(n)|,

for all n ≥ N1. This implies that

|yrn+1(n + 1)|
|yrn(n + 1)| ≤ |λrn+1 | |yrn+1(n)| + ε|yrn(n)|

|λrn | |yrn(n)| − ε|yrn(n)|
=

|λrn+1 | |yrn+1(n)|/|yrn(n)| + ε

|λrn | − ε

≤ |λrn+1|| + ε

|λrn | − ε
< 1

which contradicts the definition of rn+1. Since rn assumes only finitely
many values, the result follows. �

Lemma 8.55. Let limn→∞ ‖B(n)‖ = 0. Suppose that A = diag(λ1, . . . , λk)
such that 0 < |λ1| ≤ · · · ≤ |λk|. Then every nonzero solution y(n) of (8.8.3)
that has the IMP with ‖y(n)‖ = |yr(n)| for all large n satisfies

lim
n→∞

|yj(n)|
|yr(n)| = 0 for |λj | �= |λr|.

Proof. Let y(n) be a nonzero solution of (8.8.3) that has the IMP. Since
limn→∞ ‖B(n)‖ = 0, for any ε > 0 there exists N > 0 such that ‖B(n)‖ < ε
and ‖y(n)‖ = |yr(n)| for n ≥ N . We choose ε > 0 so that |λi|/(|λj |−ε) < 1
for 1 ≤ i < j ≤ k and |λi| �= |λj |. Observe that, for n ≥ N ,

|yi(n + 1)| ≤ |λi||yi(n)| + ε|yrn(n)|,
|yi(n + 1)| ≥ |λi||yi(n)| − ε|yrn(n)|,

for 1 ≤ i ≤ k. Suppose that |λj | �= |λr|. We first consider the case when
j > r. Let

s = sup
n

|yj(n)|
|yr(n)| .
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Then there exists a subsequence ni such that

lim
ni→∞

|yj(ni)|
|yr(ni)| = s.

Observe that
|yj(ni + 1)|
|yr(ni + 1)| ≥ |λj | |yj(ni)| − ε|yr(ni)|

(|λr| + ε)|yr(ni)| =
|λj | |yj(ni)|/|yr(ni)| − ε

|λr| + ε

for ni > N . Therefore,

s ≥ |λj |s − ε

|λj | + ε

and, consequently,

s ≤ ε

|λj | − |λr| − ε

for all sufficiently small ε. This implies that s = 0 and the assertion is
shown.

On the other hand, if j < r, then

|yj(n + 1)|
|yr(n + 1)| ≤ |λj | |yj(n)| + ε|yr(n)|

(|λr| − ε)|yr(n)| =
( |λj |

|λr| − ε

) |yj(n)|
|yr(n)| +

ε

|λr| − ε

for n > N . Thus

|yj(n)|
|yr(n)| ≤

( |λj |
|λr| − ε

)n−N |yj(N)|
|yr(N)| +

⎡⎢⎣1 −
( |λj |

|λr|−ε

)n−N

1 − |λj |
|λr|−ε

⎤⎥⎦ ε

|λr| − ε

and as a result

lim sup
n→∞

|yj(n)|
|yr(n)| ≤ ε

|λr| − |λj | − ε

for all sufficiently small ε. This implies that

lim sup
n→∞

|yj(n)|
|yr(n)| = 0

and complete the proof. �

By using Lemmas 8.54 and 8.55 we present a sufficient condition for
which (8.8.3) has the Poincaré property.

Theorem 8.56. Suppose that the eigenvalues of A have distinct moduli
and limn→∞ ‖B(n)‖ = 0. Then (8.8.3) possesses the Poincaré property P.

Proof. We may assume, without loss of generality, that A is in diagonal
form, i.e., A = diag(λ1, λ2, . . . , λk), where 0 < |λ1| < · · · < |λk|. Let y(n)
be a nontrivial solution of (8.8.3). It follows from Lemma 8.54 that

‖y(n)‖ = |yr(n)|
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for all large n, for some 1 ≤ r ≤ k. Moreover, Lemma 8.55 implies

lim
n→∞

|yi(n)|
|yr(n)| = 0

for 1 ≤ i ≤ k such that i �= r. Therefore, if i �= r, then

lim
n→∞

yi(n + 1)
|yr(n)| = lim

n→∞

⎡⎣λi
yi(n)
|yr(n)| +

k∑
j=1

bij(n)
yi(n)
|yr(n)|

⎤⎦ = 0

and if i = 1, we have

lim
n→∞

yr(n + 1) − λryr(n)
|yr(n)| = lim

n→∞

k∑
j=1

bij(n)
yj(n)
|yr(n)| = 0.

Consequently,

lim
n→∞

‖y(n + 1) − λry(n)‖
‖y(n)‖ = 0.

Since

‖y(n + 1)‖
‖y(n)‖ − |λr| ≤ ‖y(n + 1) − λr‖

‖y(n)‖ ,

it follows that

lim
n→∞

‖y(n + 1)‖
‖y(n)‖ = |λr|.

The proof is now complete. �

As an immediate consequence of the above result, we obtain the original
Poincaré’ Theorem.

Proof of Theorem 8.9. Write equation (8.2.7) as a system of the form
(8.8.3). Then a solution y(n) of (8.8.3) is of the form y(n) = (x(n), x(n +
1), . . . , x(n + k − 1))T . By Theorem 8.56 we have

lim
n→∞

‖y(n + 1)‖
‖y(n)‖ = |λ| (8.8.10)

for some eigenvalue λ. By Lemma 8.54, there exists r ∈ {1, 2, . . . , k} such
that

‖y(n)‖ = |yr(n)| = |x(n + r − 1)|.
Substituting (8.8.10) yields

lim
n→∞

|x(n + r)|
|x(n + r − 1)| = lim

n→∞
|x(n + 1)|

|x(n)| = |λ|
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where λ is a characteristic root of (8.2.7). Since x(n+1)
x(n) ≤

∣∣∣x(n+1)
x(n)

∣∣∣,
limn→∞

x(n+1)
x(n) exists. Hence limn→∞

x(n+1)
x(n) = λ. (See Exercises 8.2,

Problem 9.) �

Term Projects 8.8

1. Find the relationships among the notions of WP, P, SP, and EP for
both scalar equations and systems of Poincaré type.

2. Find sufficient conditions for EP and SP.

3. Extend Perron’s First Theorem to systems.



9
Applications to Continued Fractions
and Orthogonal Polynomials

9.1 Continued Fractions: Fundamental
Recurrence Formula

Continued fractions are intimately connected with second-order difference
equations. Every continued fraction may be associated with a second-order
difference equation; and conversely, every homogeneous second-order dif-
ference equation may be derived from some continued fraction. The first
point of view is useful for computing continued fractions, the second for
computing the minimal solutions.

Let {an}∞
n=1 and {bn}∞

n=0 be two sequences of real or complex numbers.
A continued fraction is of the form

b0 +
a1

b1 +
a2

b2 +
.. . +

an

bn +
.. .

or, in compact form,

b0 +
a1

b1 +
a2

b2 +
a3

b3 +
. . . (9.1.1)

or

b0 + K(an/bn)

or

b0 + K∞
n=1(an/bn).

397
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The nth approximant of a continued fraction is defined as

C(n) =
A(n)
B(n)

= b0 + Kn
j=1(aj/bj)

= b0 +
a1

b1 +
a2

b2 +
. . .

an

bn
. (9.1.2)

The sequences A(n) and B(n) are called the nth partial numerator and
the nth partial denominator of the continued fraction, respectively. It is
always assumed that A(n)

B(n) is in reduced form, that is, A(n) and B(n) are
coprime (i.e., they have no common factors). An alternative way of defining
a continued fraction is through the use of a “Möbius” transformation, which
is defined as

t0(u) = b0 + u, tn(u) =
an

bn + u
, n = 1, 2, 3, . . . . (9.1.3)

Then it is easy to see that the nth approximant is given by

C(n) = (t0 ◦ t1 ◦ · · · ◦ tn)(0). (9.1.4)

Definition 9.1. The continued fraction (9.1.1) is said to converge to a
finite limit L if limn→∞ C(n) = L, and it is said to diverge otherwise.

Next we show that both the nth partial numerator A(n) and the
nth partial denominator B(n) of the continued fraction (9.1.1) satisfy
a second-order difference equation commonly known in the literature as
the fundamental recurrence formula for continued fractions. The explicit
statement of this important result now follows.

Theorem 9.2. Consider the continued fraction b0+K∞
n=1(an/bn) with nth

approximant C(n) = A(n)/B(n). Then A(n) and B(n) satisfy, respectively,
the difference equations

A(n) = bnA(n − 1) + anA(n − 2), A(−1) = 1, A(0) = b0,
B(n) = bnB(n − 1) + anB(n − 2), B(−1) = 0, B(0) = 1.

(9.1.5)

Proof. The proof of (9.1.5) will be established using mathematical
induction on n.

Observe that from (9.1.5) we obtain

A(1) = b1A(0) + a1A(−1) = b1b0 + a,

B(1) = b1B(0) + a1B(−1) = b1.

Hence, (9.1.5) is valid for n = 1. Next, we assume that it is true for n = m,
that is,

A(m) = bmA(m − 1) + amA(m − 2), A(−1) = 1,
B(m) = bmB(m − 1) + amB(m − 2), B(−1) = 0.
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Now A(m + 1)/B(m + 1) is obtained from A(m)/B(m) by replacing bm

by bm + am+1
bm+1

. Then we can write A(m + 1)/B(m + 1) = A∗(m)/B∗(m),
where

A∗(m) =
(

bm +
am+1

bm+1

)
A(m − 1) + amA(m − 2)

= b−1
m+1 (bm+1 A(m) + am+1 A(m − 1)) .

Similarly,

B∗(m) = b−1
m+1 (bm+1 B(m) + am+1 B(m − 1)) .

Hence

C(m + 1) =
A(m + 1)
B(m + 1)

=
bm+1A(m) + am+1A(m − 1)
bm+1B(m) + am+1B(m − 1)

,

which establishes (9.1.5), and the proof of the theorem is now com-
plete. �

The converse of the preceding theorem is also true. In other words, every
homogeneous second-order difference equation gives rise to an associated
continued fraction.

Suppose now we are given the difference equation

x(n) − bnx(n − 1) − anx(n − 2) = 0, an �= 0 for n ∈ Z
+. (9.1.6)

Dividing (9.1.6) by x(n − 1) and then setting y(n) = x(n)
x(n−1) yields y(n) −

bn = an

y(n−1) .

Hence,

y(n − 1) =
an

−bn + y(n)
.

Applying this formula repeatedly, with n successively increasing, we obtain

y(n − 1) =
an

−bn+
an+1

−bn+1+
an+2

−bn+2 + . . .
.

In particular, when n = 1, we have

y(0) =
x(0)

x(−1)
=

a1

−b1+
a2

−b2+
a3

−b3+
. (9.1.7)

Remark 9.3. We would like to make the following important observations
concerning (9.1.7):

(a) Formula (9.1.7) is formal in the sense that it does not tell us whether
the continued fraction K(an/−bn) converges or diverges.

(b) Even if the continued fraction K(an/−bn) converges, formula (9.1.7)
does not show us how to pick the particular solution x(n) for which
x(0)/x(−1) is the limit of the continued fraction.
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(c) It is not difficult to show that if K(an/−bn) converges to x(0)/x(−1),
then K(an/bn) converges to −x(0)/x(−1).

A Formula for C(n)

We end this section by providing a formula for computing the nth
approximant C(n) = A(n)

B(n) of the continued fraction b0 + K(an/bn).

To find the formula, we multiply the first equation in (9.1.5) by B(n−1)
and the second by A(n − 1) and then subtract one from the other. This
yields

A(n)B(n−1)−B(n)A(n−1) = −an[A(n−1)B(n−2)−B(n−1)A(n−2)],

which is equivalent to

u(n) = −anu(n − 1), u(0) = −1,

where u(n) = A(n)B(n − 1) − B(n)A(n − 1). Hence,

u(n) = A(n)B(n − 1) − B(n)A(n − 1) = (−1)n+1a1a2 · · · an, n ≥ 1.
(9.1.8)

Dividing both sides by B(n)B(n − 1) yields

∆
(

A(n − 1)
B(n − 1)

)
=

(−1)n+1a1a2 · · · an

B(n − 1)B(n)
. (9.1.9)

Taking the antidifference ∆−1 of both sides of (9.1.9), we obtain (see
formula (2.1.16))

C(n − 1) =
A(n − 1)
B(n − 1)

=
A(0)
B(0)

+
n−1∑
k=1

(−1)k+1a1a2 · · · ak

B(k − 1)B(k)
.

This produces the desired formula

C(n) = b0 +
n∑

k=1

(−1)k+1a1a2 · · · ak

B(k − 1)B(k)
. (9.1.10)

9.2 Convergence of Continued Fractions

Two continued fractions K(an/bn) and K(a∗
n/b∗

n) are said to be equiva-
lent, denoted by the symbol K(an/bn) ≈ K(a∗

n/b∗
n), if they have the same

sequence of approximants.
Let {dn}∞

n=1 be any sequence of nonzero complex numbers. Then the
Möbius transformation tn(u) = an

bn+u can be represented as tn(u) =
dnan

dnbn+dnu ; which may be repeated as a composition of two transformations
tn = sn ◦ rn, where

sn(u) =
dnan

dnbn + u
and rn(u) = dnu.
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Hence we have

t1 ◦ t2 ◦ · · · ◦ tn = s1 ◦ r1 ◦ s2 ◦ r2 ◦ · · · ◦ sn ◦ rn

= s1 ◦ (r1 ◦ s2) ◦ (r2 ◦ s3) ◦ · · · ◦ (rn−1 ◦ sn) ◦ rn.

Define t∗n(u) := rn−1 ◦ sn(u) = dn−1 dn an

dn bn+u . Then if d0 := 1,

C(n) = (t1 ◦ t2 ◦ · · · ◦ tn)(0) = (t∗1 ◦ t∗2 ◦ · · · ◦ t∗n)(0).

This yields the important equivalence relation

K (an/bn) ≈ K

(
dn−1dnan

dnbn

)
, (9.2.1)

which holds for any arbitrary sequence of nonzero complex numbers d0 = 1,
d1, d2, . . . .

Observe that if we choose the sequence {dn} such that dnbn = 1, then
(9.2.1) becomes

K(an/bn) ≈ K

(
bn−1bnan

1

)
. (9.2.2)

Similarly, one can show that

K(an/bn) ≈ K(1/bndn), (9.2.3)

where d1 = 1
a1

, dn = 1
andn−1

. Hence

d2n =
a1a3 · · · a2n−1

a2a4 · · · a2n
, d2n+1 =

a2a4 · · · a2n

a1a3 · · · a2n+1
, (9.2.4)

(Exercises 9.1 and 9.2, Problem 8).
We are now ready to give the first convergence theorem.

Theorem 9.4. Let bn > 0, n = 1, 2, 3, . . . . Then the continued fraction
K(1/bn) is convergent if and only if the infinite series

∑∞
n=1 bn is divergent.

Proof. From (9.1.10) we have

K(1/bn) =
∞∑

r=1

(−1)r+1

B(r − 1)B(r)
. (9.2.5)

Hence K(1/bn) converges if and only if the alternating series on the right-
hand side of (9.2.5) converges. Now the fundamental recurrence formula
for K(1/bn) is

B(n) = B(n − 2) + bnB(n − 1), B(0) = 1, B(1) = b1. (9.2.6)

This implies that B(n + 1) > B(n − 1), n = 1, 2, 3, . . . , and, consequently,
B(n)B(n + 1) > B(n − 1)B(n), n = 1, 2, 3, . . . . Thus

∣∣∣ (−1)n+1

B(n−1)B(n)

∣∣∣ is
monotonically decreasing. Hence the series (9.2.5) converges if and only if

lim
n→∞ B(n − 1)B(n) = ∞. (9.2.7)
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Again from (9.2.6) we have B(n) ≥ γ = min(1, b1), n = 1, 2, 3, . . . , and,
consequently,

B(n − 1) B(n) = B(n − 2)B(n − 1) + bnB2(n − 1)

≥ B(n − 2)B(n − 1) + bnγ2

≥ (b1 + b2 + · · · + bn)γ2.

Thus if
∑∞

i=1 bi diverges, (9.2.7) holds and K(1/bn) converges. On the other
hand, we have, from (9.2.6),

B(n−1)+B(n) = B(n−2)+(1+bn)B(n−1) ≤ (1+bn)[B(n−1)+B(n−2)].

It follows by induction that

B(n − 1) + B(n) ≤ (1 + b1)(1 + b2) · · · (1 + bn) < eb1+b2+···+bn .

Thus if
∞∑

n=1

bn converges to L, then B(n − 1) + B(n) ≤ eL. Therefore,

B(n − 1)B(n) ≤ 1
4
(B(n − 1) + B(n))2 ≤ 1

4
e2L.

Consequently, (9.2.7) does not hold, and hence the continued fraction
diverges. �

A more general criterion for convergence was given by Pincherle in
his fundamental work [120] on continued fractions. Consider again the
difference equation

x(n) − bnx(n − 1) − anx(n − 2) = 0, an �= 0 for n ∈ Z
+. (9.2.8)

Theorem 9.5 (Pincherle). The continued fraction
a1

b1+
a2

b2+
a3

b3+
. . . (9.2.9)

converges if and only if (9.2.8) has a minimal solution ϕ(n), with ϕ(0) �= 0.
In case of convergence, moreover, one has

−ϕ(n − 1)
ϕ(n − 2)

=
an

bn+
an+1

bn+1+
an+2

bn+2+
. . . , n = 1, 2, 3, . . . . (9.2.10)

Proof.

(a) Assume that the continued fraction (9.2.9) converges. Hence if
A(n) and B(n) are the the nth partial numerator and nth partial
denominator of (9.2.9), respectively, then

lim
n→∞

A(n)
B(n)

= L.

It follows from Theorem 9.2 that A(n) and B(n) are solutions of (9.2.8)
with A(−1) = 1, A(0) = 0, and B(−1) = 0, B(0) = 1.
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We claim that

ϕ(n) = A(n) − LB(n) (9.2.11)

is a minimal solution of (9.2.8).

To prove the claim, let y(n) = αA(n) + βB(n), for some scalars α and
β, be any other solution of (9.2.8). Then

lim
n→∞

ϕ(n)
y(n)

= lim
n→∞

A(n) − LB(n)
αA(n) + βB(n)

= lim
n→∞

(A(n)/B(n)) − L

α (A(n)/B(n)) + β
= 0.

This establishes the claim. Furthermore, ϕ(−1) = 1 �= 0.

(b) Conversely, assume that (9.2.8) possesses a minimal solution ϕ(n),
with ϕ(−1) �= 0. From (9.1.7), the associated continued fraction to
(9.2.8) is K(an/−bn) with the nth approximant C∗(n) = A∗(n)

B∗(n) . Since
A∗(n) and B∗(n) are two linearly independent solutions of (9.2.8) with
A∗(−1) = 1, A∗(0), B∗(−1) = 0, B∗(0) = 1 (Theorem 9.2), it follows
that

ϕ(n) = A∗(n) − LB∗(n), n ≥ 0.

Observe that

0 = lim
n→∞

ϕ(n)
B∗(n)

= lim
n→∞

A∗(n)
B∗(n)

− L.

Hence

lim
n→∞

A∗(n)
B∗(n)

=
ϕ(0)

ϕ(−1)
. (9.2.12)

From Remark 9.3(c), we conclude that

lim
n→∞C(n) = lim

n→∞
A(n)
B(n)

= − ϕ(0)
ϕ(−1)

.

This proves the first part of the theorem as well as (9.2.10) for n = 1.
The proof of (9.2.10) for n > 1 is left to the reader as Exercises 9.1
and 9.2 Problem 5. �

The following example illustrates Theorem 9.5.

Example 9.6. Contemplate the continued fraction

a

1+
a

1+
a

1+
. . . , (9.2.13)

where a is any complex number. Find conditions on a under which the
continued fraction converges.
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Solution

Method 1: Let A(n) and B(n) be the nth partial numerator and
denominator, respectively. Then from (9.1.5) we have

A(n) − A(n − 1) − aA(n − 2) = 0, A(−1) = 1, A(0) = 0,

B(n) − B(n − 1) − aB(n − 2) = 0, B(−1) = 1, B(0) = 1.

The characteristic equation of either equation is given by λ2 − λ − a = 0,
whose roots are

λ1,2 =
1 ± √

1 + 4a

2
.

Now, if |λ1| �= |λ2|, then the difference equation

x(n) − x(n − 1) − ax(n − 2) = 0 (9.2.14)

has a minimal solution and, consequently by Pincherle’s theorem the
continued fraction (9.2.13) converges.

Suppose that |λ2| < |λ1|. Then ϕ(n) = λn
2 is a minimal solution of

(9.2.14). Hence by (9.2.12) the continued fraction (9.2.13) converges to
−λ2 = −1

2 + 1
2

√
1 + 4a.

On the other hand, if a = − 1
4 , then λ1 = λ2 = 1

2 . Thus A(n) = c1
( 1

2

)n +
c2n
( 1

2

)n. Using the initial conditions A(−1) = 1, A(0) = 0, we get c1 = 0,
c2 = − 1

2 . Hence A(n) = −n
( 1

2

)n+1. Similarly, we obtain B(n) = (n +
1)
(1

2

)n. Thus

K(a/1) = lim
n→∞

A(n)
B(n)

= −1
2

= −λ2.

Conclusion. If a is complex, K(a/1) converges to − 1
2 +
√

1
4 + a if and

only if a /∈ {x ∈ R: x < − 1
4

}
.

Method 2: Let

x =
a

1+
a

1+
a

1+
. . . .

Then

x =
a

1 + x
, x2 + x − a = 0.

Hence

x1 = −1
2

+

√
1
4

+ a, x2 = −1
2

−
√

1
4

+ a,

are two solutions. If a is real we require that a ≥ − 1
4 in order for x to be

real. By inspection, we conclude that the continued function converges to
x1.
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Exercises 9.1 and 9.2

1. Show that

1 − a

1−
a

1− . . .

converges to (1 +
√

1 − 4a)/2 if 0 < 4a < 1.

2. Prove that the continued fraction

1
b1+

1
b2+

1
b3+

. . .

converges if bi ≥ 1 for i = 1, 2, 3, . . . .

3. Discuss the convergence of the continued fraction

a

b+
a

b+
a

b+
. . . ,

where a, b are complex numbers, a �= 0.

4. Show that the continued fraction

λ1

(x − c1)−
λ2

(x − c2)−
λ3

(x − c3)− . . .

is equivalent to

α0(x)
1−

α1(x)
1−

α2(x)
1− ,

where α0(x) = λ1
x−c1

, αn(x) = λn+1
(cn−x)(cn+1−x) , n = 1, 2, 3, . . . .

5. Prove (9.2.10) for n > 1.

6. [19] Prove that if b0 + K∞
n=1(an/bn) = L �= 0, then

K∞
n=0 (an/bn) =

a0

L
.

7. Consider the continued fraction b0 +K(an/bn) and let A(n) and B(n)
be the nth partial numerator and denominator, respectively.
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Show that

A(n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b0 1 0
a1 b1 1
0 a2 b2 1

. . . . . . . . .

an−1 bn−1 1
0 an bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

B(n) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b1 1 0
a2 b2 1

a3 b3 1
. . . . . . . . .

an−1 bn−1 1
0 an bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

8. Prove (9.2.4).

9. Let {tn} be a sequence of Möbius transformations defined as

tn(u) =
an

bn + u
, an �= 0, n = 0, 1, 2, . . . .

Let T0(u) = t0(u), Tn(u) = Tn−1(tn(u)). Show that

Tn(u) =
A(n) + A(n − 1)u
B(n) + B(n − 1)u

and A(n)B(n−1)−A(n−1)B(n) �= 0, n = 0, 1, 2, . . . , where A(n) and
B(n) are the nth partial numerator and denominator of b0+K(an/bn),
respectively.

10. Let {A(n)} and {B(n)} be sequences of complex numbers such that

A(−1) = 1, A(0) = b0, B(−1) = 0, B(0) = 1,

and

A(n)B(n − 1) − A(n − 1)B(n) �= 0, n = 0, 1, 2, . . . .

(a) Show that there exists a uniquely determined continued fraction
b0 + K (an/bn) with nth partial numerator A(n) and nth partial
denominator B(n).
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(b) Show that

b0 = A(0), b1 = B(1), a1 = A(1) − A(0)B(1),

an =
A(n − 1)B(n) − A(n)B(n − 1)

A(n − 1)B(n − 2) − A(n − 2)B(n − 1)
,

bn =
A(n)B(n − 2) − A(n − 2)B(n)

A(n − 1)B(n − 2) − A(n − 2)B(n − 1)
.

11. Show that the nth partial denominator of the continued fraction

1 − 1
1−

a1

1−
(1 − a1)a2

1− . . .

is

B(n) = (1 − a1)(1 − a2) · · · (1 − an−1), n ≥ 1.

12. [19] Let αn = (1 − an−1)an, a0 = 0, 0 < an < 1, n = 1, 2, 3, . . .. Prove
that the continued fraction

1 − α1

1−
α2

1−
α3

1− . . .

converges to (1 + L)−1, where

L =
∞∑

n=1

a1 a2 · · · an

(1 − a1)(1 − a2) · · · (1 − an)
.

13. Let βn = (1 − bn−1)bn, 0 ≤ b0 < 1, 0 < bn < 1, for n ≥ 1. Prove that

1 − β1

1−
β2

1−
β3

1− . . .

converges to (b0 + 1−b0
1+B ), where

B =
∞∑

n=1

b1b2 · · · bn

(1 − b1)(1 − b2) · · · (1 − bn)
.

14. Let an > 0, bn > 0, n = 1, 2, 3, . . . , and let

∞∑
n=1

√
bnbn+1

an+1
= ∞.

Show that the continued fraction
a1

b1+
a2

b2+
a3

b3+
. . .

converges.
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15. Show that the continued fraction

1k

b+
2k

b+
3k

b+
. . .

converges for k ≤ 2 and diverges for k > 2.

*16. (Term Project, [31]). Consider the continued fraction

τ2(a) = 2 − a

2−
a

2− . . . .

Let t1(a) = 2, t2(a) = 2 − a/2, t3(a) = 2 − a/(2 − a/2), . . . be the
approximant sequence.

(a) Show that tn+1(a) = 2 − a
tn(a) , t1 = 2, n = 1, 2, 3, . . . .

(b) Show that if a ≤ 1, the continued fraction converges to 1+
√

1 − a.

(c) A number a is said to be periodic (of period n) if tn+k(a) = tk for
k = 1, 2, 3, . . ..

Show that if a is of period n, then tn−1(a) = 0.

(d) Let Pn(x) =
� n−1

2 ∑
k=0

(−1)k

(
n

2k + 1

)
xk, where � � denotes the

greatest integer function. Show that

Pn+2(x) = 2Pn+1(x) − (x + 1)Pn(x), P1(x) = 1, P2(x) = 2.

(e) Prove that tn(a) = Pn+1(a − 1)/Pn(a − 1), n = 1, 2, 3, . . . .

(f) Prove that a number a is periodic if and only if (a − 1) is a zero
of the polynomial Pn(x).

9.3 Continued Fractions and Infinite Series

Our main objective in this section is to show that every infinite series can be
represented by a continued fraction and vice versa. Let {cn} be a sequence
of complex numbers, with cn �= 0, n = 1, 2, 3, . . . , and let

un =
n∑

k=0

ck, n = 0, 1, 2, . . . .

Let ρ0 = c0, ρ1 = c1, ρn = cn/cn−1. Then c0 = ρ0, cn = ρ1ρ2 · · · ρn.
Moreover,

ρ0 +
n∑

k=1

ρ1ρ2 · · · ρk = ρ0 +
ρ1

1−
ρ2

(1 + ρ2)−
ρ3

(1 + ρ3)− · · · ρn

1 + ρn
.
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Hence
∞∑

k=0

ck = b0 + K(an/bn), (9.3.1)

where b0 = c0, a1 = c1, b1 = 1, and

an = − cn

cn−1
, bn = 1 +

cn

cn−1
, n = 2, 3, 4, . . . .

To illustrate the above method observe that
∞∑

k=0

ckzk = c0 +
c1z

1−
c2z/c1

1 + c2z
c1

−
c3z/c2

1 + c3z
c2

. . . .

Here is a more interesting example.

Example 9.7. Consider the Riemann zeta function, defined by

ζ(k) =
∞∑

r=1

r−k = 1 + 2−k + 3−k + · · · , k = 2, 3, 4, . . . .

Then b0 = 0, a1 = 1, b1 = 1,

an = −
(

n − 1
n

)k

, and bn = 1 +
(

n − 1
n

)k

.

Thus

ζ(k) = K(an/bn).

If we let u(n) = Kn
j=1(aj/bj), then it follows from (9.1.6) that

u(n + 2) −
(

1 +
(

n + 1
n + 2

)k
)

u(n + 1) +
(

n + 1
n + 2

)k

u(n) = 0. (9.3.2)

An equivalent representation of ζ(k) may be obtained using (9.3.2):

ζ(k) = K(1/bndn),

d1 = 1, d2n =
(2/3)k (4/5)k · · · (2n − 2/(2n − 1))k

(1/2)k (3/4)k · · · (2n − 1/(2n))k
,

d2n+1 =
(1/2)k (3/4)k · · · (2n − 1/(2n))k

(2/3)k (4/5)k · · · (2n/(2n + 1))k
.

Example 9.8. (Regular continued fractions) [73].

A regular continued fraction b0 + K(1/bn) of a positive real number x is
defined by letting

bn = �xn�, n = 0, 1, 2, . . . ,
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where

x0 = x, xn =
1

Frac(xn−1)
, n = 1, 2, 3, . . . ,

where � � denotes the greatest integer function, and Frac(xn) denotes the
fractional part of xn. If Frac(xn−1) = 0, the regular continued fraction
expansion terminates with bn−1. Suppose now that x = k/l is a rational
number.

Set x0 = x and r1 = l. Then by the Euclidean algorithm,

x0 = b0 + r2/r1 = b0 + 1/x1, with x1 = r1/r2, r2 < r1,

x1 = b1 + r3/r2 = b1 + 1/x2, with x2 = r2/r3, r3 < r2,

...
xm = bm + rm+1/rm = bm + 1/xm, with xm = rm/rm+1, rm+1 < rm.

Since {ri} is a decreasing sequence of positive integers, this algorithm
necessarily terminates; that is, there exists n such that rn+2 = 0; the last
relation would be xn = bn.

Let us define the Möbius transformation

t0(u) = b0 + u, tm(u) =
1

bm + u
, m = 1, 2, . . . , n.

Then

1/xn = tn(0) and 1/xm = tm (1/xm+1) ,

m = 1, 2, . . . , n − 1, x0 = t0 (1/x1) .

It follows that

x = (t0 ◦ t1 ◦ · · · ◦ tn)(0),

and, consequently,

x = b0 +
1

b1+
1

b2+
. . .

1
bn

. (9.3.3)

The continued fraction (9.3.3) obtained in the above procedure is called
regular.

Conclusion. A real number is rational if and only if it is the value of a
terminating regular continued fraction. One may easily show that

61
48

= 1 +
1

3+
1

1+
1

2+
1
4
,

12
55

=
1

4+
1

1+
1

1+
1

2+
1
2
.

Using the same procedure one may find a regular continued fraction rep-
resentation of irrational numbers. It turns out that every irrational number
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can be represented by a nonterminating regular continued fraction and,
conversely, the value of every nonterminating regular continued fraction is
irrational [73]. For example,

√
7 = 2 +

1
1+

1
1+

1
1+

1
4+

1
1+

1
1+

1
1+

1
4+

. . . , (9.3.4)

e = 2 +
1

1+
1

2+
1

1+
1

1+
1

4+
1

1+
1

1+
1

6+
1

1+
1

1+
1

8+
. . . . (9.3.5)

Exercises 9.3

1. Show that:

1 +
√

5
2

= 1 +
1

1+
1

1+
. . . (golden ratio).

2. Verify (9.3.4) and (9.3.5).

3. Show that:

(a) π = 4
1+

12

3+
22

5+
32

7+ . . . .

(b)
√

2 = 1 + 1
2+

1
2+

1
2+ . . . .

4. Show that, for −1 ≤ x ≤ 1,

arctanx =
x

1+
1x2

3 − x2+
9x2

5 − 3x2+
25x2

7 − 5x2+
. . . ,

and, consequently,

π

4
=

1
1+

1
2+

9
2+

25
2+

49
2+

. . . .

5. Prove for z �= 0,

ez = 1 +
z

1−
1z

2 + z−
2z

3 + z−
3z

4 + z− . . . .

6. Let u0, u1, u2, . . . be numbers such that ui �= 0, i = 1, 2, 3, . . . , and
Un = u0 + u1 + · · · + un. Let

b0 = u0, b1 = 1, a1 = u1/2,

b2n = 2, b2n+1 =
un + un+1

un
, n = 1, 2, . . . ,

a2n = −1, a2n+1 = −un+1

un
.

Show that the (2n)th and (2n + 1)th approximants of b0 + K (an/bn)
are Un and Un + un+1

2 , respectively.

*7. (Open Problem). It is known [141] that ζ(2) and ζ(3) are irrational
numbers. Show that ζ(5) is irrational.
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In Problems 8 through 11 we will deal with Diophantine equations and
their generalizations.

Diophantine Equations. Let k and l be two positive integers that are co-
prime. The problem that we are interested in is to find all pairs of integers
(x, y) that solve the equation, called a Diophantine equation,

kx − ly = 1. (9.3.6)

Let
k

l
= b0 +

1
b1+

1
b2+

. . .
1

+bn
.

If A(n) and B(n) are the nth partial numerator and denominator,
respectively, then from (9.1.8) we have

A(m)B(m − 1) − A(m − 1)B(m) = (−1)m−1, m = 1, 2, . . . , n. (9.3.7)

Moreover,

k

l
=

A(n)
B(n)

. (9.3.8)

Observe that if m = n, then (9.3.7) becomes

A(n)B(n − 1) − A(n − 1)B(n) = (−1)n−1. (9.3.9)

Now, if A(n) and B(n) have a common divisor d, then A(n)
B(n) = d·Ã(n)

d·B̃(n)
=

Ã(n)
B̃(n)

. Hence

Ã(n)B̃(n − 1) − Ã(n − 1)B̃(n) = (−1)n−1.

But this is impossible, since from (9.3.9) we get

d2
(
Ã(n)B̃(n − 1) − Ã(n − 1)B̃(n)

)
= (−1)n−1.

Hence it follows from (9.3.8) that A(n) = k and B(n) = l.
Now, to find a solution of (9.3.6) we consider two cases.

Case (a). If n is odd, we let x = B(n− 1), y = A(n− 1). Then from (9.3.9)
we have

kx − ly = A(n)x − B(n)y = (−1)n−1 = 1.

Case (b). If n is even, we let x = l − B(n − 1), and y = k − A(n − 1). Then

kx − ly = A(n)(B(n) − B(n − 1)) − B(n)(A(n) − A(n − 1))

= −(−1)n−1 = 1.

8. Show that the general solution of (9.3.6) is given by

(x, y) = (x0, y0) + m(l, k),

where m is an arbitrary integer and (x0, y0) is any special solution.
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9. Solve the equation 61x − 48y = 1 by finding all pairs of integers (x, y)
that satisfy it.

*10. Solve Pell’s equation

x2 − ly2 = 1,

where l is an integer, not a perfect square. You need to find all pairs
of integers (x, y) that solve the equation.

*11. Solve x2 − 7y2 = 1.

9.4 Classical Orthogonal Polynomials

Let w(x) be a positive function on a given finite or infinite interval (a, b)
such that it is continuous, except possibly at a finite set of points. Moreover,
we assume that the “moments”

µn =
∫ b

a

xnw(x) dx (9.4.1)

exist and are finite. Then a sequence {Pn(x)}∞
n=0 of polynomials, Pn(x) of

degree n, such that∫ b

a

Pn(x)Pm(x)w(x) dx = λnδnm, n, m = 0, 1, 2 . . . , (9.4.2)

is said to be orthogonal over (a, b) with a weight function w(x), where

δnm =

{
1, n = m,

0, n �= m,

is the Kronecker delta function. A polynomial Pn(x) =
∑n

k=0 ankxk is said
to be monic if the coefficient ann of the leading term xn is 1.

Example 9.9. (The Chebyshev Polynomials Revisited).

The Chebyshev polynomials of the first and second kind are defined,
respectively, as follows (See Exercises 2.3, Problem 11):

Tn(x) = cos nθ, Un(x) = sin(n + 1)θ/sinθ, n = 0, 1, 2, . . . ,

where θ = cos−1 x and |x| < 1.
Observe that {Tn(x)} is orthogonal on the interval (−1, 1) with the

weight function w(x) = (1 − x2)− 1
2 .

To show this, note that∫ 1

−1
Tn(x)Tm(x)(1 − x2)− 1

2 dx =
∫ π

0
cos nθ cos mθ dθ = 0 if n �= m.
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Similarly, we may show that {Un(x)} is orthogonal on (−1, 1) with the
weight function w(x) = (1 − x2)

1
2 .

Next, we address the question of uniqueness of orthogonal polynomials.

Theorem 9.10. If the coefficient ann of xn in Pn(x) is prescribed for
each n, then the sequence of orthogonal polynomials relative to a weight
function w(x) exists and is unique. Moreover, each Pn(x) is orthogonal to
all polynomials of lower degree.

Proof. We will use mathematical induction on n to prove the first part.
Suppose that a00 and a11 are known; P0(x) = a00 and P1(x) = a11x + a10.
Then from (9.4.2),

∫ b

a
w(x)(a00a11x + a00a10) dx = 0, which gives a10.

Assume now that P0(x), P1(x), . . . , Pn−1(x) are determined such that they
satisfy pairwise (9.4.2).

Then Pn(x) = annxn + bn,n−1Pn−1(x) + · · · + bn,0P0(x), where bn,s are
independent of x. From (9.4.2), we have for r = 0, 1, . . . , n − 1,

ann

∫
a

b

w(x)xnPr(x) dx + bnr

∫
a

b

w(x)(Pr(x))2 dx = 0.

Since
∫ b

a
w(x)(Pr(x))2 dx > 0, it follows that bnr exists and is uniquely

determined for r = 0, 1, . . . , n−1. This establishes the first part. The second
part is left to the reader as Exercises 9.5, Problem 1. �

We are now ready to present some of the main classical orthogonal
polynomials.

1. Jacobi polynomials P
(α,β)
n (x), α > −1, β > −1.

These polynomials are orthogonal on (−1, 1) with the weight func-

tion w(x) = (1 − x)α(1 + x)β , and ann = 2−n

(
2n + α + β

n

)
. An

explicit expression for the Jacobi polynomials P
(α,β)
n (x) are given by

Rodrigues’ formula

P (α,β)
n (x) = (−1)n (1 − x)−α(1 + x)−β

2nn!
dn

dxn

{
(1 − x)n+α(1 + x)n+β

}
.

(9.4.3)
To write P

(α,β)
n (x) more explicitly, we need to utilize Leibniz’s formula

dn

dxn
(uv) =

n∑
k=0

(
n

k

)
dn−ku

dxn−k

dkv

dxk
. (9.4.4)

(See Appendix G.)
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Hence,

dn

dxn
(1 − x)n+α(1 + x)n+β

=
n∑

k=0

(
n

k

)
Dn−k(1 − x)n+αDk(1 + x)n+β

= (−1)n(1 − x)α(1 + x)βn!

×
n∑

k=0

(
n + α

n − k

)(
n + β

k

)
(x − 1)k(x + 1)n−k.

Therefore,

P (α,β)
n (x) = 2−n

n∑
k=0

(
n + α

n − k

)(
n + β

k

)
(x − 1)k(x + 1)n−k (9.4.5)

with the leading coefficient

ann = 2−n
n∑

k=0

(
n + α

n − k

)(
n + β

k

)
= 2−n

(
2n + α + β

n

)
. (9.4.6)

(See G.)

To verify (9.4.3), let Qn(x) denote the right-hand side of the equation
and let g(x) be another polynomial. Then successive application of
integration by parts yields∫ 1

−1
(1 − x)α(1 − x)βQn(x)g(x) dx

=
1

2nn!

∫ 1

−1
(1 − x)n+α(1 + x)n+βg(n)(x) dx, (9.4.7)

where g(n)(x) denotes the nth derivative of g(x).

Observe that if g(x) is a polynomial of degree less than n, then
g(n)(x) = 0. Hence, Qn(x) satisfies (9.4.2). Furthermore, the coefficient
of xn in Qn(x) is

2−n

(
2n + α + β

n

)
.

Hence, by uniqueness (Theorem 9.5), Qn(x) = P
(α,β)
n (x).

2. Legendre polynomials Pn(x): These are special Jacobi polynomials
obtained by letting α = β = 0. Hence (9.4.3) is reduced to

Pn(x) = P (0,0)
n (x) =

(−1)n

2nn!
dn

dxn
{(1 − x2)n}. (9.4.8)
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The Legendre polynomials are orthogonal on (−1, 1) with the weight
function w(x) = 1. Moreover, using Leibniz’s formula yields

Pn(x) = 2−n
n∑

k=0

(
n

n − k

)(
n

k

)
(x − 1)k(x + 1)n−k, (9.4.9)

with leading coefficient ann = 2−n(2n)!/(n!)2.

3. Gegenbauer (or ultraspherical) polynomials P ν
n (x): These are

special Jacobi polynomials obtained by setting α = β and α = ν − 1
2 .

The Gegenbauer polynomials are orthogonal on (−1, 1) with the weight
function w(x) = (1 − x2)ν−1/2, ν > − 1

2 , and ann = 2n
(
ν+n−1

ν−1

)
. By

Rodrigues’ formula we have

P ν
n (x) =

(−1)n

n!
(1 − x2)1/2−ν dn

dxn
(1 − x2)ν+n−1/2

=

(
2ν − 1

ν

)−1(
n + 2ν − 1
ν − 1/2

)
P (ν−1/2,ν−1/2)

n (x). (9.4.10)

Using Leibniz’s formula yields

P ν
n (x) = 2−n

(
2ν − 1

ν

)−1(
n + 2ν − 1
ν − 1/2

)

×
n∑

k=0

(
n + ν − 1/2

n − k

)(
n + ν − 1/2

k

)
(x − 1)k(x + 1)k.

(9.4.11)

4. Laguerre polynomials Lα
n(x), α > −1, are orthogonal on (0,∞) with

the weight function w(x) = e−xxα, and ann = (−1)n/n!. Moreover,

Lα
n(x) =

exx−α

n!
dn

dxn
(e−xxn+α). (9.4.12)

By Leibniz’s formula we can show that

Lα
n(x) =

n∑
k=0

(
n + α

n − k

)
(−x)k

k!
. (9.4.13)

5. Hermite polynomials Hn(x) are orthogonal on (−∞,∞) with the
weight function w(x) = e−x2

, and ann = 2n. These are given by
Rodrigues’ formula

Hn(x) = (−1)nex2 dn

dxn
(e−x2

). (9.4.14)
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By Taylor’s theorem,

e2xw−w2
=

∞∑
n=0

Hn(x)
wn

n!
.

Expanding e2xw and e−w2
as power series in w and taking the Cauchy

product1 of the result gives

e2xw−w2
=

∞∑
n=0

�n/2∑
k=0

(−1)k(2x)n−2kwn

(n − 2k)! k!
.

Hence,

Hn(x) = n!
�n/2∑
k=0

(−1)k(2x)n−2k

(n − 2k)! k!
. (9.4.15)

9.5 The Fundamental Recurrence Formula
for Orthogonal Polynomials

We now show why difference equations, particularly those of second order,
are of paramount importance in the study of orthogonal polynomials. The
following is the main result.

Theorem 9.11. Any sequence of monic orthogonal polynomials {Pn(x)}
with Pn(x) =

∑n
k=0 akxk must satisfy a second-order difference equation of

the form

Pn+1(x) − (Anx + Bn)Pn(x) + CnPn−1(x) = 0 (9.5.1)

with

An =
an+1,n+1

an,n
. (9.5.2)

Proof. Choose An such that Pn+1(x) − AnxPn(x) does not possess any
term in xn+1. Hence, we may write

Pn+1(x) − AnxPn(x) =
n∑

r=0

dnrPr(x). (9.5.3)

Multiplying both sides of (9.5.3) by w(x)Ps(x) and integrating from a
to b yields

dns

∫ b

a

w(x){Ps(x)}2 dx = −An

∫ b

a

xw(x)Ps(x)Pn(x) dx. (9.5.4)

1Given two series
∑∞

n=0 an and
∑∞

n=0 bn, we put cn =
∑n

k=0 akbn−k, n =
0, 1, 2, . . . . Then

∑∞
n=0 cn is called the Cauchy product of the two series.
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Since xPs(x) is of degree s+1, and Pn(x) is orthogonal to all polynomials
of degree less than n, it follows that the right-hand side of (9.5.4) vanishes
except possibly when s = n − 1 and s = n. Hence, dnn and dn,n−1 are
possibly not zero. Therefore, from (9.5.3) we have

Pn+1(x) − (Anx + dnn)Pn(x) − dn,n−1Pn−1(x) = 0,

which is (9.5.1) with Bn = dnn, Cn = −dn,n−1. �

Remark:

(i) A monic sequence of orthogonal polynomials {P̂n(x)} satisfies the
difference equation

P̂n+1(x) − (x − βn)P̂n(x) + γnP̂n−1(x) = 0, (9.5.5)

where

βn =
−Bnann

an+1,n+1
, γn =

Cnan+1,n+1

an−1,n−1
. (9.5.6)

This may be shown easily if one writes P̂ (x) = a−1
nnPn(x).

(ii) If Pn(−x) = (−1)nPn(x), then {Pn(x)} is often called symmetric. In
this case, one may show that Bn = βn = 0. To show this, let Qn(x) =
(−1)nPn(−x). Then

Qn+1(x) + (Bn − Anx)Qn(x) + CnQn−1(x) = 0. (9.5.7)

If Qn(x) = Pn(x), then subtracting (9.5.1) from (9.5.7) yields Bn = 0.

(iii) The converse of Theorem 9.11 also holds and is commonly referred to
as Favard’s theorem. Basically, this theorem states that any polynomial
sequence that satisfies a difference equation of the form of (9.5.1) must
be an orthogonal polynomial sequence.

Let us illustrate the preceding theorem by an example.

Example 9.12. Find the difference equation that is satisfied by the
Legendre polynomials Pn(x).

Solution From (9.4.8) the coefficients of xn, xn−1, xn−2 are, respectively,

ann =
(2n)!

2n(n!)2
, an,n−1 = 0, an,n−2 =

(2n − 2)!
2n(n − 2)! (n − 1)!

.

Furthermore, {Pn(x)} is symmetric, since Pn(x) = (−1)nPn(−x). Thus,
from Remark (ii) above, we have Bn = 0. From (9.5.2), we have An = 2n+1

n+1 .

It remains to find Cn. For this purpose, we compare the coefficients of xn−1

in (9.5.1). This yields

an+1,n−1 − Anan,n−2 + Cnan−1,n−1 = 0.
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Thus,

Cn =
Anan,n−2 − an+1,n−1

an−1,n−1
=

−n

n + 1
.

Hence the Legendre polynomials satisfy the difference equation

(n + 1)Pn+1(x) − (2n + 1)xPn(x) + nPn−1(x) = 0. (9.5.8)

Example 9.13. Find the difference equation that is satisfied by the Jacobi
polynomials P

(α,β)
n (x).

Solution This time we will use a special trick! Notice that from (9.4.5) we
obtain

P (α,β)
n (−x) = (−1)nP (β,α)

n (x), (9.5.9)

P (α,β)
n (1) =

(
n + α

n

)
, (9.5.10)

P (α,β)
n (−1) =

(
n + β

n

)
. (9.5.11)

From (9.4.6) and (9.5.2) we get

An =
(2n + 2 + α + β)(2n + 1 + α + β)

2(n + 1)(n + 1 + α + β)
. (9.5.12)

Using (9.5.10) and setting x = 1 in (9.5.1) yields(
n + α + 1

n + 1

)
− (An + Bn)

(
n + α

n

)
+

(
n + α − 1

n − 1

)
= 0. (9.5.13)

Similarly, setting x = 1 in (9.5.1) and using (9.5.11) yields

(−1)n+1

(
n + β + 1

n + 1

)
− (−An + Bn)(−1)n

(
n + β

n

)

+ Cn(−1)n−1

(
n + β − 1

n − 1

)
= 0. (9.5.14)

Multiplying (9.5.13) by
(
n+β

n

)
and (9.5.14) by

(
n+α

n

)
and adding, produces

an equation in An and Cn which, by substitution for An from (9.5.12),
gives

Cn =
(n + α)(n + β)(2n + 2 + α + β)

(n + 1)(n + α + β + 1)(2n + α + β)
. (9.5.15)

Substituting for Cn in (9.5.13) yields

Bn =
(2n + 1 + α + β)(α2 − β2)

2(n + 1)(n + α + β + 1)(2n + α + β)
. (9.5.16)
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Exercises 9.4 and 9.5

1. Let {Pn(x)} be a sequence of orthogonal polynomials on the inter-
val (a, b) relative to the weight function w(x). Prove that Pn(x) is
orthogonal to any polynomial of lower degree.

2. Verify formula (9.4.9).

3. Verify formula (9.4.12).

4. Verify formula (9.4.14).

5. Find the difference equation that represents the Gegenbauer polyno-
mials {P ν

n (x)}.
6. Find the difference equation that represents the Laguerre polynomials

{Lα
n(x)}.

7. Find the difference equation that represents the Hermite polynomials
Hn(x).

8. (Charlier polynomials). Let C
(a)
n (x) denote the monic Charlier poly-

nomials defined by

C(a)
n (x) = n!

n∑
k=0

(
x

k

)
(−a)n−k

(n − k)!
. (9.5.17)

Show that {C(a)
n (x)} satisfies the difference equation

C
(a)
n+1(x) = (x − n − a)C(a)

n (x) − anC
(a)
n−1(x), n ≥ 0.

9. (The Bessel function). Let n ∈ Z, z ∈ C. The Bessel function Jn(z) is
defined by

Jn(z) = (z/2)n
∞∑

j=0

(−1)j(z2/4)j

j!(n + j)!
, n = 0, 1, 2, . . . .

Find the corresponding difference equation.

*10. (Christoffel–Darboux identity). Let {Pn(x)} satisfy

Pn(x) = (x − cn)Pn−1(x) − λPn−2(x), n = 1, 2, 3, . . . ,

P−1(x) = 0, P0(x) = 1, λ �= 0. (9.5.18)

Prove that
n∑

k=0

Pk(x)(Pk(u)
λ1λ2 · · ·λk+1

= (λ1λ2 · · ·λn+1)−1

× Pn+1(x)Pn(u) − Pn(x)Pn+1(u)
x − u

. (9.5.19)
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11. (Confluent form of (9.5.19)). Show that
n∑

k=0

P 2
k (x)

λ1λ2 · · ·λk+1
=

P
′
n+1(x)P

′
n(x) − Pn(x)Pn+1(x)

λ1λ2 · · ·λn+1
.

12. Consider the sequence {Pn(x)} satisfying (9.5.18) and let
Qn(x) = a−nPn(ax + b), a �= 0.

(a) Show that Qn(x) = (x − cn − b

a
)Qn−1(x) − λn

a2 Qn−2(x).

(b) If {Pn(x)} is an orthogonal polynomial sequence with respect to
the moments µn, show that {Qn(x)} is an orthogonal polynomial
sequence with respect to the moments

νn = a−n
n∑

k=0

(
n

k

)
(−b)n−kµk.

13. Suppose that {Qn(x)} satisfies (9.5.18), but with the initial conditions
Q−1(x) = −1 and Q0(x) = 0.

(a) Show that Qn(x) is a polynomial of degree n − 1.

(b) Put P
(1)
n (x) = λ−1

1 Qn+1(x) and write the difference equation
corresponding to {P

(1)
n (x)}.

14. Let {Pn(x)} be a sequence of orthogonal polynomials on the interval
(a, b). Show that the zeros of Pn(x) are real, distinct, and lie in (a, b).

15. In the following justify that y(x) satisfies the given differential
equations:

(a) y
′′ − 2xy′ + 2ny = 0; y(x) = Hn(x).

(b) xy
′′

+ (α + 1 − x)y′ + ny = 0; y(x) = Lα
n(x).

(c) (1 − x2)y
′′

+ {(β − α) − (α + β + 2)x}y′ + n(n + α + β + 1)y =
0; y(x) = P

(α,β)
n (x).

9.6 Minimal Solutions, Continued Fractions,
and Orthogonal Polynomials

The intimate connection between continued fractions and orthogonal poly-
nomials is now apparent in light of the fundamental recurrence formulas
for continued fractions and orthogonal polynomials. If {Pn(x)} is a monic
orthogonal polynomial sequence on the interval (a, b), with P−1(x) = 0 and
P0(x) = 1, then it must satisfy the difference equation

Pn+1 − (x − βn)Pn(x) + γnPn−1(x) = 0, n ∈ Z
+. (9.6.1)
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To find the continued fraction that corresponds to (9.6.1) we take bn =
−(x − βn), an = γn in (9.1.6). We then have the continued fraction

K =
γ0

(x − β0)−
γ1

(x − β1)−
γ2

(x − β2)− . . . . (9.6.2)

Moreover, Pn(x) is the nth partial denominator of the continued fraction
(9.6.2).

Next we focus our attention on finding a minimal solution of (9.6.1). Re-
call from Pincherle’s theorem that (9.6.1) has a minimal solution if and only
if the continued fraction K converges. To accomplish our task we need to
find another polynomial solution Qn(x), called the associated polynomials,
that forms with Pn(x) a fundamental set of solutions of (9.6.1).

Define

Qn(x) =
∫ b

a

(Pn(x) − Pn(t))
x − t

w(t) dt. (9.6.3)

Lemma 9.14. The set {Pn(x), Qn(x)} is a fundamental set of solutions
of (9.6.1).

Proof. From (9.6.1), we have

Pn+1(x) − Pn+1(t) = (x − t)Pn(t) + (x − βn)[Pn(x) − Pn(t)]
− γn[Pn−1(x) − Pn−1(t)].

Dividing by x − t and integrating yields

Qn+1(x) =
∫ b

a

Pn(t)w(t) dt+(x−βn)Qn(x)−γnQn−1(x), n = 0, 1, 2, . . . ,

with

Q−1(x) = 0, Q0(x) = 0.

Notice that by the orthogonality of {Pn(x)} we have∫ b

a

Pn(t)w(t) dt =
∫ b

a

Pn(t)P0(t)w(t) dt =

{
0 if n > 0,

µ0 if n = 0.

Hence, we obtain

Qn+1(x) − (x − βn)Qn(x) + γnQn−1(x) = 0,
Q0(x) = 0, Q1(x) = µ0. (9.6.4)

Since P0(x) = 1, P1(x) = x − β0, the Casoratian W (0) of Pn and Qn at
n = 0 is equal to µ0 �= 0, which implies that {Pn(x)} and {Qn(x)} are two
linearly independent solutions of (9.6.1).

Observe that the polynomial sequence Qn(x) is the nth partial numerator
of the continued fraction K. Hence if

lim
n→∞

Qn(x)
Pn(x)

= F (x)
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exists, then by Pincherle’s theorem, the minimal solution of (9.6.1) exists
and is defined by

Sn(x) = F (x)Pn(x) − Qn(x). (9.6.5)

Furthermore, if we let γ0 = µ0 and Q−1(x) = −1, then Sn(x) satisfies
(9.6.1) not only for n ≥ 1, but also for n = 0, with S−1(x) = −1.

To find an explicit formula for the minimal solution Sn(x) we need to
utilize complex analysis. Henceforth, we replace the variable x by z in
all the considered functions. From a result of [113], F (z) has the integral
representation

F (z) =
∫ b

a

w(t)
z − t

dt, z /∈ [a, b]. (9.6.6)

Combining this formula with (9.6.3) produces the following integral
representation of Sn(z):

Sn(z) =
∫ b

a

Pn(t)
(z − t)

w(t) dt. (9.6.7)

�

Remark:

(i) If (a, b) is a finite interval, then the existence of the minimal solution
Sn(z) is always guaranteed (see [113]).

(ii) If (a, b) is a half-infinite interval of the form (a,∞) or (−∞, b), then a
sufficient condition for the existence of the minimal solution is

∞∑
n=1

µ−1/2n
n = ∞

(see [66]).

(iii) If (a, b) = (−∞,∞), then a sufficient condition for the existence of the
minimal solution Sn(z) is

∞∑
n=1

µ
−1/2n
2n = ∞, or

∞∑
n=1

γ−1/2
n = ∞.

Proofs of these remarks are beyond the scope of this book and will be
omitted. For details the reader may consult [66], [113].

Example 9.15 [145]. Consider the difference equation

Pn+1(z) − zPn(z) + γnPn−1(z) = 0, n ≥ 0, (9.6.8)

with

γn =
n(n + 2ν − 1)

4(n + ν)(n + ν − 1)
, ν > 1.
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Notice that Pn(z) is related to the Gegenbauer polynomials P ν
n (z) by the

relation

Pn(z) =
n!

2n(ν)n
P ν

n (z), (9.6.9)

where

(ν)n = ν(ν + 1)(ν + 2) · · · (ν + n − 1) =
Γ(ν + n)

Γ(ν)
(9.6.10)

denotes the Pochhammer symbol. Hence by formula (9.6.7), a minimal
solution of (9.6.8) is given by

Sn(z) =
n!

2n(ν)n

∫ 1

−1

P ν
n (t)(1 − t2)ν−1/2

z − t
dt, z /∈ [−1, 1].

Using the value of the integral found in Erdélyi et al. ([54, p. 281]) yields

Sn(z) =
(n + ν)n
2n+ν−3/2 n!

√
π eiπ(ν−1/2)(z2 − 1)(2ν−1)/4Q

1/2−λ
n+ν−1/2(z), (9.6.11)

where Qβ
α(z) is a Legendre function defined as

Qβ
α(z) = 2αΓ(α+1)

(z − 1)(β/2)−α−1

(z + 1)β/2 F

(
α + 1, α − β + 1; 2α + 2;

2
1 − z

)
,

with

F (a, b; c; z) =
∞∑

s=0

(a)s(b)sz
s

Γ(c + s)s!
(|z| < 1). (9.6.12)

The function F (a, b; c; z) is called a hypergeometric function [110].

Quite often it is possible to find an asymptotic representation of the
minimal solution using the methods of Chapter 8. The following example
demonstrates this point.

Example 9.16. (Perturbations of Chebyshev Polynomials [71]).

Consider again a monic orthogonal polynomial sequence {Pn(x)} repre-
sented by the second-order difference equation

Qn+1(z) − (z − an)Qn(z) + bnQn−1(z) = 0 (9.6.13)

with Q−1(z) = 0, Q0(z) = 1.
The (complex) Nevai class M(a, b) [106] consists of all those orthogonal

polynomial sequences such that limn→∞ an = a, limn→∞ bn = b. Without
loss of generality we take a = 0 and b = 1

4 . (Why?) Then the limiting
equation associated with (9.6.1) is given by

Pn+1(z) − zPn(z) +
1
4
Pn−1(z) = 0. (9.6.14)
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Observe that {Pn(z)} are the monic Chebyshev polynomials, which can
be obtained (Appendix F, No. 4) by setting Pn(z) = 21−n Tn(z) (since
2n−1 is the leading coefficient in Tn(z)), where {Tn(x)} are the Chebyshev
polynomials of the first kind. Equation (9.6.14) has two solutions,

P+
n (z) = λn

+(z), and P−
n (z) = λn

−(z), z �= 1,−1, (9.6.15)

where

λ+(z) = (z +
√

z2 − 1)/2 and λ−(z) = (z −
√

z2 − 1)/2.

Observe that if z ∈ C\[−1, 1], we can choose the square root branch such
that ∣∣∣∣λ+(z)

λ−(z)

∣∣∣∣ < 1.

Hence P−
n (z) is a minimal solution on z ∈ C\[−1, 1], and P+

n (z) is a
dominant solution on z ∈ C\[−1, 1].

Now, the boundary values of the minimal solution on the cut

P−
n (x + i0) = lim

ε→0+
P−

n (x + iε) = (λ−(x))n,

P−
n (x − i0) = lim

ε→0+
P−

n (x − iε) = (λ+(x))n,

with

λ−(x) = (x −
√

1 − x2)/2, λ+(x) = (x + i
√

1 − x2)/2, x ∈ (−1, 1),

yields a ratio of solutions that oscillates as n → ∞. Thus there is no minimal
solution for z = x ∈ (−1, 1).

Next we turn our attention to (9.6.13). Since |λ+(z)| �= |λ−(z)|, by
virtue of the Poincaré–Perron theorem there are two linearly independent
solutions Q+

n (z), Q−
n (z) of (9.6.13) such that

lim
n→∞

Q+
n+1(z)

Q+
n (z)

= λ+(z), lim
n→∞

Q−
n+1(z)

Q−
n (z)

= λ−(z).

Furthermore, Q+
n (z) is a dominant solution and Q−

n (z) is a minimal solution
of (9.6.1) for z ∈ C\[−1, 1].

Moreover, if
∞∑

n=0

|an| +
∣∣∣∣bn − 1

4

∣∣∣∣ < ∞, (9.6.16)

then by Corollary 8.30, we have

Q−
n (z) = λn

−(z)(1 + o(1)), z ∈ C\[−1, 1],

Q+
n (z) = λn

+(z)(1 + o(1)), z ∈ C\[−1, 1],

where Q−
n and Q+

n are, respectively, minimal and dominant solutions
of (9.6.13). Furthermore, for z = x ∈ (−1, 1), there are two linearly



426 9. Applications to Continued Fractions and Orthogonal Polynomials

independent solutions

Qn(x + i0) = (λ−(x))n(i + o(1)), Qn(x − i0) = (λ+(x))n(i − o(1)),

where

λ−(x) = x − i
√

1 − x2, λ+(x) = x + i
√

1 − x2.

For relaxing condition (9.6.16) and more generalizations, the reader is
referred to [38].

Exercises 9.6

1. Show that

H2n(x) = (−1)n22nn! L(−1/2)
n (x2),

H2n+1(x) = (−1)n22n+1n! xL(−1/2)
n (x2).

2. Show that

Tn(x) =
22n(n!)2

(2n)!
P (−1/2,−1/2)

n (x),

Un(x) =
22nn!(n + 1)!

(2n + 1)!
P (1/2,1/2)

n (x).

In Problems 3 through 6 investigate the existence of a minimal solution
for the given polynomial. If a minimal solution exists, find an explicit
representation for it.

3. Legendre polynomials {Pn(x)} (See Appendix F, No. 3).

4. Hermite polynomials {Hn(x)} (See Appendix F, No. 6).

5. Laguerre polynomials {Lα
n(x)} (See Appendix F, No. 7).

6. Charlier polynomials {C
(a)
n } (See Appendix F, No. 8).

*7. Use Rodrigues’ formula for the Legendre polynomial Pn(x) and the
Cauchy integral formula2 for the nth derivative to derive the formula
(Schäfli’s integral)

Pn(x) =
1

2n+1πi

∮
γ

(t2 − 1)n

(t − x)n+1 dt, (9.6.17)

where γ is any positively directed simple closed curve enclosing the
point x (x may be real or complex).

2f (n)(z0) = n!
2πi

∫
γ

f(z)
(z−z0)n+1 dz, n = 0, 1, 2, . . . , where γ is any positively

directed closed curve enclosing z0.
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Generating functions [110]. Suppose that G(x, u) is a polynomial with the
Maclaurin expansion

G(x, u) =
∞∑

n=0

Qn(x)un.

Then G(x, u) is called a generating function for {Qn(x)}.

*8. (a) Show that

1
2πi

∫
γ

{
1 − (t2 − 1)h

2(t − x)

}−1
dt

t − x
=

∞∑
n=0

Pn(x)hn = G(x, h).

(b) Deduce from (a) that the generating function of Pn(x) is given by

G(x, u) = (1 − 2xu + u2)−1/2.

*9. Consider the Chebyshev polynomials of the first kind {Tn(x)}.

(a) Show that Tn(x) = (−1)nn!
1·3···(2n−1)

√
1−x2

2πi

∮
γ

(1−z2)n−1/2

(z−x)n+1 dz.

(b) Then use (a) to verify that the generating function of Tn(x) is
given by

G(x, u) =
1 − u2

2(1 − 2xu + u2)
− 1

2
.

*10. Consider the Gegenbauer polynomials P ν
n (x).

(a) Show that

P ν
n (x) =

(−1)n(2ν + n − 1)!(ν − 1
2 )!

(2ν − 1)!(ν + n − 1
2 )!(1 − x2)

∮
γ

(1 − z2)ν+n−1/2

(z − x)n+1 dz.

(b) Show that the generating function of P ν
n (x) is G(x, u) = (1 −

2xu + u2)−ν .

*11. Consider the Hermite polynomials {Hn(x)}.

(a) Show that

Hn(x) =
(−1)nn!

nπi

∮
γ

exp(x2 − z2)
(z − x)n+1 dz.

(b) Show that

exp(2ux − u2) =
∞∑

n=0

Hn(x)
n!

un.

12. Consider the Laguerre polynomials {Lα
n(x)}.

(a) Show that

Lα
n(x) =

x−α

2πi

∮
γ

zn+λ exp(x − z)
(z − x)n+1 dz.
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(b) Show that the generating function of {Lα
n(x)} is

G(x, u) = (1 − u)−α−1 exp
{ −xu

1 − x

}
.



10
Control Theory

10.1 Introduction

In the last three decades, control theory has gained importance as a dis-
cipline for engineers, mathematicians, scientists, and other researchers.
Examples of control problems include landing a vehicle on the moon, con-
trolling the economy of a nation, manufacturing robots, and controlling the
spread of an epidemic. Though a plethora of other books discuss contin-
uous control theory [6], [75], [96], we will present here an introduction to
discrete control theory.

We may represent a physical system that we intend to control by the
homogeneous difference system

x(n + 1) = Ax(n), (10.1.1)

where A is a (k × k) matrix. We extensively studied this equation in
Chapters 3 and 4; here we will refer to it as an uncontrolled system.

To control this system, or to induce it to behave in a predetermined
fashion, we introduce into the system a forcing term, or a control, u(n).
Thus, the controlled system is the nonhomogeneous system

x(n + 1) = Ax(n) + u(n). (10.1.2)

In realizing system (10.1.2), it is assumed that the control can be applied
to affect directly each of the state variables x1(n), x2(n), . . . , xk(n) of the
system. In most applications, however, this assumption is unrealistic. For

429
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example, in controlling an epidemic, we cannot expect to be able to affect
directly all of the state variables of the system.

We find another example in the realm of economics. Economists, and
certain politicians even, would pay dearly to know how the rate of inflation
can be controlled, especially by altering some or all of the following vari-
ables: taxes, the money supply, bank lending rates. There probably is no
equation like (10.1.2) that accurately describes the rate of inflation. Thus,
a more reasonable model for the controlled system may be developed: We
denote it by

x(n + 1) = Ax(n) + Bu(n), (10.1.3)

where B is a (k×m) matrix sometimes called the input matrix, and u(n) is
an m×1 vector. In this system, we have m control variables, or components,
u1(n), u2(n), . . . , um(n), where m ≤ k.

In engineering design and implementation, the system is often repre-
sented by a block diagram, as in Figures 10.1, 10.2.

The delay is represented traditionally by z−1, since 1
z Z[x(n + 1)] =

Z[x(n)]. (See Figure 10.3.)

x(n+1)
Delay

z
-1 x(n)

A

FIGURE 10.1. Uncontrolled system.

u(n)
+

+

x(n+1)
Delay

z
-1

A

x(n)B

FIGURE 10.2. Controlled system.
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x(n+1)
z

-1
x(n)

x(z)z x(z)~ ~

FIGURE 10.3. Representation of system delay.

u(k) x(k)HT

u(t) Continuous
System Σc

x(t)
ST

Discrete system Σd

FIGURE 10.4. A continuous system with ideal sampler and zero-order hold.

10.1.1 Discrete Equivalents for Continuous Systems
One of the main areas of application for the discrete control methods de-
veloped in this chapter is the control of continuous systems, i.e., those
modeled by differential and not difference equations. The reason for this
is that while most physical systems are modeled by differential equations,
control laws are often implemented on a digital computer, whose inputs
and outputs are sequences. A common approach to control design in this
case is to obtain an equivalent difference equation model for the continuous
system to be controlled.

The block diagram of Figure 10.4 shows a common method of interfacing
a continuous system to a computer for control. The system

∑
c has state

vector x(t) and input u(t) and is modeled by the differential equation

ẋ(t) = Â(t)x(t) + B̂u(t). (10.1.4)

The system ST is an ideal sampler that produces, given a continuous signal
x(t), a sequence x(k) defined by

x(k) = x(kT ). (10.1.5)

The system HT is a zero-order hold that produces, given a sequence u(k),
a piecewise-constant continuous signal uc(t) defined by

u(t) = u(k), t ∈ [kT, (k + 1)T ). (10.1.6)

It is not hard to check that the solution to (10.1.4) for t ∈ [kT, (k + 1)T )
is given by

x(t) = eÂtx(kT ) +
∫ t

kT

eÂ(t−τ)B̂u(τ) dτ. (10.1.7)
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Thus a difference equation model for the overall system
∑

d (indicated
by the dotted box in Figure 10.4) can be obtained by evaluating formula
(10.1.7) at t = (k + 1)T and using (10.1.5) and (10.1.6):

x(k + 1) = Ax(k) + Bu(k), (10.1.8)

where

A = eÂT and B = TeÂT B̂. (10.1.9)

Example 10.1. A current-controlled DC motor can be modeled by the
differential equation

ẋ(t) = −1
τ

x(t) +
K

τ
u(t),

where x is the motor’s angular velocity, u is the applied armature current,
and K and τ are constants. A difference equation model suitable for the
design of a discrete control system for this motor can be found using (10.1.8)
and (10.1.9):

x(k + 1) = Ax(k) + Bu(k),

where

A = eÂT = e−T/τ and B = TeÂT B̂ =
KT

τ
e−T/τ .

10.2 Controllability

In this section we are mainly interested in the problem of whether it
is possible to steer a system from a given initial state to any arbitrary
state in a finite time period. In other words, we would like to determine
whether a desired objective can be achieved by manipulating the chosen
control variables. Until 1960, transform methods were the main tools in
the analysis and design of controlled systems. Such methods are referred to
now as classical control theory. In 1960, the Swiss mathematician/engineer
R.E. Kalman [77] laid down the foundation of modern control theory by
introducing state space methods. Consequently, matrices have gradually re-
placed transforms (e.g., Z-transform, Laplace transform), as the principal
mathematical machinery in modern control theory [88], [108], [142].

Definition 10.2. System (10.1.3) is said to be completely controllable (or
simply controllable) if for any n0 ∈ Z

+, any initial state x(n0) = x0, and
any given final state (the desired state) xf , there exists a finite time N > n0
and a control u(n), n0 < n ≤ N , such that x(N) = xf .1

1In some books such a system may be referred to as completely reachable.
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Remark: Since system (10.1.3) is completely determined by the matrices
A and B, we may speak of the controllability of the pair {A, B}.

In other words, there exists a sequence of inputs u(0), u(1), . . . , u(N − 1)
such that this input sequence, applied to system (10.1.3), yields x(N) = xf .

Example 10.3. Consider the system governed by the equations

x1(n + 1) = a11x1(n) + a12x2(n) + bu(n),
x2(n + 1) = a22x2(n).

Here

A =

(
a11 a12

0 a22

)
, B =

(
b

0

)
.

It will not take much time before we realize that this system is not
completely controllable, since u(n) has no influence on x2(n). Moreover,
x2(n) is entirely determined by the second equation and is given by
x2(n) = an

22x2(0).

The above example was easy enough that we were able to determine
controllability by inspection. For more complicated systems, we are going
to develop some simple criteria for controllability.

The controllability matrix W of system (10.1.3) is defined as the k × km
matrix

W = [B, AB, A2B, . . . , Ak−1B]. (10.2.1)

The controllability matrix plays a major role in control theory, as may be
seen in the following important basic result.

Theorem 10.4. System (10.1.3) is completely controllable if and only if
rank W = k.

Before proving the theorem, we make a few observations about it and
then prove a preliminary result.

First, consider the simple case where the system has only a single input,
and thus the input matrix B reduces to an m × 1 vector b. Hence the
controllability matrix becomes the k × k matrix

W = [b, Ab, . . . , Ak−1b].

The controllability condition that W has rank k means that the matrix W
is nonsingular or its columns are linearly independent. For the general case,
the controllability condition is that from among the km columns there are
k linearly independent columns. Let us now illustrate the theorem by an
example.
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Example 10.5. Contemplate the system

y1(n + 1) = ay1(n) + by2(n),
y2(n + 1) = cy1(n) + dy2(n) + u(n),

where ad − bc �= 0. Here

A =

(
a b

c d

)
, B =

(
0
1

)
,

and u(n) is a scalar control. Now,

W = (B, AB) =

(
0 b

1 d

)
has rank 2 if b �= 0. Thus the system is completely controllable by Theorem
10.4 if and only if b �= 0.

Lemma 10.6. For any N ≥ k, the rank of the matrix

[B, AB, A2B, . . . , AN−1B]

is equal to the rank of the controllability matrix W .

Proof. (I) Consider the matrix W (n) = [B, AB, . . . , An−1B], n =
1, 2, 3, . . .. As n increases by 1, either the rank of W (n) remains
constant or increases by at least 1. Suppose that for some r > 1,
rank W (r + 1) = rank W (r). Then every column in the matrix ArB is
linearly dependent on the columns of W (r) = [B, AB, . . . , Ar−1B]. Hence

ArB = BM0 + ABM1 + · · · + Ar−1BMr−1, (10.2.2)

where each Mi is an m×m matrix. By premultiplying both sides of (10.2.2)
by A, we obtain

Ar+1B = ABM0 + A2BM1 + · · · + ArBMr−1.

Thus the columns of Ar+1B are linearly dependent on the columns of W (r+
1). This implies that rank W (r + 2) = rank W (r + 1) = rank W (r). By
repeating this process, one may conclude that

rank W (n) = rank W (r) for all n > r.

We conclude from the above argument that rank W (n) increases by
at least 1 as n increases by 1 until it attains its maximum k. Hence
the rank maximum of W (n) is attained in at most k steps. There-
fore, the maximum rank is attained at n ≤ k and, consequently, rank
W (≡ rank W (k)) = rank W (N) for all N ≥ k. �

Proof. (II) In the second proof we apply the Cayley–Hamilton theorem
(Chapter 3). So if p(λ) = λk + p1λ

k−1 + · · · + pk is the characteristic
polynomial of A, then p(A) = 0, i.e.,

Ak + p1A
k−1 + · · · + pkI = 0,
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or

Ak =
k∑

i=1

qiA
k−1, (10.2.3)

where qi = −pi. Multiplying expression (10.2.3) by B, we obtain

AkB =
k∑

i=1

qiA
k−iB. (10.2.4)

Thus the columns of AkB are linearly dependent on the columns of W (k) ≡
W . Therefore, rank W (k+1) = rank W . By multiplying expression (10.2.4)
by A we have

Ak+1B = q1A
k + q2A

k−1 + · · · + qkA.

Consequently, rank W (k + 2) = rank W (k + 1) = rank W . By repeating
the process, one concludes that rank W (N) = rank W for all N ≥ k. �

We are now ready to prove the theorem.

Proof of Theorem 10.4.

Sufficiency Suppose that rank W = k. Let x0 and xf be two arbitrary
vectors in R

k. Recall that by the variation of constants formula (3.2.14) we
have

x(k) − Akx(0) =
k−1∑
r=0

Ak−r−1Bu(r),

or

x(k) − Akx(0) = Wū(k), (10.2.5)

where

ū(k) =

⎛⎜⎜⎜⎜⎝
u(k − 1)
u(k − 2)

...
u(0)

⎞⎟⎟⎟⎟⎠ .

Since rank W = k, range W = Rk. Hence if we let x(0) = x0 and x(k) = xf ,
then xf −Akxo ∈ range W . Thus xf −Akx0 = Wū for some vector ū ∈ R

k.
Consequently, system (10.1.3) is completely controllable.

Necessity Assume that system (10.1.3) is completely controllable and
rank W < k. From the proof of Lemma 10.6 (Proof I) we conclude that
there exists r ∈ Z

+ such that
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rank W (1) < rank W (2) < · · · < rank W (r)
= rank W (r + 1) = · · · = rank W.

Moreover, rank W (n) = rank W for all n > k. Furthermore, since W (j +
1) = (W (j), AjB), it follows that

range W (1) ⊂ range W (2) ⊂ · · · ⊂ range W (r)
= range W (r + 1) = · · · = range W = · · · = range W (n)

for any n > k.
Since rank W < k, range W �= Rk. Thus there exists ξ �∈ range W .

This implies that ξ �∈ range W (n) for all n ∈ Z
+. If we let x0 = 0 in

formula (10.2.5) with k replaced by n, we have x(n) = W (n)ū(n). Hence
for ξ to be equal to x(n) for some n, ξ must be in the range of W (n). But
ξ �∈ range W (n) for all n ∈ Z

+ implies that ξ may not be reached at any
time from the origin, which is a contradiction. Therefore, rank W = k. �

Remark 10.7. There is another definition of complete controllability in
the literature that I will call here “controllability to the origin.” A system
is controllable to the origin if, for any n0 ∈ Z

+ and x0 ∈ R
k, there exists a

finite time N > n0 and a control u(n), n0 < n ≤ N , such that x(N) = 0.

Clearly, complete controllability is a stronger property than controlla-
bility to the origin. The two notions coincide in continuous-time systems.
(See [75].) However, for the discrete-time system (10.1.3), controllability to
the origin does not imply complete controllability unless A is nonsingular
(Exercises 10.1 and 10.2, Problem 13). The following example illustrates
our remark.

Example 10.8. Consider the control system x(n + 1) = Ax(n) + Bu(n)
with

A =

(
0 1
0 0

)
, B =

(
1
0

)
. (10.2.6)

Now, for

x(0) = x0 =

(
x01

x02

)
,

we have, from (10.2.6),

x(1) = Ax0 + Bu(0)

=

(
0 1
0 0

)(
x01

x02

)
+

(
1
0

)
u(0)

=

(
x02

0

)
+

(
u(0)

0

)
.
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So if we pick u(0) = −x02, then we will have x(1) = 0. Therefore, system
(10.2.6) is controllable to zero. Observe, however, that

rank (B, AB) = rank

(
1 0
0 0

)
= 1 < 2.

Thus by Theorem 10.4, system (10.2.6) is not completely controllable.

Example 10.9. Contemplate the system y(n+1) = Ay(n)+Bu(n), where

A =

(
0 1
2 −1

)
, B =

(
1
1

)
.

Now, W (1) =

(
1
1

)
is of rank 1, and W (2) =

(
1 1
1 1

)
is also of rank 1,

since it is now equivalent to

(
1 1
0 0

)
. Hence according to Theorem 10.4

the system is not controllable. Notice, however, that the point

(
−4
0

)
is

reachable from

(
1
2

)
under the control u(n) = −2 in time n = 2.

Example 10.10. Figure 10.5 shows a cart of mass m attached to a wall
via a flexible linkage. The equation of motion for this system is

mẍ + bẋ + kx = u, (10.2.7)

where k and b are the stiffness and damping, respectively, of the linkage,
and u is an applied force. Equation (10.2.7) can be written in state variable

u

k

b
m

x

FIGURE 10.5. A cart attached to a wall via a flexible linkage.



438 10. Control Theory

form as [
ẋ

v̇

]
=

[
0 1

−k/m −b/m

][
x

v

]
+

[
0

1/m

]
u. (10.2.8)

Thus

Â =

[
0 1

−k/m −b/m

]
, B̂ =

[
0

1/m

]
.

Recall that, given a sample period T , the matrices A and B of the equivalent
discrete system are given by

A = eÂT , B = TeÂT B̂,

so that their computation requires finding the exponential of the matrix Â.
This is not so difficult as it sounds, at least when Â can be diagonalized,
for then we can find a matrix P such that

Â = PΛP−1, (10.2.9)

where Λ is a diagonal matrix

Λ =

⎡⎢⎢⎣
λ1 · · · 0
...

. . .
...

0 · · · λk

⎤⎥⎥⎦ . (10.2.10)

By definition,

eÂT = I + ÂT +
1
2!

Â2T 2 +
1
3!

Â3T 3 + · · · ,

so that substituting using (10.2.9) gives

eÂT = PeΛT P−1,

and the diagonal form (10.2.10) of Λ gives

eÂT = P

⎡⎢⎢⎣
eλ1T · · · 0

...
. . .

...

0 · · · eλkT

⎤⎥⎥⎦P−1.

Returning to our example, note that if m = 1, k = 2, and b = 3, then

Â =

[
0 1

−2 −3

]
, B̂ =

[
0
1

]
.

Thus Â can be written in the form of (10.2.9), where

Λ =

[
−1 0
0 −2

]
, P =

[
1 1

−1 −2

]
.
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Hence

A = eÂT =

[
e−T 0

0 e−2T

]
P−1

=

[
2e−T − e−2T e−T − e−2T

−2e−T + 2e−2T −e−T + 2e−2T

]
,

B = TeÂT B̂ = T

[
e−T − e−2T

−e−T + 2e−2T

]
.

The controllability of the discrete equivalent system can then be checked
by computing

W =
[
B AB

]
= T

[
e−T − e−2T e−2T − e−4T

−e−T + 2e−2T −e−2T + 2e−4T

]
.

Checking the determinant gives

det W = −T 2e−4T (1 − e−T + e−2T ),

which is zero only if T = 0. Thus the cart is controllable for any nonzero
sample period.

10.2.1 Controllability Canonical Forms
Consider the second-order difference equation

z(n + 2) + p1z(n + 1) + p2z(n) = u(n).

Recall from Section 3.2 that this equation is equivalent to the system

x(n + 1) = Ax(u) + Bu(n),

where

A =

(
0 1

−p2 −p1

)
, B =

(
0
1

)
, x =

(
z(n)

z(n + 1)

)
.

Clearly,

W (2) =

(
0 1
1 −p1

)
has rank 2 for all values of p1 and p2. Consequently, this equation is always
completely controllable.

The preceding example may be generalized to the kth-order equation

z(n + k) + p1z(n + k + 1) + · · · + pkz(n) = u(n), (10.2.11)

which is equivalent to the system

x(n + 1) = Ax(n) + bu(n),
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where

A =

⎛⎜⎜⎜⎜⎝
0 1 0 · · · 0
... 0 1

...
1

−pk −pk−1 · · · −p1

⎞⎟⎟⎟⎟⎠ , B = ek =

⎛⎜⎜⎝
0
...
1

⎞⎟⎟⎠ ,

x(n) =

⎛⎜⎜⎜⎜⎝
z(n)

z(n + 1)
...

z(n + k − 1)

⎞⎟⎟⎟⎟⎠ .

Notice that

AB =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...
1

−p1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, A2B =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...
1
*
*

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, . . . , Ak−1B =

⎛⎜⎜⎜⎜⎝
1
*
...
*

⎞⎟⎟⎟⎟⎠ ,

where the ∗’s are some combinations of the products of the pi’s. It follows
that

W =

⎛⎜⎜⎜⎜⎝
0 0 · · · 1
...

...
...

0 1 . . . *
1 * . . . *

⎞⎟⎟⎟⎟⎠
is of rank k, and so the equation, and thus the system, is completely con-
trollable. The converse of the above statement is also valid. That is to say,
if system (10.1.3), with k ×1 vector B ≡ b, is completely controllable, then
it can be put in the form of a kth scalar equation (10.2.11) by a similarity
transformation. To accomplish this task we start with the k × k controlla-
bility matrix W = (b, Ab, . . . , Ak−1b). Since system (10.1.3) is completely
controllable, it follows from Theorem 10.4 that W is nonsingular. Let us
write W−1 in terms of its rows as

W−1 =

⎛⎜⎜⎜⎜⎝
w1

w2

...
wk

⎞⎟⎟⎟⎟⎠ .
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We claim that the set {wk, wkA, . . . , wkAk−1} generated by the last row of
W−1 is linearly independent. To show this, suppose that for some constants
a1, a2, . . . , ak we have

a1wk + a2wkA + · · · + akwkAk−1 = 0. (10.2.12)

Multiplying (10.2.12) from the right by b yields

a1wkb + a2wkAb + · · · + akwkAk−1b = 0. (10.2.13)

Since W−1W = I, it follows that wkb = wkAb = · · · = wkAk−2b = 0
and wkAk−1b = 1. Hence it follows from (10.2.13) that ak = 0. One may
repeat this procedure by multiplying (10.2.12) by Ab (and letting ak = 0) to
conclude that ak−1 = 0. Continuing this procedure, one may show that ai =
0 for 1 ≤ i ≤ k. This proves our claim that the vectors wk, wkA, . . . , wkAk−1

are linearly independent. Hence the k × k matrix

P =

⎛⎜⎜⎜⎜⎝
wk

wkA

...

wkAk−1

⎞⎟⎟⎟⎟⎠
is nonsingular. Define a change of coordinates for system (10.1.3) by

z(n) = Px(n), (10.2.14)

which gives

z(n + 1) = PAP−1z(n) + Pbu(n),

or

z(n + 1) = Âz(n) + b̂u(n), (10.2.15)

where

Â = PAP−1, b̂ = Pb. (10.2.16)

clearly,

b̂ = Pb =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
0
...
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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Now,

Â = PAP−1 =

⎛⎜⎜⎜⎜⎝
wkA

wkA2

...

wkAk

⎞⎟⎟⎟⎟⎠P−1.

Since wkA is the second row in P , it follows that

wkAP−1 = (0 1 0 · · · 0).

Similarly,

wkA2P−1 = (0 0 1 0 · · · 0),
...

wkAk−1P−1 = (0 0 · · · 0 1).

However,

wkAkP−1 = (−pk − pk−1 · · · − p1),

where the pi’s are some constants. Thus

Â =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 . . . 0
...

...
0 0 0 . . . 1

−pk −pk−1 −pk−2 · · · −p1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
with characteristic equation

λk + p1λ
k−1 + p2λ

k−2 + · · · + pk = 0.

Observe that A and Â have the same characteristic equation. The above
discussion proves the following.

Theorem 10.11. A system x(n + 1) = Ax(n) + bu(n) is completely con-
trollable if and only if it is equivalent to a kth-order equation of the form
(10.2.11).

System (10.2.15) is said to be in a controllable canonical form.

Another controllable canonical form may be obtained by using the change
of variables x(n) = Wz(n), where W is the controllability matrix of the
system. This is a more popular form among engineers due to its simple
derivative. The reader is asked in Exercises 10.1 and 10.2, Problem 20, to
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show that the obtained controllable canonical pair {Ã, b̃} are given by

Ã =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · · −pk

1 0 0 . . . −pk−1

0 1 0 . . . −pk−2

...
...

0 0 . . . −p1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, b̃ =

⎛⎜⎜⎜⎜⎝
1
0
...
0

⎞⎟⎟⎟⎟⎠ . (10.2.17)

Exercises 10.1 and 10.2

In Problems 1 through 6 determine whether or not the system x(n + 1) =
Ax(n) + Bu(n) is completely controllable.

1. A =

(
−2 2
1 −1

)
, B =

(
1
0

)
.

2. A =

(
−1 0
0 −2

)
, B =

(
2
3

)
.

3. A =

(
−1 0
0 −2

)
, B =

(
2
0

)
.

4. A =

⎛⎜⎜⎜⎜⎜⎜⎝
−2 1 0 0 0
0 −2 1 0 0
0 0 −2 0 0
0 0 0 −5 1
0 0 0 0 −5

⎞⎟⎟⎟⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1
0 0
3 0
0 0
2 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

5. A =

⎛⎜⎜⎜⎜⎜⎜⎝
−2 1 0 0 0
0 −2 1 0 0
0 0 −2 0 0
0 0 0 −5 1
0 0 0 0 −5

⎞⎟⎟⎟⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1
3 0
0 0
2 1
0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

6. A =

(
A11 A12

0 A22

)
, B =

(
B1

0

)
,

A11 is an r × r matrix, A12 is an r × s matrix, A22 is an s × s matrix,
B1 is an r × m matrix, where r + s = k.

We say that a state xf is reachable from an initial state x0 if there
exists N ∈ Z

+ and a control u(n), n = 0, 1, . . . , N − 1, such that
x(N, x0) = xf .

7. Prove that a state xf is reachable from x0 in time N if and only if
xf − ANx0 ∈ range W (N).
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8. Consider the system x(n + 1) = Ax(n) + Bu(n), where

A =

⎛⎜⎝1 2 −1
0 1 0
1 −4 3

⎞⎟⎠ , B =

⎛⎜⎝0
0
1

⎞⎟⎠ .

Find a basis for the set of vectors in R
3 that are reachable from the

origin.

9. Consider the system

x(n + 1) =

(
−1 −1
2 −4

)
x(n) + Bu(n).

Find for what vectors B in R
2 the system is not completely

controllable.

10. Obtain a necessary and sufficient condition for

x1(n + 1) = a11x1(n) + a12x2(n) + u(n),
x2(n + 1) = a21x1(n) + a22x2(n) − u(n),

to be controllable.

11. Obtain a necessary and sufficient condition for x(n + 1) = Ax(n) +
Bu(n) to be completely controllable, where

A =

(
a11 a12

a21 a22

)
, B =

(
1
1

)
.

12. Consider the system

x1(n + 1) = x2(n) + u1(n) + u2(n),
x2(n + 1) = x3(n) + u1(n) − u2(n),
x3(n + 1) = u1(n).

(a) Prove that the system is completely controllable in two steps.

(b) If u2(n) ≡ 0, show that the system is completely controllable in
three steps.

(c) If u1(n) ≡ 0, show that the system is not completely controllable.

13. Show that if the matrix A in (10.1.3) is nonsingular, then complete
controllability and controllability to the origin are equivalent.

14. Prove that if U = WWT is positive definite, then W has rank k, where
W is the controllability matrix of (10.1.3). Prove also the converse.

15. Show that system (10.1.3) is completely controllable if [B, AB, . . . , Ak−r]
has rank k, where r = rank B.
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16. A polynomial ϕ(λ) = λm +a1λ
m−1+ · · ·+am is said to be the minimal

polynomial of a k ×k matrix A if ϕ(λ) is the lowest-degree polynomial
for which ϕ(A) = 0. It follows that m ≤ k. Prove that system {A, B}
is completely controllable if and only if rank[B, AB, . . . , Am−rB] = k,
where rank B = r.

17. For a k × k matrix A and a k × m matrix B, prove that the following
statements are true:

(i) If {A, B} is completely controllable, then so is {A + BC, B} for
any m × 1 vector C.

(ii) If {A + BC, B} is completely controllable for some m × 1 vector
C0, then {A + BC, B} is completely controllable for any m × 1
vector C.

18. Consider the system x(n + 1) = Ax(n) + Bu(n), where A is a k × k
matrix, B is a k×m matrix, and such that A has k linearly independent
eigenvectors. Prove that {A, B} is completely controllable if and only
if no row of P −1B has all zero elements, where P = (ξ1, . . . , ξk), the
ξi’s being the eigenvectors of A.

19. Suppose that in Problem 18, A does not possess k linearly indepen-
dent eigenvectors and that there exists a nonsingular matrix P where
P−1AP = J is the Jordan canonical form of A. Prove that {A, B} is
completely controllable if and only if:

(i) no two Jordan blocks in J are associated with the same eigenvalue,

(ii) the elements of any row of P−1B that correspond to the last row
of each Jordan block are not all zero, and

(iii) the elements of each row of P−1B that correspond to distinct
eigenvalues are not all zero.

20. (Another controllability canonical form). Consider the completely con-
trollable system x(n + 1) = x(n) + bu(n), where b is a k × 1 vector.
Let x(n) = Wz(n), where W is the controllability matrix. Then the
system becomes z(n + 1) = Ãz(n) + b̃u(n). Show that Ã and b̃ are
given by (10.2.17).

21. Consider the system x(n + 1) = Ax(n) + Bu(n), where

A =

(
1 0.6
0 0.4

)
, B =

(
0.4
0.6

)
.

The reachability set is defined by R(n) = {x(0): x(0) is reached from
the origin in N steps with |u(i)| ≤ 1, 1 ≤ i ≤ N}.

(a) Find R(1) and plot it.

(b) Find R(2) and plot it.
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u(n)
B +

x(n+1)
z

-1 x(n)

A

FIGURE 10.6. Output is the same as the state: y(n) = x(n).

10.3 Observability

In the previous section it was assumed that (the observed) output of the
control system is the same as that of the state of the system x(n). In
practice, however, one may not be able to observe the state of the system
x(n) but rather an output y(n) that is related to x(n) in a specific manner.
The mathematical model of this type of system is given by

x(n + 1) = Ax(n) + Bu(n),
y(n) = Cx(n), (10.3.1)

where A(n) is a k ×k matrix, B a k ×m matrix, u(n) an m×1 vector, and
C an r × k matrix. The control u(n) is the input of the system, and y(n)
is the output of the system, as shown in Figures 10.6, 10.7.

Roughly speaking, observability means that it is possible to determine
the state of a system x(n) by measuring only the output y(n). Hence it
is useful in solving the problem of reconstructing unmeasurable state vari-
ables from measurable ones. The input–output system (10.3.1) is completely
observable if for any n0 ≥ 0, there exists N > n0 such that the knowledge
of u(n) and y(n) for n0 ≤ n ≤ N suffices to determine x(n0) = x0.

u(n)
B +

x(n+1)
z

-1

A

x(n)
C y(n)

FIGURE 10.7. Input–output system: y(n) = Cx(n).
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+

+
u(n)

b1

b2

a2

z
-1

x2(n+1) x2(n)

a1

z
-1

x1(n+1) x1(n)

1 y(n)

FIGURE 10.8. A nonobservable system.

Example 10.12. Consider the system (Figure 10.8)

x1(n + 1) = a1x1(n) + b1u(n),
x2(n + 1) = a2x2(n) + b2u(n),

y(n) = x1(n).

This system is not observable, since the first equation shows that x1(n) =
y(n) is completely determined by u(n) and x1(0) and that there is no way
to determine x2(0) from the output y(n).

In discussing observability, one may assume that the control u(n) is iden-
tically zero. This obviously simplifies our exposition. To explain why we
can do this without loss of generality, we write y(n) using the variation of
constants formula (3.2.14) for x(n):

y(n) = Cx(n),

or

y(n) = CAn−n0x0 +
n−1∑
j=n0

CAn−j−1Bu(j).

Since C, A, B, and u are all known, the second term on the right-hand side
of this last equation is known. Thus it may be subtracted from the observed
value y(n). Hence, for investigating a necessary and sufficient condition for
complete observability it suffices to consider the case where u(n) ≡ 0.

We now present a criterion for complete observability that is analogous
to that of complete controllability.
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Theorem 10.13. System (10.3.1) is completely observable if and only if
the rk × k observability matrix

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C

CA

CA2

...

CAk−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(10.3.2)

has rank k.

Proof. By applying the variation of constants formula (3.2.14) to
(10.3.1) we obtain

y(n) = Cx(n) = C

[
Anx0 +

n−1∑
r=0

An−r−1Bu(r)

]
. (10.3.3)

Let

ŷ(n) = y(n) −
n−1∑
r=0

CAn−r−1Bu(r). (10.3.4)

Using formula (10.3.3), equation (10.3.4) may now be written as

ŷ(n) = CAnx0. (10.3.5)

Putting n = 0, 1, 2, . . . , k − 1 in (10.3.5) yields⎡⎢⎢⎢⎢⎣
ŷ(0)
ŷ(1)

...
ŷ(k − 1)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
C

CA

...

CAk−1

⎤⎥⎥⎥⎥⎦x0. (10.3.6)

Suppose that rank V = k. Then range V = Rk. Now, if y(n), u(n) are
given for 0 ≤ n ≤ k − 1, then it follows from (10.3.4) that ŷ(n), 0 ≤ n ≤
k − 1, is also known. Hence there exists x0 ∈ R

k such that (10.3.6) holds.
Hence system (10.3.1) is completely observable. Conversely, suppose system
(10.3.1) is completely observable. Let us write

V (N) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

C

CA

CA2

...

CAN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
(
CT , AT CT , (AT )2CT , . . . , (AT )N−1CT

)T
.

(10.3.7)
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Then from Theorem 10.13, V (N) is of rank k if and only if the observability
matrix V ≡ V (k) has rank k. Therefore, if x0 can be uniquely determined
from N observations y(0), y(1), . . . , y(N −1), it can be so determined from
y(0), y(1), . . . , y(k − 1). Thus rank V = k. �

Notice that the matrix B does not play any role in determining observ-
ability. This confirms our earlier remark that in studying observability, one
may assume that u(n) ≡ 0. Henceforth, we may speak of the observability
of the pair {A, C}.

Example 10.3 revisited. Consider again Example 10.3. The system may
be written as(

x1(n + 1)
x2(n + 1)

)
=

(
a1 0
0 a2

)(
x1(n)
x2(n)

)
+

(
b1

b2

)
u(n),

y(n) =
(
1 0

)(x1(n)
x2(n)

)
.

Thus A =

(
a1 0
0 a2

)
and C =

(
1 0

)
. It follows that the observability

matrix is given by V =
(
1 a1

) (
0 0

)
. Since rank V = 1 < 2, the system

is not completely observable by virtue of Theorem 10.13.

Finally, we give an example to illustrate the above results.

Example 10.14. Consider the input–output system (Figure 10.9)

x1(n + 1) = x2(n),
x2(n + 1) = −x1(n) + 2x2(n) + u(n),

y(n) = c1x1(n) + c2x2(n).

Then A =

(
0 1

−1 2

)
, B =

(
0
1

)
, and C = (c1, c2). The observability

matrix is given by

V =

(
C

CA

)
=

(
c1 c2

−c2 c1 + 2c2

)
.

By adding the first column to the second column in V we obtain the matrix

V̂ =

(
c1 c1 + c2

−c2 c1 + c2

)
.

Observe that rank V̂ = 2 if and only if c1 +c2 �= 0. Since rank V = rank V̂ ,
it follows that the system is completely observable if and only if c1 +c2 �= 0
(or c2 �= −c1).

We may also note that the system is completely controllable.
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+ +
u(n) x2(n+1)

z
-1

2

x2(n) x2(n)
y(n)z

-1

c2

c1

-1

FIGURE 10.9. A completely observable and controllable system.

Example 10.15. Example 10.10 looked at the controllability of a cart
attached to a fixed wall via a flexible linkage using an applied force u.
A dual question can be posed: If the force on the cart is a constant, can
its magnitude be observed by measuring the cart’s position? In order to
answer this question, the state equation (10.2.8) must be augmented with
one additional equation, representing the assumption that the applied force
is constant: ⎡⎢⎣ẋ

v̇

u̇

⎤⎥⎦ =

⎡⎢⎣ 0 1 0
−k/m −b/m 1/m

0 0 0

⎤⎥⎦
⎡⎢⎣x

v

u

⎤⎥⎦ ,

y =
[
1 0 0

] ⎡⎢⎣x

v

u

⎤⎥⎦ .

Using the same values m = 1, k = 2, and b = 3 as in Example 6.10,

Â =

⎡⎢⎣ 0 1 0
−2 −3 1
0 0 0

⎤⎥⎦
can be written as

Â = PΛP−1,

where

Λ =

⎡⎢⎣−1 0 0
0 −2 0
0 0 0

⎤⎥⎦ , P =

⎡⎢⎣ 1 1 1
−1 −2 0
0 0 2

⎤⎥⎦ .
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Thus

A = eÂT = PeΛT P−1

=

⎡⎢⎢⎣ 2e−T − e−2T e−T − e−2T 1
2

+ e−T +
1
2
e−2T

−2e−T + 2e−2T −e−T + 2e−2T −e−T − e−2T

0 0 1

⎤⎥⎥⎦
To check observability, we must compute

V =

⎡⎢⎣ C

CA

CA2

⎤⎥⎦

=

⎡⎢⎢⎢⎣
1 0 0

2e−T − e−2T e−T − e−2T 1
2

+ e−T +
1
2
e−2T

2e−2T − e−4T e−2T − e−4T 1
2

+ 2e−T + e−2T +
1
2
e−4T

⎤⎥⎥⎥⎦
and its determinant

det V = e−T + 2e−2T − 4e−3T − 2e−4T + 3e−5T

= e−T (1 + e−T )(1 − e−T )2(1 + 3e−T ).

The factored form above shows that since T is real, detV = 0 only if T = 0.
The system is therefore observable for all nonzero T .

Theorem 10.13 establishes a duality between the notions of controllability
and observability. The following definition formalizes the notion of duality.

Definition 10.16. The dual system of (10.3.1) is given by

x(n + 1) = AT x(n) + CT u(n),

y(n) = BT x(n). (10.3.8)

Notice that the controllability matrix W̄ of system (10.3.8) may be given
by

W̄ =
[
CT , AT CT , (AT )2CT , . . . , (AT )k−1CT

]
.

Furthermore, the observability matrix V of system (10.3.1) is the transpose
of W̄ , i.e.,

V = W̄T .

But since rank W̄ = rank W̄T = rank V , we have the following conclusion.

Theorem 10.17 (Duality Principle). System (10.3.1) is completely
controllable if and only if its dual system (10.3.8) is completely observable.
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complete controllability

dual

complete observability
det A ≠ 0

det A ≠ 0
controllability to the origin

constructibility

dual

FIGURE 10.10.

Remark: In Remark 10.7 we introduced a weaker notion of controllability,
namely, controllability to the origin. In this section we have established
a duality between complete controllability and complete observability. To
complete our analysis we need to find a dual notion for controllability to the
origin. Fortunately, such a notion does exist, and it is called constructibility.
System (10.3.1) is said to be constructible if there exists a positive integer
N such that for given u(0), u(1), . . . , u(N − 1) and y(0), y(1), . . . , y(N −
1) it is possible to find the state vector x(N) of the system. Since the
knowledge of x(0) yields x(N) by the variation of constants formula, it
follows that complete observability implies constructibility. The two notions
are in fact equivalent if the matrix A is nonsingular. Figure 10.10 illustrates
the relations among various notions of controllability and observability.

Finally, we give an example to demonstrate that constructibility does
not imply complete observability.

Example 10.18. Contemplate a dual of the system in Example 10.8:(
x1(n + 1)
x2(n + 1)

)
=

(
0 0
1 0

)(
x1(n)
x2(n)

)
+

(
1
0

)
u(n),

y(n) =
(
1 0

)(x1(n)
x2(n)

)
.

The observability matrix is given by

V =

(
1 0
0 0

)
,

whose rank is 1. It follows from Theorem 10.13 that the system is not
completely observable. However, if we know u(0), u(1) and y(0), y(1), then
from the second equation we find that x1(1) = y(1). The first equation
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yields x1(2) = u(1) and x2(2) = x1(1). Thus

x(2) =

(
x1(2)
x2(2)

)

is now obtained and, consequently, the system is constructible.

10.3.1 Observability Canonical Forms
Consider again the completely observable system

x(n + 1) = Ax(n) + bu(n),
y(n) = Cx(n), (10.3.9)

where b is a k × 1 vector and C is a 1 × k vector. Recall that in Section
10.2 we constructed two controllability canonical forms of system (10.3.1).
By exactly parallel procedures we can obtain two observability canonical
forms corresponding to system (10.3.9). Both procedures are based on the
nonsingularity of the observability matrix

V =

⎛⎜⎜⎜⎜⎝
C

CA

...

CAk−1

⎞⎟⎟⎟⎟⎠ .

If we let z(n) = V x(n) in (10.3.11), we obtain the first observability
canonical form (Exercises 10.3, Problem 10)

z(n + 1) = Ā z(n) + b̄ u(n),
y(n) = c̄ z(n), (10.3.10)

where

Ā =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . .

...
0 0 0 . . . 1

−pk −pk−1 −pk−2 . . . −p1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

c̄ = (1 0 0 · · · 0),
b̄ = V b. (10.3.11)
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In Exercises 10.3, Problem 10, the reader is asked to find a change of
variable that yields the other observability canonical form {Ã, c̃}, with

Ã =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 −pk

1 0 . . . 0 −pk−1

0 1 . . . 0 −pk−2

...
...

...
0 0 . . . 1 −p1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, c̃ =

(
0 0 · · · 1

)
. (10.3.12)

Exercises 10.3

1. Consider the input–output system

x(n + 1) = Ax(n) + Bu(n),
y(n) = Cx(n),

where A =

(
0 1
2 −1

)
.

(a) If C = (0, 2), show that the pair{A, C} is observable. Then find
x(0) if y(0) = a and y(1) = b.

(b) If C = (2, 1), show that the pair {A, C} is unobservable.

2. Determine the observability of the pair {A, C}, where

A =

⎛⎜⎜⎝
0 1 0
0 0 1

−1
4

1
4

1

⎞⎟⎟⎠ , C =

(
2 −3 −2
2 3 1

)
.

3. Consider the system defined by(
x1(n + 1)
x2(n + 1)

)
=

(
a b

c d

)(
x1(n)
x2(n)

)
+

(
1
1

)
u(n),

y(n) =
(
1 0

)(x1(n)
x2(n)

)
.

Determine the conditions on a, b, c, and d for complete state control-
lability and complete observability. In Problems 4 and 5, determine the
observability of the pair {A, C}.



10.3 Observability 455

4.

A =

⎛⎜⎜⎜⎜⎜⎜⎝
2 1 0 0 0
0 2 1 0 0
0 0 2 0 0
0 0 0 −3 1
0 0 0 0 −3

⎞⎟⎟⎟⎟⎟⎟⎠ , C =

(
1 1 1 0 1
0 1 1 1 0

)
.

5.

A =

⎛⎜⎜⎜⎜⎜⎜⎝
2 1 0 0 0
0 2 1 0 0
0 0 2 0 0
0 0 0 −3 1
0 0 0 0 −3

⎞⎟⎟⎟⎟⎟⎟⎠ , C =

(
1 1 1 0 1
0 1 1 0 0

)
.

6. Show that the pair {A, C}, where(
A11 0
A21 A22

)
, C = (C1 0),

A11 : r × r; A21 : m × r;
A22 : m × m; C1 : p × r;

is not completely observable for any submatrices A1, A21, A22, and C1.

7. Prove that system (10.3.2) is completely observable if and only if
rank[C, CA, . . . , CAm−r]T = k, where m is the degree of the minimal
polynomial of A, and r = rank C.

8. Prove that system (10.3.2) is completely observable if and only if the
matrix V T V is positive definite, where V is the observability matrix
of {A, C}.

9. Show that the kth-order scalar equation

z(n + k) + p1z(n + k − 1) + · · · + pkz(n) = u(n),
y(n) = c z(n),

is completely observable if c �= 0.

10. Verify that the change of variable z(n) = V x(n) produces the
observability canonical pair {Ā, c̄} defined in expression (6.3.13).

11. Consider system (10.3.2), where P−1AP is a diagonal matrix. Show
that a necessary and sufficient condition for complete observability is
that none of the columns of the r × k matrix CP consist of all zero
elements.

12. Consider system (10.3.2), where P−1AP is in the Jordan form J . Show
that necessary and sufficient conditions for complete observability of
the system are:
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(i) no two Jordan blocks in J correspond to the same eigenvalue of
A,

(ii) none of the columns of CP that correspond to the first row of
each Jordan block consists of all zero elements, and

(iii) no columns of CP that correspond to distinct eigenvalues consist
of all zero elements.

13. Let P be a nonsingular matrix. Show that if the pair {A, C} is
completely observable, then so is the pair {P−1AP, CP}.

14. Show that if the matrix A in system equation (10.3.2) is nonsingular,
then complete observability and constructibility are equivalent.

15. Consider the completely observable system

x(n + 1) = Ax(n) + Bu(n),
y(n) = Cx(n),

where a is a k × k matrix and C is a 1 × k vector. Let M =
(CT , AT CT , . . . , (AT )k−1CT ).

(a) Show that MT A(MT )−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1

−ak −ak−1 −ak−2 . . . −a1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where ai, 1 ≤ i ≤ k, are the coefficients of the characteristic
polynomial

|λI − A| = λk + a1λ
k−1 + · · · + ak.

(b) Write down the corresponding canonical controllable system by
letting x̃(n) = MT x(n). Then deduce a necessary condition on C
for complete observability of the original system.

16. Consider the system

x(n + 1) = Ax(n),
y(n) = Cx(n),

where A is a k × k matrix and C is a 1 × k vector. Prove that the
system is completely observable if and only if the matrix

G = (C, CA−1, CA−2, . . . , CA−k+1) is nonsingular.
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B
u(n) x(n+1)

z-1 x(n)

A

+

+

FIGURE 10.11. Open-loop system.

10.4 Stabilization by State Feedback
(Design via Pole Placement)

Feedback controls are used in many aspects of our lives, from the braking
system of a car to central air conditioning. The method has been used by
engineers for many years. However, the systematic study of stabilization
by state feedback control is of more recent origin (see [3], [4]) and dates
to the 1960s. The idea of state feedback is simple: It is assumed that the
state vector x(n) can be directly measured, and the control u(n) is adjusted
based on this information. Consider the (open-loop) time-invariant control
system shown in Figure 10.11, whose equation is

x(n + 1) = Ax(n) + Bu(n), (10.4.1)

where, as before, A is a k × k matrix and B a k × m matrix.
Suppose we apply linear feedback u(n) = −Kx(n), where K is a real

m × k matrix called the state feedback or gain state matrix. The resulting
(closed-loop) system (Figure 10.12) obtained by substituting u = −Kx into
(10.4.1) is

x(n + 1) = Ax(n) − BKx(n),

or

x(n + 1) = (A − BK)x(n). (10.4.2)

B
u(n) x(n+1)

z-1 x(n)

A

-K

+

+

FIGURE 10.12. Closed-loop system.
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The objective of feedback control is to choose K in such a way such that the
resulting system (10.4.2) behaves in a prespecified manner. For example,
if one wishes to stabilize system (10.4.1), that is, to make its zero solution
asymptotically stable, K must be chosen so that all the eigenvalues of
A − BK lie inside the unit disk.

We now give the main result in this section.

Theorem 10.19. Let Λ = {µ1, µ2, . . . , µk} be an arbitrary set of k com-
plex numbers such that Λ̄ = {µ̄1, µ̄2, . . . , µ̄k} = Λ. Then the pair {A, B} is
completely controllable if and only if there exists a matrix K such that the
eigenvalues of A − BK are the set Λ.

Since the proof of the theorem is rather lengthy, we first present the
proof for the case m = 1, i.e., when B is a k × 1 vector and u(n) is
a scalar. We start the proof by writing the characteristic polynomial of
A, |A − λI| = λk + a1λ

k−1 + a2λ
k−2 + · · · + ak. Suppose also that

k∏
i=1

(λ − µi) = λk + b1λ
k−1 + b2λ

k−2 + · · · + bk.

Define T = WM , where W is the controllability matrix of rank k defined
in (10.2.1) as

W = (B, AB, . . . , Ak−1B)

and

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

ak−1 ak−2 . . . a1 1
ak−2 ak−3 . . . 1 0

...
...

...
...

a1 1 . . . 0 0
1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Then (Exercises 10.4, Problem 12)

Ā = T−1AT =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

0 0 0 . . . 1
−ak −ak−1 −ak−2 . . . −a1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(10.4.3)

and

B̄ = T−1B =
(
0 0 · · · 0 1

)T
.

Letting x(n) = T x̄(n) in system (10.4.2), we get the equivalent system

x̄(n + 1) = (Ā − B̄K̄)x̄(n), (10.4.4)



10.4 Stabilization by State Feedback (Design via Pole Placement) 459

where

K̄ = KT. (10.4.5)

Choose

K̄ = (bk − ak, bk−1 − ak−1, . . . , b1 − a1). (10.4.6)

Then

B̄K̄ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0
0 0 . . . 0
...

...
...

0 0 . . . 0
bk − ak bk−1 − ak−1 b1 − a1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Observe that A − BK is similar to Ā − B̄K̄, since Ā − B̄K̄ = T−1AT −
T−1BKT = T−1(A − BK)T . Thus

|λI − A + BK| = |λI − Ā + B̄K̄| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

λ 1 . . . 0
0 λ . . . 0
...

...
...

0 0 . . . 1
−bk −bk−1 . . . λ − b1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= λk + b1 + λk−1 + · · · + bk,

which has Λ as its set of eigenvalues. Hence the required feedback (gain)
matrix is given by

K = K̄T−1 = (bk − ak, bk−1 − ak−1, . . . , b1 − a1)T−1.

Example 10.20. Consider the control system x(n + 1) = Ax(n) + Bu(n)
with

A =

(
1 −3
4 2

)
, B =

(
1
1

)
.

Find a state feedback gain matrix K such that the eigenvalues of the closed
loop system are 1

2 and 1
4 .

Solution

Method 1

|A − λI| =

∣∣∣∣∣1 − λ −3
4 2 − λ

∣∣∣∣∣ = λ2 − 3λ + 14.

So

a1 = −3, a2 = 14.
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Also (
λ − 1

2

)(
λ − 1

4

)
= λ2 − 3

4
λ +

1
8

(10.4.7)

So

b1 = −3
4

and b2 =
1
8
.

Now,

W =

(
1 −2
1 6

)
, M =

(
−3 1
1 0

)
.

Hence

T = WM =

(
1 −2
1 6

)(
−3 1
1 0

)
=

(
−5 1
3 1

)
and

T−1 = −1
8

(
1 −1

−3 −5

)
.

Therefore,

K = (b2 − a2, b1 − a1)T−1,

or

K =
(

−13
7
8

2
1
4

)
·
(

−1
8

)(
1 −1

−3 −5

)
=
(

165
64

−21
64

)
.

Method 2 In this method we substitute K = (k1k2) into the characteristic
polynomial |A − BK − λI| and then match the coefficients of powers in λ
with the desired characteristic polynomial (10.4.7).∣∣∣∣∣1 − k1 − λ −3 − k2

4 − k1 2 − k2 − λ

∣∣∣∣∣ = λ2 − λ(3 − k1 − k2) + 14 − 5k1 + 3k2. (10.4.8)

Comparing the coefficients of powers in λ in (10.4.7) and (10.4.8), we obtain

3 − k1 − k2 =
3
4
,

14 − 5k1 + 3k2 =
1
8
.

This gives us k1 = 165
64 and k2 = −21

64 .

Hence

K =
(

165
64

−21
64

)
.
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To prove the general case m > 1 of Theorem 10.19 we need the following
preliminary result.

Lemma 10.21. If the pair {A, B} is completely controllable and the
columns of B, assumed nonzero, are b1, b2, . . . , bm, then there exist ma-
trices Ki, 1 ≤ i ≤ m, such that the pairs {A − BKi, bi} are completely
controllable.

Proof. Let us consider the case i = 1. Since the controllability matrix W
has rank k (full rank), one may select a basis of R

k consisting of k columns
of W . One such selection would be the k × k matrix

M =
(
b1, Ab1, . . . , A

r1−1b1, b2, Ab2, . . . , a
r2−1b2, . . .

)
,

where ri is the smallest integer such that Aribi is linearly dependent
on all the preceding vectors. Define an m × k matrix L having its r1th
column equal to e2 = (0, 1, . . . , 0)T , its (r1 + r2)th column equal to
e3 = (0, 0, 1, . . . , 0)T , and so on, all its other columns being zero. We claim
that the desired matrix K1 is given by K1 = LM−1. To verify the claim, we
compare the corresponding columns on both sides of K1M = L. It follows
immediately that

K1b1 = 0, K1Ab1 = 0, . . . , K1A
r1−1b1 = e2,

K1b2 = 0, K1Ab2 = 0, . . . , K1A
r2−1b2 = e3,

K1b3 = 0, etc.

Thus we have(
b1, (A − BK1)b1, (A − BK2)2b1, . . . , (A − BK2)k−1b1

)
= W (k),

which has rank k by assumption. This proves our claim. We are now ready
to give the proof of the general case m > 1 in Theorem 10.19. �

Proof of Theorem 10.19. Let K1 be the matrix in Lemma 10.21.
Then by Lemma 10.21, it follows that the pair {A−BK1, b1} is completely
controllable. And by the proof of Lemma 10.21 for m = 1, there exists a
1 × k vector ξ such that the eigenvalues of A + BK1 + b1ξ are the set Λ.
Let K̄ be the m×k matrix whose first row is ξ and all other rows are zero.
Then the desired feedback (gain) matrix is given by K = K1 + K̄. Since
u = −Kx, this gives

x(n + 1) = (A − BK)x(n) = (A − BK1 − b1ξ)x(n).

To prove the converse, select K0 such that (A − BK0)n → 0 as n →
∞, that is, the spectral radius ρ(A − BKo) is less than 1, and select K1
such that ρ(A − BK1) =

{
exp
( 2πn

k

)
: n = 0, 1, . . . , k − 1

}
, the kth roots

of unity. Then clearly, (A − BK1)k = 1. Suppose that for some vector
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ξ ∈ Rk, ξT AnB = 0 for all n ∈ Z
+. Then for any matrix K,

ξT (A − BK)n = ξT (A − BK)(A − BK)n−1

= (ξT A − ξT BK)(A − BK)n−1

= ξT A(A − BK)n−1 (since ξT B = 0)

= ξT A(A − BK)(A − BK)n−2

= ξT A2(A − BK)n−2 (since ξT AB = 0).

Continuing this procedure we obtain

ξT (A − BK)n = ξT An, for all n ∈ Z
+.

This implies that

ξT [(A − BKo)n − (A − BK1)n] = 0, for all n ∈ Z
+,

or

ξT [(A − BKo)kr − 1] = 0, for all r ∈ Z
+.

Letting r → ∞, we have (A − BK0)kr → 0 and, consequently, ξT = 0.
This implies that the pair {A, B} is completely controllable. �

An immediate consequence of Theorem 10.19 is a simple sufficient condi-
tion for stabilizability. A system x(n+1) = Ax(n)+Bu(n) is stabilizable if
one can find a feedback control u(n) = −Kx(n) such that the zero solution
of the resulting closed-loop system x(n + 1) = (A − BK)x(n) is asymp-
totically stable. In other words, the pair {A, B} is stabilizable if for some
matrix K, A − BK is a stable matrix (i.e., all its eigenvalues lie inside the
unit disk).

Corollary 10.22. System (10.4.1) is stabilizable if it is completely
controllable.

The question still remains whether or not we can stabilize an uncontrol-
lable system. The answer is yes and no, as may be seen by the following
example.

Example 10.23. Consider the control system

x(n + 1) = Ax(n) + Bu(n),

where

A =

⎛⎜⎝0 a b

1 d e

0 0 h

⎞⎟⎠ , B =

⎛⎜⎝1 β1

0 β2

0 0

⎞⎟⎠ .

Let us write

A =

(
A11 A12

0 A22

)
, B =

(
B1

0

)
,
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where

A11 =

(
0 a

1 d

)
, A12 =

(
b

e

)
, A22 = (h), B1 =

(
1 β1

0 β2

)
.

If x =

(
y

z

)
, then our system may be written as

y(n + 1) = A11y(n) + A12z(n) + B1u(n),
z(n + 1) = A22z(n).

It is easy to verify that the pair {A11, B1} is completely controllable. Hence
by Theorem 10.19, there is a 2 × 2 gain matrix K̄ such that A11 + B1K̄ is
a stable matrix. Letting K = (K̄)(0), then

A − BK =

(
A11 − B1K̄ ∗

0 h

)
.

Hence the matrix A − BK is stable if and only if |h| < 1.
In the general case, a system is stabilizable if and only if the uncon-

trollable part is asymptotically stable (Exercises 10.4, Problem 8). In this
instance, from the columns of the controllability matrix W we select a basis
for the controllable part of the system and extend it to a basis S for R

k.
The change of variables x = Py, where P is the matrix whose columns are
the elements of S, transforms our system to

y(n + 1) = Āy(n) + B̄u,

where

Ā =

(
A11 A12

0 A22

)
, B̄ =

(
B1

0

)
.

Here the pair {A11, B1} is controllable. Hence the system is stabilizable if
and only if the matrix A22 is stable.

10.4.1 Stabilization of Nonlinear Systems by Feedback
Before ending this section, let us turn our attention to the problem of
stabilizing a nonlinear system

x(n + 1) = f(x(n), u(n)), (10.4.9)

where f : Rk × Rm → Rk. The objective is to find a feedback control

u(n) = h(x(n)) (10.4.10)

in such a way that the equilibrium point x∗ = 0 of the closed-loop system

x(n + 1) = f(x(n)), h(x(n)), (10.4.11)
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is asymptotically stable (locally!). We make the following assumptions:

(i) f(0, 0) = 0, and

(ii) f is continuously differentiable, A = ∂f
∂x (0, 0) is a k × k matrix, B =

∂f
∂u (0, 0) is a k × m matrix.

Under the above conditions, we have the following surprising result.

Theorem 10.24. If the pair {A, B} is controllable, then the nonlinear
system (10.4.9) is stabilizable. Moreover, if K is the gain matrix for the
pair {A, B}, then the control u(n) = −Kx(n) may be used to stabilize
system (10.4.9).

Proof. Since the pair {A, B} is controllable, there exists a feedback
control u(n) = −Kx(n) that stabilizes the linear part of the system,
namely,

y(n + 1) = Ay(n) + Bv(n).

We are going to use the same control on the nonlinear system. So let
g: R

k → R
k be a function defined by g(x) = f(x,−Kx). Then system

equation (10.4.9) becomes

x(n + 1) = g(x(n)) (10.4.12)

with
∂g

∂x

∣∣∣∣
x=0

= A − BK.

Since by assumption the zero solution of the linearized system

y(n + 1) = (A − BK)y(n) (10.4.13)

is asymptotically stable, it follows by Theorem 4.20 that the zero solution
of system (10.4.12) is also asymptotically stable. This completes the proof
of the theorem. �

Example 10.25. Consider the nonlinear difference system

x1(n + 1) = 2 sin(x1(n)) + x2 + u1(n),

x2(n + 1) = x2
1(n) − x2(n) − u2(n).

Find a control that stabilizes the system.

Solution One may check easily the controllability of the linearized system
{A, B}, where

A =

(
2 1
0 −1

)
, B =

(
1

−1

)
,

after some computation. A gain matrix for the linearized system is K =
(2.015, 0.975), where the eigenvalues of A−BK are 1

2 and 0.1. As implied by
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Theorem 10.24, the control u(n) = −Kx(n) would stabilize the nonlinear
system, where K = (2.015, 0.975).

Exercises 10.4

In Problems 1 through 3 determine the gain matrix K that stabilizes the
system {A, B}.

1. A =

(
0 1

−0.16 −1

)
, B =

(
0
1

)
.

2. A =

⎛⎜⎝ 2 1 1
−2 1 0
−2 −1 0

⎞⎟⎠ , B =

⎛⎜⎝0 1
1 0
0 −2

⎞⎟⎠ .

3. A =

⎛⎜⎝ 0 1 0
0 0 1

−2 1 3

⎞⎟⎠ , B =

⎛⎜⎝0
0
1

⎞⎟⎠ .

4. Determine the matrices B for which the system {A, B}, A =⎛⎜⎜⎜⎝
1 −1 2

0
1
2

1

1
2

−1
2

1

⎞⎟⎟⎟⎠, is (a) controllable and (b) stabilizable.

5. Consider the second-order equation

x(n + 2) + a1x(n + 1) + a2x(n) = u(n).

Determine a gain control u(n) = c1x(n) + c2x(n + 1) that stabilizes
the equation.

6. Describe an algorithm for decomposing the system x(n+1) = Ax(n)+
Bu(n) into its controllable and uncontrollable parts when A is a 3 × 3
matrix and B is a 3 × 2 matrix.

7. Generalize the result of Problem 6 to the case where A is a k×k matrix
and B is a k × r matrix.

*8. Show that the pair {A, B} is stabilizable if and only if the uncontrol-
lable part of the system is asymptotically stable.

9. Deadbeat Response. If the eigenvalues of the matrix A − BK are all
zero, then the solutions of the system x(n + 1) = (A − BK)x(n) will
read 0 in finite time. It is then said that the gain matrix K produces
a deadbeat response. Suppose that A is a 3 × 3 matrix and B a 3 × 1
vector.
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(a) Show that the desired feedback matrix K for the deadbeat
response is given by

K =
[
1 0 0

] [
ξ1 ξ2 ξ3

]−1
,

where

ξ1 = A−1B, ξ2 = (A−1)2B, ξ3 = (A−1)3B.

(b) Show that the vectors ξ1, ξ2, and ξ3 are generalized eigenvectors
of the matrix A − BK [i.e., (A − BK)ξ1 = 0, (A − BK)ξ2 =
ξ1, (A − BK)ξ3 = ξ2].

10. Ackermann’s Formula:
Let Λ = {µ1, µ2, . . . , µk} be the desired eigenvalues for the completely
controllable pair {A, B}, with Λ = Λ̄. Show that the feedback (gain)
matrix K can be given by

K =
(
0 0 · · · 0

) (
B AB · · · Ak−1B

)−1
p(A),

where

p(λ) =
k∏

i=1

(λ − µi) = λk + α1λ
k−1 + · · · + αk.

11. Let Λ = {µ1, µ2, . . . , µk} be a set of complex numbers with Λ = Λ̄.
Show that if the pair {A, C} is completely observable, then there exists
a matrix L such that the eigenvalues of A − LC are the set Λ.

12. Verify formula (10.4.3).

13. Find a stabilizing control for the system

x1(n + 1) = 3x1(n) + x2
2(n) − sat(2x2(n) + u(n)),

x2(n + 1) = sin x1(n) − x2(n) + u(n),

where

sat y =

{
y if |y| ≤ 1,

sign y if |y| > 1.

14. Find a stabilizing control for the system

x1(n + 1) = 2x1(n) + x2(n) + x3
3(n) + u1(n) + 2u2(n),

x2(n + 1) = x2
1(n) + sin x2(n) + x2

2(n) + u2
1(n) + u2(n),

x3(n + 1) = x4
1(n) + x3

2(n) +
1
2
x3(n) + u1(n).

15. (Research problem). Find sufficient conditions for the stabilizability of
a time-variant system

x(n + 1) = A(n)x(n) + B(n)u(n).
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16. (Research problem). Extend the result of Problem 15 to nonlinear
time-variant systems.

10.5 Observers

Theorem 10.19 provides a method of finding a control u(n) = −Kx(n)
that stabilizes a given system. This method clearly requires the knowledge
of all state variables x(n). Unfortunately, in many systems of practical
importance, the entire state vector is not available for measurement. Faced
with this difficulty, we are led to construct an estimate of the full state
vector based on the available measurements. Let us consider again the
system

x(n + 1) = Ax(n) + Bu(n),
y(n) = Cx(n). (10.5.1)

To estimate the state vector x(n) we construct the k-dimensional observer
(Figure 10.13)

z(n + 1) = Az(n) + E[y(n) − Cz(n)] + Bu(n), (10.5.2)

where E is a k × r matrix to be determined later. Notice that unlike x(n),
the state observer z(n) can be obtained from available data. To see this,
let us write the observer (10.5.2) in the form

z(n + 1) = (A − EC)z(n) + Ey(n) + Bu(n). (10.5.3)

We observe here that the inputs to the observer involve y(n) and u(n),
which are available to us.

The question remains whether the observer state z(n) is a good estimate
of the original state x(n). One way to check the goodness of this estimator
is to ensure that the error e(n) = z(n) − x(n) goes to zero as n → ∞. To
achieve this objective we write the error equation in e(n) by subtracting
(10.5.2) from (10.5.1) and using y(n) = Cx(n). Hence

z(n + 1) − x(n + 1) = [A − EC][z(n) − x(n)],

u(n)

x(n+1)

B

+ z-1

A

C
x(n) y(n)

+ E

B

+
z(n+1)

A

z-1 z(n)
C

Cz(n)

_

FIGURE 10.13. Observer.
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or

e(n + 1) = [A − EC]e(n). (10.5.4)

Clearly, if the zero solution of system (10.5.4) is asymptotically stable
(i.e., the matrix A − EC is stable), then the error vector e(n) tends to
zero. Thus the problem reduces to finding a matrix E such that the matrix
A − EC has all its eigenvalues inside the unit disk. The following result
gives a condition under which this can be done.

Theorem 10.26. If system (10.5.1) is completely observable, then an
observer (10.5.2) can be constructed such that the eigenvalues of the matrix
A − EC are arbitrarily chosen. In particular, one can choose a matrix E
such that the error e(n) = z(n) − x(n) in the estimate of the state x(n) by
the state observer z(n) tends to zero.

Proof. Since the pair {A, C} is completely observable, it follows from
Section 4.3 that the pair {AT , CT } is completely controllable. Hence by
Theorem 10.19 the matrix E can be chosen such that AT − CT ET has an
arbitrary set of eigenvalues, which is the same as the set of eigenvalues of
the matrix A − EC.

Moreover, if we choose the matrix E such that all the eigenvalues of
the matrix A − EC are inside the unit disk, then e(n) → 0 (see Corollary
3.24). �

10.5.1 Eigenvalue Separation Theorem
Suppose that the system

x(n + 1) = Ax(n) + Bu(n),
y(n) = Cx(n),

is both completely observable and completely controllable. Assuming that
the state vector x(n) is available, we can use Theorem 10.24 to find a
feedback control u(n) = −Kx(n) such that in the closed-loop system

x(n + 1) = (A − BK)x(n)

the eigenvalues of A−BK can be chosen arbitrarily. Next we use Theorem
10.26 to choose a state observer z(n) to estimate the state x(n) in such a
way that the eigenvalues of A − EC in the observer

z(n + 1) = (A − EC)z(n) + Ey(n) + Bu(n)

can also be chosen arbitrarily.
In practice, a feedback control may be obtained using the state ob-

server z(n) instead of the original state x(n) (whose components are not
all available for measurement). In other words, we use the feedback control

u(n) = −Kz(n). (10.5.5)
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The resulting composite system is given by

x(n + 1) = Ax(n) − BKz(n),
z(n + 1) = (A − EC)z(n) + ECx(n) − BKz(n).

It follows that

e(n + 1) = z(n + 1) − x(n + 1) = (A − EC)e(n).

Hence we have the following composite system:

x(n + 1) = (A − BK)x(n) + BKe(n),
e(n + 1) = (A − EC)e(n).

The system matrix is given by

A =

(
A − BK BK

0 A − EC

)
,

whose characteristic polynomial is the product of the characteristic poly-
nomials of (A − BK) and (A − EC). Hence the eigenvalues of A are either
eigenvalues of A − BK or eigenvalues of A − EC, which we can choose
arbitrarily. Thus we have proved the following result.

Theorem 10.27 (Eigenvalue Separation Theorem). Consider the
system

x(n + 1) = Ax(n) + Bu(n),
y(n) = Cx(n),

with the observer

z(n + 1) = (A − EC)z(n) + Ey(n) + Bu(n)

and the feedback control

u(n) = −Kz(n).

Then the characteristic polynomial of this composite system is the product
of the characteristic polynomials of A − BK and A − EC. Furthermore,
the eigenvalues of the composite system can be chosen arbitrarily.

Example 10.28. Consider the system

x(n + 1) = Ax(n) + Bu(n),
y(n) = Cx(n),

where

A =

⎛⎝0 −1
4

1 −1

⎞⎠ , B =

(
0
1

)
, C =

(
0 1

)
.
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Design a state observer so that the eigenvalues of the observer matrix A −
EC are 1

2 + 1
2 i and 1

2 − 1
2 i.

Solution The observability matrix is given by(
C

CA

)
=

(
0 1
1 −1

)
,

which has full rank 2. Thus the system is completely observable, and the
desired observer feedback gain matrix E may be now determined. The
characteristic equation of the observer is given by det(A − EC − λI) = 0.

If

E =

(
E1

E2

)
,

then we have ∣∣∣∣∣∣
⎛⎝0 −1

4
1 −1

⎞⎠−
(

E1

E2

)(
0 1

)−
(

λ 0
0 λ

)∣∣∣∣∣∣ = 0,

which reduces to

λ2 + (1 + E2)λ + E1 +
1
4

= 0. (10.5.6)

By assumption the desired characteristic equation is given by(
λ − 1

2
− 1

2
i

)(
λ − 1

2
+

1
2
i

)
= 0,

or

λ2 − λ +
1
2

= 0. (10.5.7)

Comparing (10.5.6) and (10.5.7) yields

E1 =
1
4
, E2 = −2.

Thus E =

⎛⎝ 1
4

−2

⎞⎠ .

Example 10.29. Figure 10.14 shows a metallic sphere of mass m sus-
pended in a magnetic field generated by an electromagnet. The equation
of motion for this system is

mẍt = mg − k
u2

t

xt
, (10.5.8)

where xt is the distance of the sphere from the magnet, ut is the cur-
rent driving the electromagnet, g is the acceleration of gravity, and k is a
constant determined by the properties of the magnet.
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m
xt

ut

FIGURE 10.14. A metallic sphere suspended in a magnetic field.

It is easy to check that (10.5.8) has an equilibrium at

xt = x0 = 1,

ut = u0 =
√

mg/k.

Linearizing (10.5.8) about this equilibrium gives the following approximate
model in terms of the deviations x = xt − x0 and u = ut − u0:

ẍ − g

k
x = −2

√
kg/mu,

or, in state variable form,[
ẋ

v̇

]
=

[
0 1
g

k
0

][
x

v

]
+

[
0

−2
√

kg/m

]
u.

Thus

Â =

[
0 1
g

k
0

]
, B̂ =

[
0

−2
√

kg/m

]
.

The matrix Â can be written in the form

Â = PΛP−1,

where

Λ =

⎡⎢⎢⎣
√

g

k
0

0 −
√

g

k

⎤⎥⎥⎦ , P =
1√
2

⎡⎣ 1 1√
g

k
−
√

g

k

⎤⎦ .
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So

A = eÂT =

⎡⎢⎢⎢⎣
cosh

√
g

k
T

√
k

g
sinh

√
g

k
T√

g

k
sinh

√
g

k
T cosh

√
g

k
T

⎤⎥⎥⎥⎦ ,

B = TeÂT B̂ = −2T

⎡⎢⎢⎣
√

k/m sinh
√

g

k
T√

g/m cosh
√

g

k
T

⎤⎥⎥⎦
The discrete equivalent system is thus controllable, since

det W =
∣∣[B AB

]∣∣
=

∣∣∣∣∣∣∣∣−2T
√

k/m

⎡⎢⎢⎣ sinh
√

g

k
T 2 sinh

√
g

k
T cosh

√
g

k
T√

g

k
sinh

√
g

k
T 2

√
g

k
sinh

√
g

k
T cosh

√
g

k
T

⎤⎥⎥⎦
∣∣∣∣∣∣∣∣

= ce

√
g

k
T sinh

√
g

k
T,

where c = 0 only if T = 0.
If the position deviation x of the ball from equilibrium can be measured,

then the system is also observable, since then we have the measurement
equation

y =
[
1 0

] [x
v

]
and hence

C =
[
1 0

]
.

Observability is easily verified by computing

det V =

∣∣∣∣∣
[

C

CA

]∣∣∣∣∣ =
∣∣∣∣∣∣∣
⎡⎢⎣ 1 0

cosh
√

g

k
T

√
k

g
sinh

√
g

k
T

⎤⎥⎦
∣∣∣∣∣∣∣

=

√
k

g
sinh

√
g

k
T,

which is zero only if T = 0. Before continuing, fix m = k = 0.1, g = 10,
and T = 0.01. Thus

A =

[
1.0050 0.0100
1.0017 1.0050

]
, B =

[
−0.0020
−0.2010

]
.
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Note that A is unstable, with eigenvalues λ1 = 1.1052 and λ2 = 0.9048.
Controllability of {A, B} implies that a stabilizing state feedback gain

K = [k1, k2] can be found. Moreover, the eigenvalues of the resulting system
matrix A − BK can be assigned arbitrarily. In our example,

A − BK =

[
1.0050 + 0.0020k1 0.0100 + 0.0020k2

1.00017 + 0.2010k1 1.0050 + 0.2010k2

]
,

so that

|λI − A + BK| = λ2 − (2.0100 + 0.002k1 + 0.201k2)λ + 0.2000k2 + 1,

and eigenvalues λ1 = 1
2 and λ2 = − 1

2 (both inside the unit circle) can be
obtained by choosing

K = [k1, k2] = [−376.2492 − 6.2500].

Observability of {A, C} implies that an asymptotic observer can be
constructed to produce an estimate of the system state vector from mea-
surements of x. The observer gain L = [l1, l2]T can be chosen not only
to ensure that the state estimate converges, but to place the observer
eigenvalues arbitrarily. In our example,

A − LC =

[
1.0050 − l1 0.0100
1.0017 − l2 1.0050

]
,

so that

|λI − A + LC| = λ2 + (l1 − 2.0100)λ − 1.0050l1 + 0.0100l2 + 1,

and eigenvalues λ1 = 1
4 and λ2 = −1

4 can be obtained by choosing

L =

[
l1

l2

][
2.0100
95.5973

]
.

The eigenvalue separation theorem ensures that combining this observer
with the state feedback controller designed above will produce a stable
closed-loop system with eigenvalues ± 1

2 and ± 1
4 .

Exercises 10.5

In Problems 1 through 4 design an observer so that the eigenvalues of the
matrix A − EC are as given.

1. A =

(
1 1
0 −1

)
, C =

(
1 1

)
,

λ1 = 1
2 , λ2 = −1

4 .

2. A =

(
0 1
1 0

)
, C =

(
0 1

)
,

λ1 = 1
2 − 1

4 i, λ2 = 1
2 + 1

4 i.
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3. A =

⎛⎜⎝1 0 0
0 0 1
0 1 0

⎞⎟⎠ , C =
(
0 1 0

)
,

λ1 = 1
2 , λ2 = 1

4 − 1
4 i, λ3 = 1

4 + 1
4 i.

4. A =

⎛⎜⎝0 1 0
0 −1 1
0 0 −1

⎞⎟⎠ , C =

(
0 1 0
1 0 1

)
,

λ1 = 1
2 , λ2 = −1

4 , λ3 = −1
2 .

5. (Reduced-Order Observers):
Consider the completely observable system

x(n + 1) = Ax(n) + Bu(n),
y(n) = Cx(n), (10.5.9)

where it is assumed that the r × k matrix C has rank r (i.e., the r
measurements are linearly independent). Let H be a (k−r)×k matrix
such that the matrix

P =

(
H

C

)
is nonsingular. Let

x̄(n) = Px(n). (10.5.10)

Then x̄ may be written as

x̄ =

(
w(n)
y(n)

)
,

where w(n) is (k−r)-dimensional and y(n) is the r-dimensional vector
of outputs.

(a) Use (10.5.10) to show that system equation (10.5.9) may be put
in the form(

w(n + 1)
y(n + 1)

)
=

(
A11 A12

A21 A22

)(
w(n)
y(n)

)
+

(
B1

B2

)
u(n). (10.5.11)

(b) Multiply the bottom part of (10.5.11) by any (k − r) × r matrix
E to show that

W (n + 1) − Ey(n + 1) = (A11 − EA21)[W (n) − Ey(n)]
+ [A11E − EA21E + A12 − EA22]y(n)
+ (B1 − EB2)u(n).
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(c) If v(n) = w(n) − Fy(n), show that

v(n + 1) = (A11 − EA21)v(n)
+ [A11E − EA21E + A12 − EA22]y(n)
+ (B1 − FB2)u(n).

(d) Explain why we can take an observer of system equation (10.5.9)
as the (k − r)-dimensional system

z(n + 1) = (A11 − EA21)z(n)
+ [A11E − EA21E + A12 − EA22]y(n)
+ (B1 − FB2)u(n). (10.5.12)

(e) Let e(n) = z(n) − v(n). Show that

e(n + 1) = (A11 − EA21)e(n). (10.5.13)

6. Prove that if the system equation (10.5.9) is completely observable,
then the pair {A11, A21} in (10.5.11) is completely observable.

7. Prove the eigenvalue separation theorem, Theorem 10.27, for reduced-
order observers.

8. Consider the system

x1(n + 1) = x2(n),
x2(n + 1) = −x1(n) + 2x2(n) + u(n),

y(n) = x1(n).

Construct a one-dimensional observer with a zero eigenvalue.



Appendix A
Stability of Nonhyperbolic Fixed
Points of Maps on the Real Line

A.1 Local Stability of Nonoscillatory
Nonhyperbolic Maps

Our aim in this appendix is to extend Theorems 1.15 and 1.16 to cover
all the remaining unresolved cases. The exposition is based on the recent
paper by Dannan, Elaydi and Ponomarenko [30]. The main tools used here
are the Intermediate Value Theorem and Taylor’s Theorem which we are
going to state.

Theorem A.1 (The Intermediate Value Theorem). Let f be a con-
tinuous function on an interval I = [a, b] such that f(a) �= f(b). If c is
between f(a) and f(b), then there exists x0 ∈ (a, b) such that f(x0) = c.
In particular, if f(a) and f(b) are of opposite sign, then since 0 is between
f(a) and f(b), there exists x0 between a and b such that f(x0) = 0.

Theorem A.2 (Taylor’s Theorem). Suppose that the (n+1)th deriva-
tive of the function f exists on an interval containing the points a and b.
Then

f(b) = f(a) + f ′(a)(b − a) +
f ′′(a)

2!
(b − a)2 +

f (3)(a)
3!

(b − a)3

+ · · · +
f (n)(a)

n!
(b − a)n +

f (n+1)(z)
(n + 1)!

(b − a)n+1 (A.1.1)

for some number z between a and b.

477
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Notation: The notation of f ∈ Cr means that the derivatives f ′, f ′′, . . . , f (r)

exist and are continuous.

Theorem A.3. Let x∗ be a fixed point of f , then the following statements
hold true:

(i) Suppose that f ∈ C2k. If f ′(x∗) = 1, and f ′′(x∗) = · · · = f (2k−1)(x∗) =
0 but f (2k)(x∗) �= 0, then x∗ is semi-asymptotically stable:

(a) from the left if f (2k)(x∗) > 0, and

(b) from the right if f (2k)(x∗) < 0.

(ii) Suppose that f ∈ C(2k+1). If f ′(x∗) = 1, and f ′′(x∗) = · · · =
f (2k)(x∗) = 0 but f (2k+1)(x∗) �= 0, then:

(a) x∗ is asymptotically stable if f (2k+1)(x∗) < 0, and

(b) x∗ is unstable if f (2k+1)(x∗) > 0.

Proof.

(i) Assume that f ′(x∗) = 1, f ′′(x∗) = · · · = f (2k−1)(x∗) = 0 but
f (2k)(x∗) �= 0.

(a) If f (2k)(x∗) > 0, then by Taylor’s Theorem, for a sufficiently small
number δ > 0, we have

f(x∗ + δ) = f(x∗) + f ′(x∗)δ + . . .

+
f (2k−1)(x∗)δ(2k−1)

(2k − 1)!
+

f (2k)(ξ)δ2k

(2k)!
(A.1.2)

for some ξ ∈ (x∗, x∗+δ). If δ is sufficiently small, we may conclude
that f (2k)(ξ) > 0. Substituting in (A.1.2) yields

f(x∗ + δ) = x∗ + δ +
f (2k)(ξ)δ2k

(2k)!
. (A.1.3)

Similarly one may show that

f(x∗ − δ) = x∗ − δ +
f (2k)(ξ)δ2k

(2k)!
. (A.1.4)

Hence from (A.1.3), it follows that f(x∗ + δ) > x∗ + δ. And from
(A.1.4) we have x∗ − δ < f(x∗ − δ) < x∗. This proves semi-
asymptotic stability from the left.

(b) The proof of part (b) is analogous and will be left to the reader.

(ii) By the assumptions in (ii) we have, for some δ > 0,

f(x∗ + δ) = x∗ + δ +
f (2k+1)(ξ)δ2k+1

2k + 1)!
(A.1.5)
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for some ξ ∈ (x∗, x∗ + δ).
Furthermore,

f(x∗ − δ) = x∗ − δ +
f (2k+1)(ξ)δ2k+1

2k + 1)!
. (A.1.6)

(a) If f (2k+1)(x∗) < 0, then, from (A.1.5), f(x∗+δ) < x∗+δ and, from
(A.1.6), f(x∗ − δ) > x∗ − δ. Hence x∗ is asymptotically stable.

(b) The proof of part (b) is analagous and will be left to the reader.

�

Consider the map f(x) = x + (x − 1)4, where x∗ = 1 is a fixed point of
f with f ′(x∗) = 1, f ′′(x∗) = f ′′′(x∗) = 0, and f (4)(x∗) = 24 > 0. Then by
Theorem A.3, x∗ is semi-asymptotically stable from the left.

A.2 Local Stability of Oscillatory
Nonhyperbolic Maps

We now consider the case when f ′(x∗) = −1. A nice trick here is to look
at the map g(x) = f(f(x)) = f2(x).

A.2.1 Results with g(x)
Since x∗ is a fixed point of f , it must be a fixed point of g and g′(x∗) = 1.
Moreover, g′′(x∗) = 0 and g′′′(x∗) = 2Sf(x∗). Notice that x∗ is asymptot-
ically stable {unstable} under g if, and only if, it is asymptotically stable
{unstable} under f . This is due to the fact that |fn(x∗)| < 1 if and only if
|gn(x∗)| < 1.

We can then apply the second half of Theorem A.3 to get the following
result.

Theorem A.4. Suppose that f ∈ C(2k+1) and x∗ is a fixed point of f such
that f ′(x∗) = −1. If g′′(x∗) = . . . = g(2k)(x∗) = 0 and g(2k+1)(x∗) �= 0,
then:

(1) x∗ is asymptotically stable if g(2k+1)(x∗) < 0, and

(2) x∗ is unstable if g(2k+1)(x∗) > 0.

Observe that this strategy does not use the other part of Theorem A.3–
where x∗ is semi-asymptotically stable under g. That is, the case where
f ′(x∗) = −1, g′′(x∗) = . . . = g(2k−1)(x∗) = 0, and g(2k)(x∗) �= 0.

We now argue that this situation will never occur for analytic f .

Theorem A.5. Let f be analytic with f ′(x∗) = −1. Then, for some k > 1,

(1) If g′′(x∗) = . . . = g(2k−1)(x∗) = 0, then g(2k)(x∗) = 0.
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(2) x∗ cannot be semi-asymptotically stable under g.

Proof. By Taylor’s Theorem, we have some small δ with

f(x∗ + δ) = f(x∗) + δf ′(x∗) +
δ2f

′′
(x∗)

2!
+ . . .

= x∗ − δ + 0(δ2).

Hence, for x0 = x∗+δ > x∗, we have f(x0) < x∗ and for x0 = x∗−δ < x∗,
we have f(x0) > x∗. In other words, for x0 ∈ (x∗ − δ, x∗ + δ) either
f2k(x∗) ∈ (x∗, x∗ + δ) and f2k+1(x∗) ∈ (x∗ − δ, x∗) for all k ∈ Z

+ or
f2k(x∗) ∈ (x∗ − δ, x∗) and f2k+1(x∗) ∈ (x∗, x∗ + δ) for all k ∈ Z

+.
Now, if f2k(x0) → x∗ as k → ∞, then f2k+1(x0) → x∗ as k → ∞. Hence

either x∗ is asymptotically stable or x∗ is unstable and, more importantly,
it cannot be semi-asymptotically stable. �

These results using g(x) are conclusive but not entirely satisfactory. For
example, we return to f(x) = −x + 2x2 − 4x3. To determine the stability
of f(x) at 0, we need to find derivatives of g(x) = −x + 4x2 − 8x3 +
64x5 − 192x6 + 384x7 − 384x8 + 256x9. It turns out that g5(0) = 7680;
hence, by Theorem A.4, 0 is an unstable fixed point. However, this was
computationally difficult, and we would like an analogue of Theorem A.4
using only the derivatives of f(x).

Remark: If f ′(x∗) = 1, f (k)(x∗) = 0 for all k > 1, and f is analytic,
then f(x) = x. Consequently, every point in the vicinity of x∗ is a fixed
point and x∗ is thus stable but not asymptotically stable. If f ′(x∗) = −1,
g(k)(x∗) = 0 for all k > 1, and if f is analytic, then g(x) = x. Hence every
point in the vicinity of x∗ is periodic of period 2, and x∗ is again stable but
not asymptotically stable.

Example A.6. Consider the maps f1(x) = x+e−x−2
, f2(x) = x+xe−x−2

,
f3(x) = x−xe−x−2

, with fi(0) = 0. Each of these maps has f ′
i(0) = −1, and

f
(k)
i (0) = 0 for all k > 1. However, the fixed point 0 is semi-asymptotically

stable from the left, unstable, and asymptotically stable, respectively.

Example A.7. Contemplate May’s genotype selection model

x(n + 1) =
x(n)eα(1−2x(n))

1 − x(n) + x(n)eα(1−2x(n)) , α > 0, x ∈ (0, 1). (A.2.1)

At the fixed point x∗ = 1
2 , f ′(x∗) = 1−α

2 . The fixed point is thus asymptoti-
cally stable for 1 < α < 4 by Theorem 1.13. At α = 4, we have f ′(x∗) = −1,
g′′(x∗) = g′′′(∗) = 0, but g′′′(x∗) = −32 < 0. Hence by Theorem A.4, the
fixed point x∗ = 1

2 is asymptotically stable.



Appendix B
The Vandermonde Matrix

The generalized Vandermonde matrix is given by

V =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 1 0 . . .

λ1 1 . . . λr 1 . . .

λ2
1 2λ1 . . . λ2

r 2λr . . .

...
...

...
...

λk−1
1 (k − 1)λk−2

1 . . . λk−1
r (k − 1)λk−2

r

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(B.1)

and consists of k × mi submatrices corresponding to the eigenvalues λi,
1 ≤ i ≤ r,

∑r
i=1 mi = k. The first column in the k × m1 subma-

trix is c1 = (1, λ1, λ
2
1, . . . , λ

k
1)T , the second column is c2 = 1

1!c
′
1(λ1) =

(0, 1, 2λ1, 3λ2
1, . . . , kλk−1

1 )T , . . ., the sth column is cs = 1
(s−1)!c

(s−1)
1 (λ1),

where c
(m)
1 (λ1) is the mth derivative of column c1. The extension of this

definition to other k × mi submatrices is done in the natural way. We are
now going to prove the following result.

Lemma B.1 [76].

W (0) = detV =
∏

1≤i<j≤k

(λj − λi)mimj . (B.2)

Moreover, V is invertible.

Proof. The proof proceeds by induction on the sum of multiplicities mi

of the eigenvalues λi, with mi > 1. If all the mi’s are equal to 1, we have the
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regular Vandermonde matrix (2.3.3) and thus (B.2) holds. For the example
m1 = 3, m2 = 2 (λ1 = λ2 = λ3, λ4 = λ5), the sum of multiplicities which
exceed 1 is 3 + 2 = 5. To illustrate the induction step, let

W̃ =

∣∣∣∣∣∣∣∣∣∣∣∣

1 0 1 1 0
λ1 1 t λ2 1

λ2
1 2λ1 t2 λ2

2 2λ2
2

λ3
1 3λ2

1 t3 λ3
2 3λ2

2

λ4
1 4λ3

1 t4 λ4
2 4λ3

2

∣∣∣∣∣∣∣∣∣∣∣∣
.

So that the sum of multiplicities greater than 1 is 4.
Assuming (B.2) for W̃ yields

W̃ = (t − λ1)2(λ2 − t)2(λ2 − λ1)4.

Note that

W (0) =
1
2

(
d2

dt2

)
W̃
∣∣
t=λ1

=
1
2
(λ2 − λ1)4

d

dt

[
2(t − λ1)(λ2 − t)2 − 2(t − λ1)2(λ2 − t)

] ∣∣
t=λ1

=
1
2
(λ2 − λ1)4

[
2(λ2 − t)2 − 4(t − λ1)(λ2 − t)

− 4(t − λ1)(λ2 − t) + 2(t − λ1)2
]∣∣

t=λ1

= (λ2 − λ1)6.

In general, W (0) is formed from W̃ as long as there is one multiplicity
mi > 1. The general case may be proved in an analogous manner. �



Appendix C
Stability of Nondifferentiable Maps

The main objective of this appendix is to prove Theorem 4.8. In fact, we
will prove a more general result which appeared in Elaydi and Sacker [50].
In the sequel we will assume that the f : I → I is continuous on the closed
and bounded interval I = [a, b]. Clearly if I = [a,∞), and f is bounded and
continuous, f(I) ⊂ J ⊂ I, where J is a closed and bounded interval, then
f : J → J . The following lemma and its corollary are immediate sequences
of the Intermediate Value Theorem.

Lemma C.1. Let J = [c, d] ⊂ [a, b] such that either:

(i) f(c) > c and f(d) < d, or

(ii) f(c) < c and f(d) > d.

Then f has a fixed point (c, d).

Proof.

(i) Assume that f(c) > c and f(d) < d. Then for the map g(x) = f(x)−x,
g(c) > 0 and g(d) < 0. Hence by the Intermediate Value Theorem,
there exists x∗ between c and d such that g(x∗) = 0. Hence f(x∗) = x∗,
and thus x∗ is a fixed point of f .

The proof of (ii) is similar and will be left to the reader. �

Corollary C.2. Suppose that J = [c, d] ⊂ I. If f(d) > d and (c, d) is fixed
point-free, then f(x) > x for all x ∈ (c, d).

We are now ready to present the main result.
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Theorem C.3. Let f : I → I be continuous. Then the following
statements are equivalent:

(i) f has no points of minimal period 2 in (a, b).

(ii) For all x0 ∈ (a, b), {fn(x0)} converges in I.

Proof. (ii) ⇒ (i).
If {x̄1, x̄2} is a periodic orbit of period 2 in (a, b), then {fn(x̄)} does not
converge as it oscillates between x̄1 and x̄2.

(i) ⇒ (ii) .
Assume there exists x0 ∈ (a, b) such that {fn(x0)} does not converge.
Thus x0 is not a fixed point or an eventually fixed point. Hence its orbit
O(x0) = {x0, x(1), x(2), . . . } can be partitioned into two sequences A =
{x(k)|f(x(k)) > x(k)} and B = {x(k)|f(x(k)) < x(k)}. Then A �= ∅ and
B �= ∅. We claim that A is strictly monotonically increasing, i.e., i < j
implies x(i) < x(j). Assume the contrary, that there exists x(i), x(j) ∈ A
such that i < j but x(i) > x(j). This means that f i(x0) > f j(x0). Let
j = i + r. Then fr(x(i)) < x(i). Since x(i) is not a fixed point of f , there
exists a small δ > 0 such that the interval (x(i) − δ, x(i)) is free of fixed
points. Thus we may conclude that there exists a largest fixed point z of f
in [a, x(i)] (z may equal a). Hence the interval (z, x(i)) is fixed point-free.
And since f(x(i)) > x(i), it follows by Corollary C.2 that f(x) > x for all
x ∈ (z, x(i)).

Let zn be a sequence in (z, x(i)) that converges to z. Then f(zn) > zn

and limn→∞ f(zn) = f(z) = z. There exists N1 ∈ Z
+ such that n > N1,

f(zn) ∈ (z, x(i)). For n > N1, f2(zn) > f(zn) > z and limn→∞ f2(zn) =
f2(z) = z. There exists N2 ∈ Z

+ such that for n > N2, f2(zn) ∈ (z, x(i)).
Repeating this process, there are N3, N4, . . . , Nr such that for n > Nt,
1 ≤ t ≤ r, f t(zn) ∈ (z, x(i)). For N = max{Nt|1 ≤ t ≤ r}, f t(zn) ∈
(z, x(i)), 1 ≤ t ≤ r. We conclude that there exists y ∈ (z, x(i)) such that
y, f(y), . . . , fr(y) ∈ (z, x(i)). Hence fr(y) > fr−1(y) > · · · > f(y) > y.
But fr(x(i)) < x(i) implies, by Lemma C.1, the existence of a fixed point
in (y, x(i)), a contradiction which establishes our claim that A is strictly
monotonically increasing.

Similarly, we may show that B is strictly monotonically decreasing. De-
fine x̄1 = sup A, x̄2 = inf B. Then x̄1 ≤ x̄2 and hence neither is an end
point. Since A ∪ B = O(x0), it follows that {x̄1, x̄2} = Ω(x0), the set of all
limit points of O(x0). Since Ω(x0) is invariant, either:

(a) f(x̄1) = x̄2, f(x̄2) = x̄1, or

(b) f(x̄1) = x̄1, f(x̄2) = x̄2, or

(c) x̄1 = x̄2,

(d) f(x̄1) = x̄1 and f(x̄2) = x̄1 or f(x̄1) = x̄2 and f(x̄2) = x̄2.



C. Stability of Nondifferentiable Maps 485

Case (a) is excluded since there are no 2-cycles; cases (b) and (d) are also
excluded since neither A nor B is invariant. Hence the only case left is case
(c) which confirms the convergence of the sequence {fn(x0)}. �

As an immediate consequence of the preceding theorem, we have the
following important result on global asymptotic stability.

Corollary C.4. Let x∗ be a fixed point of a continuous map on the closed
and bounded interval I = [a, b]. Then x∗ is globally asymptotically stable
relative to (a, b) if and only if f2(x) > x for x < x∗ and f2(x) < x for
x > x∗ for all x ∈ (a, b)\{x∗}, and a, b are not periodic points.

Proof. The necessity is clear. To prove the sufficiency, notice that the
given assumptions imply that there are no periodic points of minimal period
2. Hence by Theorem C.3, {fn(x0} converges for every x0 ∈ I. Now if x0 ∈
(a, x∗), f(x0) > x0. For, otherwise, we would have f(x0) < x0 < f2(x0),
which implies, by the Intermediate Value Theorem, the presence of a fixed
point of the map f in the interval (a, x∗), a contradiction. Similarly, one
may show that for all x0 ∈ (x∗, b), f(x0) < x0. Thus limn→∞ fn(x0) = c,
where c is an interior point in the interval (a, b). Furthermore, since c is
a fixed point of the map f , it follows that c = x∗. Hence x∗ is globally
attracting.

It remains to show that x∗ is stable. We have two cases to consider.

Case (i): The map f is monotonically increasing in a small neighborhood
(x∗ − δ, x∗). Since f(x) > x for all x ∈ (x∗ − δ, x∗), it follows that for
x0 ∈ (x∗ − δ, x∗), we have x0 < f(x0) < f2(x0) < · · · < x∗.

Case (ii): The map of f is decreasing monotonically in (x∗ − δ, x∗). Given
ε > 0, there exists δ > 0, δ < ε such that f(x∗ − δ) − x∗ < ε. Furthermore,
f(x0)−x∗ < ε for all x0 ∈ (x∗−δ, x∗). Since f(x0) > x0, f2(x0) < f(x0) and
since x0 < x∗, f2(x0) > x0. Thus x0 < f2(x0) < f(x0) and, consequently,
f2(x0) − x∗ < δ < ε. The same scenario occurs for x0 > x∗. Hence x∗ is
stable. �



Appendix D
Stable Manifold and the
Hartman–Grobman–Cushing
Theorems

D.1 The Stable Manifold Theorem

Consider the nonlinear difference system

x(n + 1) = f(x(n)) (D.1.1)

such that f has a fixed point x∗ ∈ R
k and f ∈ C2 in an open neighborhood

of x∗. Let A = Df(x∗) be the Jacobian of f at x∗. Then (D.1.1) may be
written in the form

x(n + 1) = Ax(n) + g(x(n). (D.1.2)

The associated linear system is given by

z(n + 1) = Az(n). (D.1.3)

The fixed point x∗ is assumed to be hyperbolic, where none of the eigen-
values of A lie on the unit circle. Arrange the eigenvalues of A into two
sets: S = {λ1, λ2, . . . , λr}, G = {λr+1, . . . , λk} with |λi| < 1 for λi ∈ S
and |λj | > 1 for λj ∈ G. Let Es be the eigenspace spanned (gener-
ated) by the generalized eigenvectors corresponding to S and let Eu be
the eigenspace spanned by the generalized eigenvectors corresponding to
G. Then R

k = Es
⊕

Eu. The sets Es and Eu are called the stable and
unstable subspaces of x∗, respectively.

The local stable manifold of x∗ in an open neighborhood G defined as

W s(x∗, G) ≡ W s(x∗) = {x0 ∈ G | O(x0) ⊂ G and lim
n→∞ fn(x0) = x∗}.
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G

x*

W   (x*)    s

    uW   (x*)

FIGURE D.1. Es is tangent to W s(x∗) and Eu is tangent to W u(x∗).

G

x*

W   (x*)

W   (x*)

    u

    s

FIGURE D.2. Stable and unstable manifolds W s(x∗) and W u(x∗) in a neighbor-
hood G of x∗.

To define the unstable manifold, we need to look at negative orbits. Since
f is not assumed to be invertible, we have to define a principal negative
orbit O−(x0) = {x(−n)} of a point x0 as follows. We let x(0) = x0, and
f(x(−n − 1)) = x(−n), n ∈ Z

+. The local unstable manifold for x∗ in G is
defined to be the set

Wu(x∗, G) ≡ Wu(x∗) = {x0 ∈ G | there exists a negative orbit,

O−(x0) ⊂ G and lim
n→∞ x(−n) = x∗}.

The following theorem states that Es is tangent to W s(x∗) and Eu is
tangent to Wu(x∗) at the fixed point x∗ (see Figures D.1 and D.2).

Theorem D.1 (The Stable Manifold Theorem). Let x∗ be a hyper-
bolic fixed point of a C2-map f : R

k → R
k. Then in an open neighborhood

G of x∗ there exist two manifolds W s(x∗) of dimension Es and Wu(x∗) of
dimension Eu such that:

(i) Es is tangent to W s(x∗) at x∗ and for any solution x(n) of (D.1.1)
with x(0) ∈ W s, lim

n→∞ x(n) = x∗.

(ii) Eu is tangent to Wu(x∗) at x∗ and if x(0) ∈ Wu(x∗), then there exists
a principal negative solution x(−n) with lim

n→∞ x(−n) = x∗.
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Proof. See Cushing [24] and Robinson [128]. �

D.2 The Hartman–Grobman–Cushing Theorem

The Stable Manifold Theorem tells us what happens to solutions that lie
on either the stable manifold W s or the unstable manifold Wu in a neigh-
borhood of a hyperbolic fixed point. The question that we are going to
address here is: What happens to solutions whose initial points do not lie
on either W s or Wu?

The answer to this question is given by the classical Hartman–Grobman
Theorem in differential equations and its analogue in difference equations.
However, this theorem requires that the map is a diffeomorphism, that is
differentiable and a homeomorphism. Two maps f : X → X and g : Y → Y
are said to be topologically conjugate if there is a homeomorphism h : Y →
X such that f(h(y)) = h(g(y)) for all y ∈ Y .

Theorem D.2 (Hartman–Grobman). Let f : R
k → R

k be a
Cr-diffeomorphism with hyperbolic fixed point x∗. Then there exists neigh-
borhoods V of x∗ and W of 0 and a homeomorphism h : W → V such that
f(h(x)) = h(Ax), where A = Df(x∗).

In other words, f is topologically conjugate in a neighborhood of the fixed
point x∗ to the linear map induced by the derivative at the fixed point (see
Figure D.3).

Proof. See Robinson [128]. �

As pointed out in Cushing [24], this classical theorem does not hold for
noninvertible maps, as may be seen from the following example.

Example D.3. Consider the one-dimensional difference equation x(n +
1) = x2(n). The Jacobian at the fixed point x∗ = 0 is A = 0. If h is the
conjugacy homeomorphism, then f(h(x)) = h(Ax). Then f(h(x)) = h(0) =
0. Thus [h(x)]2 = 0 and h(x) = 0 for all x ∈ R, a contradiction, since h is
one to one.

Cushing [24] extended the Hartman–Grobman Theorem to noninvertible
maps and the new result will henceforth be called HGC (Hartman–

A

h h

V V

W W

f

FIGURE D.3. f is conjugate to A = Df(x∗), f(h(x)) = h(Ax).
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Grobman–Cushing). But before stating the theorem, we need to introduce
a few definitions.

For a sequence x(n) ∈ R
k, let ‖x‖+ = sup

n∈Z+
|x(n)|, where |x(n)| is a norm

on R
k.

The sets

BS+ = {x(n) | ‖x‖+ < +∞},

BS+
0 = {x(n) ∈ BS+ | lim

n→+∞ |x(n)| = 0},

are (Banach)1 spaces under the norm ‖ · ‖+.
Similarly, we define

‖x‖− = sup
n∈Z−

|x(n)|

and

BS− = {x(n) | ‖x‖− < +∞},

BS−
0 = {x(n) ∈ BS− | lim

n→−∞ |x(n)| = 0}.

Define
±∑

(δ) = {x(n) ∈ BS± | ‖x‖± ≤ δ},

±∑
(δ) = {x(n) ∈ BS±

0 | ‖x‖± ≤ δ}.

Theorem D.4 (Hartman–Grobman–Cushing). Suppose that x∗ is
a hyperbolic fixed point of a map f ∈ Cr and let A = Df(x∗) be its
Jacobian. There exists constants c and δ such that the following hold:

(a) There is a one to one bicontinuous map between a (forward) solution
of (D.1.1) lying in

∑+(δ) and a (forward) solution of its linearization
(D.1.3) lying in

∑+(cδ).

(b) There is a one to one bicontinuous map between a (forward) solution
of (D.1.1) lying in

∑+
0 (δ) and a (forward) solution of (D.1.3) lying

in
∑+

0 (cδ).

Similar statements hold for
∑−(δ) and

∑−
0 (δ).

Proof. See Cushing [24]. �

1A Banach space is a complete space with a norm, where every Cauchy
sequence converges in the space.



Appendix E
The Levin–May Theorem

To prove Theorem 5.2, we need the following result from Linear Algebra
[68]:

P: “The k zeros of a polynomial of degree k ≥ 1 with complex coefficients
depend continuously upon the coefficients.”

To make this more precise, let x ∈ C
k, and f(x) = (f1(x), f2(x), . . . ,

fk(x))T in which fi : C
k → C, 1 ≤ i ≤ k. The function f is continuous at x

if each fi is continuous at x, i.e., for each ε > 0 there exists δ > 0 such that if
||y−x|| < δ, then |fi(x)−fi(y)| < ε where ||·|| is a vector norm on C

k. Now
P may be stated intuitively by saying that the function f : C

k → C
k which

takes the k coefficients (all but the leading one) of a monic polynomial of
degree k to the k zeros of the polynomial, is continuous. Precisely, we have
the following result.

Lemma E.1 [68]. Let k ≥ 1 and let

p(x) = xk + a1x
k−1 + · · · + ak−1x + ak

be a polynomial with complex coefficients. Then for every ε > 0, there is a
δ > 0 such that, for any polynomial,

q(x) = xk + b1x
k−1 + · · · + bk−1x + bk

satisfying

max
1≤i≤k

|ai − bi| < δ

491
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we have

min
τ

max
1≤j≤k

|λj − µτ(i)| < ε,

where λ1, λ2, . . . , λk are the zeros of p(x) and µ1, µ2, . . . , µk are the zeros
of q(x) in some order, counting multiplicities, and the minimum is taken
over all permutations τ of 1, 2, . . . , k.

The characteristic equation associated with equation (5.1.18) is given by

λk+1 − λk + q = 0.

Since the characteristic roots may, in general, be complex, we may put
λ = reiθ. This yields the equation

rk+1eiθ(k+1) − rkeiθk + q = 0. (E.1)

The general stability may be mapped out as a function of q and k as follows:
if, for the dominant eigenvalues, θ = 0 and r < 1 (λ is real and |λ| < 1),
then there is monotonic damping; if, for the dominant eigenvalues, θ �= 0,
r < 1 (λ is complex, |λ| < 1), then there is oscillatory damping; and if
r > 1 (|λ| > 1) for any eigenvalue, the zero solution is unstable.

The next lemma shows that for

q1 =
kk

(k + 1)k+1 (E.2)

there is monotonic damping if 0 < q ≤ q1.

Lemma E.2. All solutions of (5.1.20) converge monotonically to the zero
solution if

0 < q ≤ q1.

Proof. To find the region of values of q where solutions of (5.1.20)
converge monotonically to the zero solution we let θ = 0 in (E.1). This
yields

rk+1 − rk + q = 0 or

q = rk − rk+1. (E.3)

Consider the function q = h(r) = rk − rk+1. Clearly, h(0) = h(1) = 0 and
h(r) > 0 if and only if 0 < r < 1. Moreover, if q = 0, then r = 0 is of
multiplicity k. Since h′(r) = rk−1(k − (k + 1)r), we conclude that:

(i) If 0 < r < k
k+1 , then h′(r) > 0 and thus q is increasing.
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1
q

1
r

2
r

r

q

q=h(r)

k
k+1

1

FIGURE E.1. For q < q1, there are two positive solutions r1, r2 of (E.3).

(ii) If r = k
k+1 , then h′(r) = 0 and q attains its maximal value

q1 = h(r) = h

(
k

k + 1

)
=
(

k

k + 1

)k

−
(

k

k + 1

)k+1

=
(

k

k + 1

)k [
1 − k

k + 1

]
=

kk

(k + 1)k+1 .

(iii) If r > k
k+1 , then h′(r) < 0 and thus q is decreasing and intersects the

r-axis at r = 1.

Hence, for every q > 0, there are two positive real solutions r1 and r2 of
(E.3) if and only if q < q1 (see Figure E.1). As q tends to zero, r1 → 0 and
r2 → 1; and as q tends to q1, both roots coalesce to k

(k+1) .
It remains to show that the larger root r2 of these two real roots is the

dominant root for all 0 < q < q1. In fact, we will show that as q increases in
the range 0 < q < q1, there will be one real root r with magnitude greater
than k

k+1 but less than 1, and the remaining k roots have magnitude less
than k

k+1 . To accomplish this task, it suffices to show that as q increases in
the interval (0, q1), no characteristic root crosses the circle centered at the
origin and with radius k

k+1 . To prove this statement we put µ = λ(k+1)/k
and p = q/q1 in (E.3). This yields

kµk+1 − (k + 1)µk + p = 0. (E.4)

Notice that a characteristic root λ crosses the circle with radius k
k+1 if

and only if the corresponding characteristic root µ crosses the unit circle.
If such a crossing occurs, then, by Lemma E.1, there exists a characteristic
root µ = eiθ of (E.4). Substituting in (E.4) gives

keiθ = (k + 1) − pe−ikθ.

Hence

k(cos θ + i sin θ) = k + 1 − p(cos kθ − i sin kθ).
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Equating the real parts in both sides of the equation and similarly for the
imaginary parts yield

k cos θ = (k + 1) − p cos kθ,

k sin θ = p sin kθ.

Squaring and adding the above two equations yield

k2 = (k + 1)2 + p2 − 2p(k + 1) cos kθ,

cos kθ =
2k + 1 + p2

2p(k + 1)
.

Since |cos kθ| ≤ 1, it follows that

2k + 1 + p2 ≤ 2p(k + 1)

or

(1 − p)(2k + 1 − p) ≤ 0. (E.5)

Since p = q
q1

< 1, both terms in inequality (E.5) are positive and thus we
have a contradiction. Hence no characteristic root µ crosses the unit circle
and, consequently, no characteristic root λ crosses the circle with radius

k
k+1 .

This shows that for 0 < k < k1 there is a dominant positive real charac-
teristic root of magnitude between k

k+1 and 1, whereas all the remaining k

characteristic roots have modules less than k
k+1 . �

Lemma E.3. If 0 < q < q2, where

q2 = 2 cos
(

kπ

2k + 1

)
, (E.6)

then all solutions converge to the zero solution.

Proof. By virtue of Lemma E.2, it suffices to consider the case where
q1 < q < q2. Consider again the function q = h(r) = rk − rk+1 whose
derivative is given by h′(r) = rk−1(k − (k + 1)r). For r ≤ 0, the sign of
h′(r) depends very much on whether k is even or odd. If k is odd, then
h′(r) > 0 and, consequently, q = h(r) is increasing in the interval (−∞, 0]
and equation (E.3) has all complex roots. On the other hand, if k is even,
then h′(r) < 0 and thus h is decreasing on (−∞, 0]. It follows that equation
(E.3) has one real root and k complex roots. This real root λ = reiθ must
be negative and hence θ = π. Substituting in (E.1) yields

−rk+1 − rk + q = 0.

Hence

rk+1 + rk = q. (E.7)
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Since q < q2 ≤ 2, it follows that r < 1. This implies that the real root is
between −1 and 0. As q increases, the zero solution becomes unstable the
first time r exceeds 1.

Putting r = 1 in (E.1) yields

eiθ − 1 + qe−ikθ = 0. (E.8)

Equivalently, we have

(cos θ + i sin θ) = 1 − q(cos kθ − i sin kθ).

Equating the real part in the left side with the real part in the right side
and similarly for the imaginary part yields

cos θ = 1 − q cos kθ,

sin θ = q sin kθ.

Squaring and adding yields

q = 2 cos kθ. (E.9)

Substituting (E.9) into (E.8) we obtain

eiθ = 1 − 2(cos2 kθ − i cos kθ sin kθ)
= −cos2kθ + i sin 2kθ

= −e−2ikθ.

Hence θ = (2n + 1)π − 2kθ, when n is an integer. Solving for θ yields

θ =
(2n + 1)π

2k + 1
. (E.10)

By (E.9) we obtain

q = 2 cos
(

(2n + 1)kπ

2k + 1

)
. (E.11)

Note that there may be several distinct values of q given by different values.
The smallest of these values of q occurs at n = 0:

q = q2 = 2 cos
(

kπ

(2k + 1)

)
,

and this defines the upper boundary of the stability region. This is clear
since 2n+1

2 − (2n+1)k
2k+1 = 2n+1

2(2k+1) is increasing as n increases. This completes
the proof of the Lemma. �

Proof of Theorem 5.2. Lemma E.3 shows that, for 0 < q < q2, the
zero solution of (5.1.18) is asymptotically stable. By examining the deriva-
tive of r with respect to q, we will show that at r = 1, dr/dq > 0. This
would imply that as q increases, r can only cross the boundary r = 1
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from below. Consequently, the complex pair of dominant eigenvalues can-
not reenter the stable region once it leaves it, and so the zero solution of
(5.1.18) is unstable for all q > q2.

Equating the real part with the real part and likewise with the imaginary
part in (E.1) yields

r =
sin kθ

sin(k + 1)θ
(E.12)

and

q = rk cos kθ − rk+1 cos(k + 1)θ

= (sin kθ)k

[
cos kθ

[sin(k + 1)θ]k
− cos(k + 1)θ sin kθ

[sin(k + 1)θ]k+1

]
=

(sin kθ)k

[sin(k + 1)θ]k+1 [sin(k + 1)θ cos kθ − cos(k + 1)θ sin kθ]

=
(sin kθ)k sin θ

[sin(k + 1)θ]k+1 . (E.13)

If r = 1, we obtain, for (E.12),

sin kθ = sin(k + 1)θ and cos kθ = − cos(k + 1)θ

and hence

sin kθ = sin kθ cos k + cos kθ sin k,

cos kθ = −coskθ cos θ + sin kθ sin θ.

Multiplying the first equation by cos kθ and the second by sin kθ and then
adding yields

sin θ = sin 2kθ.

Multiplying the first equation by sin kθ and the second by cos kθ and then
subtracting yields

cos θ = −cos2kθ.

From (E.12) we have, for r = 1,

dr

dθ
= k cot(kθ) − (k + 1) cot[(k + 1)θ]

= (2k + 1) cot kθ
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and from (E.13) we have, for r = 1,

dq

dθ
=

[sin(k + 1)θ]k+1[k2(sin kθ)k−1 cos kθ sin θ + (sin kθ)k cos θ]
[sin(k + 1)θ]2k+2

− (sin kθ)k sin θ · (k + 1)2[sin(k + 1)θ]k cos(k + 1)θ
[sin(k + 1)θ]2k+2

=
k2 cos kθ sin θ

[sin(k + 1)θ]2
+

cos θ

sin(k + 1)θ
− (k + 1)2 sin θ cos(k + 1)θ

[sin(k + 1)θ]2

= (2k2 + 2k + 1) cot kθ − cot 2kθ

= (2k2 + 2k + 1) cot kθ +
1
2
(tan kθ − cot kθ)

=
1
2

(
k +

1
2

)2

cot kθ +
1
2

tan kθ.

Clearly, dq
dθ and dr

dθ both have the same sign as cot kθ, and hence dr
dq = dr

dθ/ dq
dθ

is positive. This completes the proof. �



Appendix F
Classical Orthogonal Polynomials

This is a list of some classical orthogonal polynomials Qn(x), their defi-
nitions, the corresponding intervals of orthogonality (a, b), and difference
equations Qn+1(x) − (Anx + Bn)Qn(x) + CnQn−1(x) = 0.

Difference
Name Definition (a, b) Equation
1. Jacobi: P α,β

n (x) (−1, 1) see (9.5.12), (9.5.15),
(9.5.16)

2. Gegenbauer: P ν
n (x) (−1, 1) An = 2 ν+n

n+1 , Bn = 0
(ultraspherical) (see (9.4.10)) Cn = 2ν+n−1

n+1

3. Legendre: Pn(x) = P
(0,0)
n (−1, 1) An = 2n+1

n+1 , Bn = 0
(see (9.4.9)) Cn = n

n+1
4. Chebyshev: Tn(x) = cos nθ, (−1, 1) An = 2, Bn = 0

(First kind) θ = cos−1(x) Cn = 1
5. Chebyshev: Un(x) = sin(n+1)θ

sin θ
, (−1, 1) An = 2, Bn = 0

(Second kind) θ = cos−1(x) Cn = 1
6. Hermite: Hn(x) (−∞, ∞) An = 2, Bn = 0

(see (9.4.15)) Cn = 2n
7. Laguerre: Lα

n(x) (0, ∞) An = 2n+α+1−x
n+1

(see (9.4.13)) Bn = 0
Cn = n+α

n+1

8. Charlier: C
(α)
n (x) (0, ∞) An = 1

(see (9.5.17)) Bn = −n − α
Cn = an

499



Appendix G
Identities and Formulas

(
n + 1

r

)
=

(
n

r

)
+

(
n

r − 1

)
,

n∑
k=0

(
n + α

k

)(
n + β

n − k

)
=

(
2n + α + β

n

)
.

Leibniz’s Formula

dn

dxn
(uv) =

n∑
k=0

(
n

k

)
dn−k

dxn−k

dkv

dxk
,

dn

dxn
(1 − x)n+α(1 + x)n+β =

n∑
k=0

(
n

k

)
Dn−k(1 − x)n+αDk(1 + x)n+β

= (−1)n(1 − x)α(1 + x)βn!
n∑

k=0

(
n + α

n − k

)(
n + β

k

)
(x − 1)k(x + 1)n−k.
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Answers and Hints to Selected
Problems

Exercises 1.1 and 1.2

1. (a) cn!

(b) c3
n(n−1)

2

(c) cen(n−1)

(d)
c

n
3. (a) n!(2n + c − 1)

(b) c +
en − 1
e − 1

9. 38 payments + final payment $52.29
11. (a) A(n + 1) = (1 + r)A(n) + T

(b) $25,000 [(1.008)n − 1]
13. $136,283.50

15. (a) r = 1 −
(

1
2

) 1
5700

(b) 2,933 years

Exercises 1.3

3. (a)
α − 1

β

(b)
2x(n)

1 + x(n)
5. (b) µ = 3.3

503



504 Answers and Hints to Selected Problems

7. (i) D(n) = −p(n) + 15
S(n + 1) = 2p(n) + 3

(iii) p∗ = 4, unstable

11. (a) p(n + 1) = −1
2
p2(n) + 1

(b) p∗ = −1 +
√

3
(c) asymptotically stable

Exercises 1.4

1. (a) y(n + 1) = y(n) − ky2(n), y(0) = 1
3. (a) y(n + 1) = y(n) + 0.25(1 − y(n)), y(0) = 2

5. (a) y(n + 1) = y(n) +
1
4
y2(n) +

1
2

7. y(n + 1) =
5y(n)

4 − y(n)
9. Nonstandard: y(n + 1) = 5y(n)+n

5−y(n)

Euler: y(n + 1) = y(n) + hy2(n) + hn

Exercises 1.5

1.

{
0 : asymptotically stable

±1 : unstable
3. 0: asymptotically stable
5. 0: unstable
7. 0: unstable
9. Hint: Use L’Hôpital’s rule

11. Hint: Consider monotonic and nonmonotonic functions
16. (a) from the left

(b) from the right

Exercises 1.6

5. {0, 1}: asymptotically stable
7. |b2 − 3ab| < 1

9.
{

1
3
,
2
3

}
11. (b) unstable
13. f(x) = −x

17. c = −7
4

19. x̄1 =
µ + 1 −√((µ + 1)(µ − 3)

2µ
, x̄2 =

µ + 1 +
√

((µ + 1)(µ − 3)
2µ

,

Exercises 1.7

2. Hint: Let x(n) = sin2 θ(n)
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5. Hint: Show that 0 < f ′(x) < 1 for x∗ < x <
1
2

7. Hint: Show that Sf2
µ(x(0)) < 0

9. Hint: Use a calculator or a computer
11. Hint: Let y = −µx + 1

2µ

13. c = −3
4

17. x∗
1 is unstable

x∗
2 is asymptotically stable

x∗
3 is asymptotically stable

19. x∗ = 0 is unstable

Exercises 1.8

1. There are fixed points x∗
1 = 0, x∗

2 = 1, x∗
3 = 9

W s(x∗
1) = B(x∗

1) = (−1, 1)
x∗

2 is unstable, −1 is eventually fixed
W s(x∗

3) = [−3,−1) ∪ (1, 9], B(x∗
3) = (1, 9]

9. Hint: Consider three cases:

(a) 0 < p < 1
(b) p = 1
(c) 1 < p < 2

Exercises 2.1

9. Hint: Write f(n) = a0 + a1n
(1) + a2n

(2) + · · · + akn(k)

11. Hint: Use mathematical induction on m

13.

⎧⎪⎨⎪⎩
x3 = x(1) + 3x(2) + x(3)

x4 = x(1) + 7x(2) + 6x(3) + x(4)

x5 = x(1) + 15x(2) + 25x(3) + 10x(4) + x(5)

15.
1
2
n(n − 1) + n(n − 1)(n − 2) +

1
4
n(n − 1)(n − 2)(n − 3) + c

Exercises 2.2

1. (a) 0, linearly dependent
(b) 2(53n+3), linearly independent
(c) (−1)n+1(27)4n, linearly independent
(d) 0, linearly dependent

3. (a) (i) linearly independent
(ii) c1 + c2n + c3n

2

(b) (i) linearly independent
(ii) c1 cos

(nπ

2

)
+ c2 sin

(nπ

2

)
(c) (i) linearly dependent

(ii) no general solutions
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(d) (i) linearly independent
(ii) need one more solution

14. Hint: Consider ∆
(

u2(n)
u1(n)

)
=

u1(n)∆u2(n) − u2(n)∆u1(n)
u1(n)u1(n + 1)

15. Hint: You may take W (n0) = 1 or any of your favorite constants, use
formula (2.2.10) to evaluate W (n)

(b)
2n

n!

n−1∑
r=0

r!
2r+1

Exercises 2.3

1. (a) x(n + 2) − 7x(n + 1) + 10x(n) = 0
(b) x(n + 2) + x(n) = 0
(c) x(n+4)−10

√
2x(n+3)+160x(n+2)−250

√
2x(n+1)+625x(n) = 0

(d) x(n + 1) − 21x(n + 2) + 49x(n + 1) − 343x(n) = 0
(e) x(n + 4) − 4x(n + 3) + 6x(n + 2) − 4x(n + 1) + x(n) = 0

3. c14n + c2(−4)n

5. c13n + c2n3n + c32n cos
nπ

2
+ c42n sin

nπ

2
7. c12n/2 cos

nπ

2
+ c22n/2 sin

nπ

2
+ c32n/2n cos

nπ

2
+ c42n/2n sin

nπ

2
11. (d) Tn : 1, x, 2x2 − 1

Un : 1, 2x, 4x2 − 1
18. (a) Hint: ap−1 = 1 mod p if a and p are relatively prime
21. Hint: D(n) = bD(n − 1) − a2D(n − 2)

an sin(n + 1)θ
sin θ

, θ = cos−1
(

b

2a

)
Exercises 2.4

1.
1
2
n +

5
4

3.
1
12

n4n +
7
54

n − 1
18

n2 +
1
9
n3

5.
1
2

cos
(nπ

2

)
− 1

2
n cos

(nπ

2

)
7. 2 − 7n + 8n2

9.
6
25

(3n) − 6
25

cos
(nπ

2

)
+

9
50

sin
(nπ

2

)
+

1
30

n3n

11. c1(−7)n + c2(−1)n +
1
27

n2n − 8
243

2n

15. y(2) = 1
y(3 + 4n) = y(4 + 4n) = 0, n = 0, 1, 2, 3, . . .
y(5 + 4n) = y(6 + 4n) = −1 n = 0, 1, 2, 3, . . .

17. y(n) =
−n2

10
+

3n

50
− 1

125
+ a + b(6n)
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Exercises 2.5

1. repelling, oscillatory
3. attracting, oscillatory

13. (i) oscillatory
(ii) oscillate to ∞
(iii) y∗ is asymptotically stable

Exercises 2.6

1. c1(3)n + c2(−1)n

3. 1/(c − n)

5.
3(1 + c(2/3)n+1)

1 + c(2/3)n

7. x0e
2n

9. sin2(c2n)
11. ec(2n−1)y(0)
13. cot(c2n)
15. sin(c2n)

Exercises 2.7

1. (a) s1(n + 2) − σγαs1(n + 1) − σ2γβ(1 − α)s1(n) = 0
(b) γ > 50

3. (a) F (n + 2) = F (n + 1) + 2F (n)
(b) 3, 5, 11

4. (ii) Hint: Let $10 equal 1 unit, n = 5, N = 10

7.
13.9298

9.66 × 10235

11. (a) Y (n + 3) − (a1 + 1)Y (n + 2) − (a2 − a1)Y (n + 1) + a2Y (n) = h

(b) Y (n) = c1 + c2

(
1 +

√
5

4

)n

+ c3

(
1 − √

5
4

)n

+ α1 + βn

15. (a) M(n) = M(n0)2n−n0

(b) c = 1

Exercises 3.1

1.

⎛⎝ 2n+1 − 3n 3n − 2n

2n+1 − 2(3n) 2(3n) − 2n

⎞⎠

3.

⎛⎜⎜⎜⎜⎜⎜⎝
2n+1 − 3n −2 + 2n+1 1

2
− 1

2
3n

(−2)n + 3n 2 − 2n −1
2

+
1
2
3n

−2n+2 + 4(3n) 4 − 2n+2 −1 + 2(3n)

⎞⎟⎟⎟⎟⎟⎟⎠
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5.

⎛⎜⎝
1
3
(2n+1 + (−1)n)

2n+1

⎞⎟⎠

7.

⎛⎜⎜⎜⎝
3 − 2n+1

2(1 − 2n)

2(−1 + 2n)

⎞⎟⎟⎟⎠
10. (a) Hint: Use (3.1.18)
12. Hint: If λ1 = λ2 = λ and λn = a0 + a1λ + a2λ

2 + · · · + ak−1r
k−1,

differentiate to get another equation nλn−1 = a1 + 2a2λ + · · · + (k −
1)ak−1λ

k−2

13. (i)

⎛⎝ 2n+1 − 3n 3n − 2n

2n+1 − 2(3n) 2(3n) − 2n

⎞⎠
(ii) Same as Problem 3

15. (a)

⎛⎜⎜⎝
0 1 0
0 0 1
1
2

1
2

0

⎞⎟⎟⎠
(b) (2/5, 1/5)

Exercises 3.2

9.

⎛⎜⎜⎝
11
16

+
3
4
n − 11

16
5n

−5
16

− 1
4
n − 11

16
5n

⎞⎟⎟⎠
15. a1(−2)n + a2(−6)n

17. a1 + a24n + 1
3n4n

19. a1

(
1 − √

5
2

)n

+ a2

(
1 +

√
5

2

)n

Exercises 3.3

1.

(
2n+1 − 4n

2(4n)

)

3.

⎛⎜⎜⎜⎝
3
7
[(−1)n+1 + 6n]

3
7
(−1)n +

4
7
6n

0

⎞⎟⎟⎟⎠
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5. c12n

⎛⎜⎝0
1
0

⎞⎟⎠+ c2

⎛⎜⎝ 1
−1
0

⎞⎟⎠+ c33n

⎛⎜⎝1
7
2

⎞⎟⎠

9.

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2n/2
[
−c2 sin

nπ

4
+ c3 cos

nπ

4

]
2n/2

[
−c2 cos

nπ

4
− c3 sin

nπ

4

]
c1 + 2n/2

[
c2 cos

nπ

4
+ c3 sin

nπ

4

]

⎞⎟⎟⎟⎟⎟⎟⎟⎠
11. (a)

(
3n n3n−1

0 3n

)

(b)

⎛⎜⎜⎜⎝
2n n2n−1 n(n − 1)2n−3

0 2n n2n−1

0 0 2n

⎞⎟⎟⎟⎠

(c)

⎛⎜⎜⎝
2 1 −2

−1 0 1

0 0
2
3

⎞⎟⎟⎠
⎛⎜⎜⎝3n n3n−1 n(n − 1)

2
3n−2

0 3n n3n−1

0 0 3n

⎞⎟⎟⎠
⎛⎜⎜⎜⎝

0 −1
3
2

1 2 0

0 0
3
2

⎞⎟⎟⎟⎠

(d)

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2n 0 0 0

0 2n n2n n(n − 1)2n−2

0 0 2n n2n

0 0 0 2n

⎞⎟⎟⎟⎟⎟⎟⎟⎠

13.

⎛⎜⎜⎜⎝
c1(2n − n2n−1) + c2n2n + c3(3n22n−1 + 3n(n − 1)2n−3)

−c1n2n−2 + c22n(1 − n) − 3c3n(n − 1)2n−4

c32n

⎞⎟⎟⎟⎠
19. Hint: Use the similarity matrix P = diag(1, α, α2, . . . , αk−1)

Exercises 3.4

5. Hint: First change the equation to a system and then show that the
monodromy matrix is equal to Φ(N)
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Exercises 3.5

3. Hint: Consider AT ξ = ξ with ξ = (1, 1, . . . , 1)T

5. (i) Hint: Consider (I − A)x = 0
(ii) Hint: Use (I − A)(I + A + A2 + · · · + An−1) = I − An

7.

⎛⎜⎝5/9
2/9
2/9

⎞⎟⎠
9. 0.25

11. 177.78; 272.22
13. 0

Exercises 4.1

1. (a) 3, 3, 3
(b) 6, 4, 33

4
(c) 6, 7, 5.21

3. Hint: Use D = diag(1, ε, ε2)

Exercises 4.3

1. (a) unstable
(b) asymptotically stable
(c) asymptotically stable
(d) stable

3.

⎛⎜⎜⎜⎜⎜⎝
5
12

0
1
2

−1 −1
5
4

1
3

0 0

⎞⎟⎟⎟⎟⎟⎠
5. (a) uniformly stable

(b) no conclusion
(c) asymptotically stable
(d) no conclusion

Exercises 4.4

1. (a) asymptotically stable
(b) unstable
(c) unstable
(d) asymptotically stable

3. unstable
5. stable, but not asymptotically stable
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Exercises 4.5

1. Hint: Let V (x) = x2
1 + x2

2
The fixed point (0, 0) is globally asymptotically stable.

13. Hint: Let V = xy and then use Problem 11

Exercises 4.6

1. exponentially stable

3. Hint: V = a2
(

x1 − 1√
2

)2

+ b2
(

x2 − 1√
2

)2

The equilibrium point
(

1√
2
,

1√
2

)
is unstable. The equilibrium point(

− 1√
2
,− 1√

2

)
is unstable.

4. (a)

⎛⎜⎝0
0
0

⎞⎟⎠,

⎛⎜⎝1
1
0

⎞⎟⎠
(b) undetermined, unstable

6. unstable
8. if |a| < 1 and |b| < 1, then the zero solution is asymptotically stable

10. (a) (N, 0),
(

N(γ + β)
α

, βN

[
α − (γ + β)
α(γ + β)

])
(b) The first point is asymptotically stable if

α

γ + β
< 1 and unstable

if
α

γ + β
> 1. The second point is asymptotically stable.

12. Hint: Use the variation of constant formula (3.2.12) and then use
Theorem 8.12

Exercises 5.1 and 5.2

3. 1 < α < 2.62
11. Hint: Let g(z) = p1z

k−1 +p2z
k−2 + · · ·+pk, and f(z) = zk on the unit

disk
12. Hint: Let f(z) = p1z

k−1, g(z) = zk − p2z
k−2 + · · · + pk, on the circle

of radius 1 + ε, for some appropriate ε > 0

Exercises 5.3

1. −1
2

< b < 0.78

6. Hint: Make the change of variable N(n) = N∗ex(n)

7. x∗ =

(
k∑

i=0
ai

)
− b

2
k∑

i=0
bi

+
1

2
k∑

i=0
bi

√(
b −

k∑
i=0

ai

)2

+ 4a
k∑

i=0
bi
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Exercises 6.1

1. (a)
z(z − cos ω)

z2 − 2z cos ω + 1
, |z| > 1

(b)
z(z2 − 1) sin 2

(z2 − 2z cos 2 + 1)2
, |z| > 1

(c)
z

(z − 1)2
, |z| > 1

3.
−z + a2 + a

z(z − a)
, |z| > |a|

5.
(z + 1)2zn−3

zn − 1
7. Hint: Use mathematical induction on k

9.
1

(z − a)3

15. Hint: y(n) − y(n − 1) = nx(n)

17. (a)
z2 sinω

(z − a)(z2 − 2z cos ω + 1)

(b)
z2(z − cos ω)

(z − 1)(z2 − 2z cos ω + 1)

Exercises 6.2

1. (a) 2/3[2−n − 1]

(b) −1/7(−2)n + 1/7n(−2)n + 6/7

3. (a) (−2)n−3(3n2 − n)

(b) 2−n+1 + 2 sin
(

(n − 1)
2

π

)

5.
1√
5

[(
1 +

√
5

2

)n

−
(

1 − √
5

2

)n]

7.
1
2
(n + 1)

11. Hint: Replace n by n + 1
1 − e

2 − e
+
(

1
2 − e

)
(e − 1)n

Exercises 6.3

1. x(n) =
1
3
x(0)[1 + 2(4n)]

unstable
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3. Problem 1. unstable
Problem 2. uniformly stable

5. unstable

Exercises 6.4

1. asymptotically stable
3. not asymptotically stable
4. Hint:

∑∞
n=0 nan = a

(1−a)2 for a < 1,
∑∞

n=0 n2an = a2+a
(1−a)3

Exercises 6.5

3. asymptotically stable
5. uniformly stable

Exercises 6.6

4. Hint: See Theorem 4.9
5. (a) x(n) = −1

7
(−3)n +

1
7
(4n)

7. (a)

⎛⎜⎜⎜⎝
(1 +

√
2)2n−1 +

(1 − √
2)

2
(−1)n 0

0

(
3 − √

6
5

)
3n +

(
2 +

√
6

5

)
(−2)n

⎞⎟⎟⎟⎠
(b)

⎛⎜⎝1 +
√

2
2

(2n − n − 1) +
1 − √

2
8

[(−1)n + 2n − 1]

0

⎞⎟⎠

11.

⎛⎜⎜⎝
−2 +

1
12

(2n) +
3
2
(3n)

−1 +
1
12

(2n) +
1
2
(3n)

⎞⎟⎟⎠
Exercises 7.1

5. Hint: Use Theorem 7.3
7. Hint: Consider the function f(λ) = λk+1 − λk + p and show that it

attains its minimum when λ = (k − 1)/k

Exercises 7.2

8. Hint: Use Problem 7
9. Hint: Use Problem 7

12. Hint: Use Theorem 7.16
14. Hint: Use Problem 13
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Exercises 7.3

3. Hint: Let x(n) = αey(n) and then use Theorem 7.18
4. Hint: Let x(n) = x∗ey(n) and then apply Theorem 7.19
6. Hint: Let z(n) = x(n)/x(n + 1) and then mimic the proof of Theorem

7.18
7. Hint: Follow the hint in Problem 6

Exercises 8.1

12. Hint: Use f(t) = (1 + o(1))g(t)
14. (c) Hint: Show that

∫∞
1

e−xt

tn−1dt ≤ e−x

n−2
15. Hint: Use integration by parts
16. Hint: Write

∑n
k=1 kk = nn[1 + (n−1)n−1

nn + · · · + 1
nn ]

Exercises 8.2

14. Hint: Notice first that log
∏n−1

i=n0
(1 + u(i)) =

∑n−1
i=n0

log(1 + u(i))
15. (c) Hint: Use the mean value theorem

(e) Hint: Substitute (8.2.19) into (8.2.17)
(f) Hint: Solve (8.2.28) and then use Problem 14

17. x1(n) ∼ n2, x2(n) ∼ 1
(n+2)! , n → ∞

20. Hint: Let y(n) = x(n + 1)/x(n)

Exercises 8.4

12. Hint: Let x(n) =
(− 1

2

)n( n−1∏
j=n0

p1(j)

)
z(n)

Exercises 8.5

7. Hint: Reverse the order of summation on the left-hand side as in Figure
8.2

10. Hint: Use Problem 8 and then let A(n) = x2(n)∆y(n) − ∆x2(n)y(n)
and B(n) = ∆x1(n)y(n) − x1(n)∆y(n), then mimic the proof of
Problem 8

Exercises 9.3

9. (x, y) = (37, 47) + m(48, 61)
10. Hint: Consider the continued fraction representation of

√
�

Then
√

� = A(m−1)+A(m)ξm+1
B(m−1)+B(m)ξm+1

,

ξm+1 = 2b0 +
1

b1+
1

b2+
. . . =

√
� + b0;

show that

A(m)(A(m) − B(m)b0) − B(m)(B(m)� − A(m)b0) = (−1)m−1
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or

A2(m) − �B2(m) = (−1)m−1

Conclude that x = A(m), y = B(m) is a solution of Pell’s equation if
m is odd, and if m is even, x = A(2m + 1), y = B(2m+) is a solution

11. x = 8, y = 3

Exercises 9.4 and 9.5

5. (n + 1)P ν
n+1(x) = 2(ν + n)xP ν

n (x) − (2ν + n − 1)P ν
n−1(x)

6. (n + 1)Lα
n+1(x) = (2n + α + 1 − x)Lα

n(x) − (n + α)Lα
n−1(x)

7. Hn+1(x) = 2xHn(x) − 2nHn−1(x)
9. Jn+1(z) = (2n

z )Jn(z) − Jn−1(z)
12. Hint: Use (9.5.18) and let u → x

Exercises 9.6

7. Hint: Use the Cauchy integral formula: dn

dxn (1−x2)n = n!
2πi

∮
c

(1−t2)n

(t−x)n+1 dt

Exercises 10.1 and 10.2

1. W =

[
1 −2
0 1

]
, |W | = 1 �= 0, the system is completely controllable

3. Since A is diagonal and B has a row of zeros then, by inspection, the
system is not completely controllable

5. rank(W ) = 4 < 5, the system is not completely controllable

11. W =

[
1 a11 + a12

1 a21 + a22

]
, |W | = a21 +a22 −a11 −a12 �= 0 thus a22 +a21 �=

a11 + a12

Exercises 10.3

1. (a) V =

[
0 2
4 −2

]
, |V | = 2, x0 = V −1

[
y(0)
y(1)

]
=

[
1/4(a + b)

1/2b

]

(b) V =

[
2 1
2 1

]
, rank(V ) = 1 < 2, the system is not observable

3. W =

[
1 a + b

1 c + d

]
, |W | = −(a + b) + c + d �= 0. Thus, for a system

to be completely controllable a + b �= c + d, and for a system to be

completely observable, V =

[
1 0
a b

]
, |V | = b �= 0

5. rank(V ) = 4, the system is not completely observable
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Exercises 10.4

1. K =
[−0.1166 −0.6982

]
3. K =

[−1.8599 0.5293 2.8599
]

5. Hint: Put the equation into a system form

Exercises 10.5

1. E =

[
0.875

−1.125

]
3. unsolvable
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(I) Solution of scalar difference equations and systems of difference
equations using rsolve

> rsolve({x(n+1)-x(n)/(n+1)=1/(n+1)!,x(0)=1},x);

n + 1
Γ(n + 1)

> rsolve({x(n+1)=2*x(n)+y(n),y(n+1)=2*y(n),x(0)=a,y(0)=b},
{x,y});

{y(n) = b2n, x(n) =
1
2
b2n + 2na}

> rsolve(x(n+2)-5*x(n+1)+6*x(n)=0,x);

−(2x(0) − x(1))3n − (−3x(0) + x(1))2n

517
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Cobweb Program

>#Cobweb Program
>#Call as: cobweb(F, n, s, l, u)
>#Where: F: The one parameter function
># n: The number of iterations to be performed
># s: The initial value of x with which to start
># l: The lower bound value for x and y
># u: The upper bound value for x and y
>cobweb:=proc(function, iterations, initial, lowerbound,

upperbound)
>local F, n, s, u, i, y, G, l;
>F:=function;
>n:=iterations;
>s:=initial;
>l:=lowerbound;
>u:=upperbound;
>with(plottools)
>y:=eval(subs(x=s,F));
>G:=[line([l,l], [u,u]), line([s,0], [s,y]),

plot(F,x=l..u,color=black)];
>for i from l to n do
> G:=[op(G), line([s,y], [y,y]))];
> s:=y;
> y:=evalf(subs(x=s,F));
> G:=[op(G), line([s,s], [s,y])];
>od
>plots[display](G,tickmarks=[0,0]);
>end

> # Example: draw the cobweb diagram of the function
> # F(x)=3.7*x*(1-x) with initial point 0.1.
>cobweb(3.7*x*(1-x),10,0.1,0.1);
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Bifurcation Diagram Program

>bifur(c*x*(1-x), 3.57, 4, 100, 50, .01, .5, 0, 1);
furcation Diagram Program
> # Bifurcation Diagram Program
> # Call as: bifur(F, l, r, N, T, d, s, b, t)
> #
> # Where:
> # F: The one parameter function in terms of c and x
> # l: The left bound on the graph
> # r: The right bound on the graph
> # N: The number of iterations to perform
> # T: The number of iterations to discard
> # d: The step size of the parameter (c)
> # s: The value of x
> # b: The bottom bound on the graph
> # t: The top bound on the graph
> #
> bifur:=proc(function, left, right, iterations, discard,
step, start, bottom, top)
> local F, l, r, N, T, d, s, t, i, p, b, j, k, G;
> F:=function;
> l:=left;
> r:=right;
> N:=iterations;
> T:=discard;
> d:=step;
> s:=start;
> t:=top;
> b:=bottom; G:=[];
> with(plottools):
> for i from l by d*(r-l) to r do
> p:=s;
> for j to T do
> p:=evalf(subs(x=p, c=i, F));
> od;
> for k to N do
> p:=evalf(subs(x=p, c=i, F));
> G:=[op(G), point([i,p])];
> od;
> od;
> plots[display](G, axes=boxed, symbol=POINT,
view=[l..r, b..t]);
> end:
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> # Example: Draw the graph of F(x)=c*x*(1-x), where c is
> # between 3.5 and 4 and initial point is 0.5.
> bifur(c*x*(1-x),3.5,4,200,50,.01,.5,0,1);

µ
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Phase Space Diagram with Four Initial Points

> # Phase Space Diagram Program (with 4 initial points)
> # Call as: phase4(A, x, y, z, v, n)
> #
> # Where:
> # A: The matrix entries where f(x)=Ax
> # v: The initial point (v1,v2)
> # x: The initial point (x1,x2)
> # y: The initial point (y1,y2)
> # z: The initial point (z1,z2)
> # n: The number of iterations to perform
> #
> phase4:=proc(matrix11, matrix12, matrix21, matrix22,
initial1, initial2, initial3, initial4, initial5, initial6,
initial7, initial8, iterations)
> local A, x, n, G, F, H, J, x1, x2, i, x3, x4, w1, w2, y3,
y4, z1, z2, z3, z4, y, z, v1, v2, v3, v4, v, K;
> A:=array(1..2,1..2,[[matrix11,matrix12],
[matrix21,matrix22]]);
> x:=array(1..2,1..1,[[initial1],[initial2]]);
y:=array(1..2, 1..1, [[initial3],[initial4]]);
z:=array(1..2, 1..1, [[initial5],[initial6]]);
v:=array(1..2, 1..1, [[initial7],[initial8]]);
> n:=iterations;
> x1:=x[1,1]; x2:=x[2,1]; w1:=y[1,1]; w2:=y[2,1]; z1:=z[1,1];
z2:=z[2,1]; v1:=v[1,1]; v2:=v[2,1];
> G:=[]; H:=[]; J:=[]; K:=[];
> with(plottools):
> for i from 1 to n do
> F:=array(1..2, 1..1, [[(A[1,1]*x1)+(A[1,2]*x2)],
[(A[2,1]*x1)+(A[2,2]*x2)]]);
> x3:=F[1,1]; x4:=F[2,1];
> G:=[op(G), line([x1,x2],[x3,x4])];
> x1:=x3; x2:=x4;
> F:=array(1..2, 1..1, [[(A[1,1]*w1)+(A[1,2]*w2)],
[(A[2,1]*w1)+(A[2,2]*w2)]]);
> y3:=F[1,1]; y4:=F[2,1];
> H:=[op(H), line([w1,w2],[y3,y4])];
> w1:=y3; w2:=y4;
> F:=array(1..2, 1..1, [[(A[1,1]*z1)+(A[1,2]*z2)],
[(A[2,1]*z1)+(A[2,2]*z2)]]);
> z3:=F[1,1]; z4:=F[2,1];
> J:=[op(J), line([z1,z2],[z3,z4])];
> z1:=z3; z2:=z4;
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> F:=array(1..2, 1..1, [[(A[1,1]*v1)+(A[1,2]*v2)],
[(A[2,1]*v1)+(A[2,2]*v2)]]);
> v3:=F[1,1]; v4:=F[2,1];
> K:=[op(K), line([v1,v2],[v3,v4])];
> v1:=v3; v2:=v4;
> od;
> plots[display](G,H,J,K,tickmarks=[0,0],color=black);
> end:

> # Example: Draw the phase space diagram of the system
> # x(n+1)=A*x(n) where A=array(2,0,0,0.5).
> phase4(2,0,0,.5,1,3,-1,3,-1,-3,1,-3,6);
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[54] Erdélyi, A., W. Magnus, F. Oberhettinger, and F.G. Tricomi, Tables of
Integral Transforms, Vol. 2, McGraw-Hill, New York, 1954.

[55] Evgrafov, M., The asymptotic behavior of solutions of difference equations,
Dokl. Akad. Nauk SSSR 121 (1958), 26–29 (Russian).



526 References

[56] Feigenbaum, M., Quantitative universality for a class of nonlinear transfor-
mations, J. Statist. Phys. 19 (1978), 25–52.

[57] Gautschi, W., Computational aspects of three-term recurrence relations,
SIAM Rev. 9 (1967), 24–82.

[58] Gautschi, W., Minimal solutions of three-term recurrence relations and
orthogonal polynomials, Math. Comp. 36 (1981), 547–554.

[59] Goldberg, S., Introduction to Difference Equations, Dover, New York, 1986.
[60] Grove, E.A., and G. Ladas, Periodicities in Nonlinear Difference Equations,

Taylor & Francis, London, to appear.
[61] Grove, E.A., C.M. Kent, G. Ladas, R. Levins, and S. Valicenti, Global sta-

bility in some population models, Communications in Difference Equations
(Poznan, 1998), pp. 149–176, Gordon and Breach, Amsterdam, 2000.

[62] Gulick, D., Encounters with Chaos, McGraw-Hill, New York, 1992.
[63] Gyori, I., and G. Ladas, Oscillation Theory of Delay Differential Equations

with Applications, Clarendon Press, Oxford, 1991.
[64] Hartman, P., Difference equations: Disconjugacy, principal solutions, Green’s

functions, complete monotonicity, Trans. Amer. Math. Soc. 246 (1978), 1–
30.

[65] Hautus, M.L.J., and T.S. Bolis, Solution to problem E2721, Amer. Math.
Monthly 86 (1979), 865–866.

[66] Henrici, P., Applied and Computational Complex Analysis, Vol. 2, Wiley-
Interscience, New York, 1977.

[67] Hooker, J.W., and W.T. Patula, Riccati-type transformation for second-
order linear difference equations, J. Math. Anal. Appl. 82 (1981), 451–462.

[68] Horn, R.A., and C.R. Johnson, Matrix Analysis, Cambridge University Press,
Cambridge, 1999.

[69] Hurt, J., Some stability theorems for ordinary difference equations, SIAM
J. Numer. Anal. 4 (1967), 582–596.

[70] Iggidr, A., and M. Bensoubaya, New results on the stability of discrete-time
systems and applications to control problems, J. Math. Anal. Appl. 219
(1998), 392–414.

[71] Ismail, M.E.H., D.R. Masson, and E.B. Saff, A minimal solution approach to
polynomial asymptotics, in Orthogonal Polynomials and Their Applications,
(ed. C. Brezinski et al.), J.C. Bultzer AG, Scientific Publ. Co., IMACS, 1991,
pp. 299–303.

[72] Johnson, W.P., The curious history of Faá di Bruno’s formula, Amer. Math.
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linearly independent solutions, 128
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local stability of oscillatory
nonhyperbolic maps, 479

logistic equation, 13, 43
LPA model, 243
Lucas numbers, 82
Lucas numbers L, 82
Lucilia cuprina, 224

Möbius transformation, 400, 406,
410

Maple, 17
marginal propensities, 166
marginal propensity to consume,

109
Markov, 159, 160
Markov chains, 159
Markov matrices, 160
matrix difference equation, 126
matrix equation, 306
matrix norms, 175
maximal invariant subset, 209
May’s genotype selection model,

480
Meschkowski, 344
metallic sphere, 471
method of successive

approximation, 353
method of undetermined

coefficients, 83, 85
midpoint method, 116
minimal, 425
minimal polynomial, 445
minimal solution, 421, 425
minimal subdominant recessive, 370
minors, 214
moments, 413
monic, 413
monodromy matrix, 156
mosquito model, 270
mosquito population, 266
µ∞, 46
multiple poles, 287
multiplication by an property, 279
multiplication by nk, 279

nth iterate, 1
national income, 108, 165
Neumann’s expansion, 167
Nevai class, 424

Newton’s method of computing
the square root of a positive
number, 18

Newton’s theorem, 63
Newton–Puiseux diagram, 372, 373
Newton–Raphson method, 29
Nicholson–Bailey model, 235
nilpotent matrix, 145
nodes, 21
non-self-adjoint, 322
nonautonomous, 2, 118
nonautonomous linear systems, 184
nonhomogeneous, 2
nonhomogeneous differential

equation, 4
nonhomogeneous linear difference

equation, 64
nonhomogeneous system, 129
nonlinear difference equations, 327,

382
nonlinear equations transformable

to linear equations, 98
nonnegative, 160
nonobservable system, 447
nonoscillatory, 313
nonoscillatory nonhyperbolic maps,

477
nonstandard scheme, 24
norm, 174
norm of a matrix, 174
normal, 142
norms of vectors and matrices, 174
North Atlantic plaice, 262
nth approximant, 398
null sequence, 346
numerical solutions of differential

equations, 20

O, 335
o, 335
observability, 446
observability canonical forms, 453
observability matrix, 448, 453
observer, 467
one species with two age classes,

229
open-loop system, 457
(open-loop) time-invariant control

system, 457
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operator norm, 174, 175
ordinary dichotomy, 352, 382
orthogonal polynomials, 421
oscillate, 93, 94, 313
oscillating, 91
oscillation theory, 313
oscillatory, 313, 323
oscillatory solution, 322
output, 446

Parameters, 89
parasitoids, 235
partial denominator, 398
partial fractions method, 282, 283
partial numerator, 398
particular solution, 84, 130
Pell’s equation, 413
period three implies chaos, 37, 49
period-doubling bifurcation, 243
periodic, 13, 35, 176
periodic attractor, 49
periodic orbit, 35
periodic points, 35
periodic solution, 157
periodic system, 153, 190
permutations, 492
Perron, 160, 173, 219, 340, 372
Perron’s approach, 219
Perron’s example, 344
Perron’s First Theorem, 344
Perron’s Second Theorem, 344
Perron’s theorem, 160
perturbation, 219
perturbations of Chebyshev

polynomials, 424
perturbed diagonal system, 351
phase space, 178
phase space analysis, 194
Pielou logistic delay, 331
Pielou logistic delay equation, 224,

331
Pielou Logistic Equation, 18
Pielou logistic equation, 99
Pincherle, 402
Pituk, 388
Pochhammer symbol, 424
Poincaré–Perron, 425
Poincaré, 340
Poincaré type, 343

Poincaré type (P), 390
Poincaré’s theorem, 340, 343
Poincaré–Perron, 344
Poincaré–Perron theorem, 348
Poisson probability distribution,

235
polynomial operator, 85
population, 13, 42
population dynamics, 57
positive definite, 204, 214
positive definite symmetric matrix,

215
positive innerwise, 247
positive limit set, 208
positive orbit, 1
positive semidefinite, 216
positively invariant, 51
power series method, 282
power shift, 59
prime number theorem, 338
probability, 159
probability vector, 160
product, 61
product rule, 61
projection matrix, 359, 382
propagation of annual plants, 104,

105
properties of the Z-transform, 277
pupal, 238
Putzer algorithm, 118, 120, 131
Puu, 233

Quadratic Liapunov function, 205

Rabbit problem, 79
radius of convergence, 274, 277
rank, 433
recessive, 161
recruitment, 258
reduced-order observers, 474
regions of convergence, 274, 275
regions of divergence, 275
regular continued fractions, 409
regular Markov chains, 160, 161
relation ∼, 337
repeated poles, 284
repelling point, 28
residue theorem, 287
Riccati equation, 98
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Riccati transformations, 322
Riccati type, 98, 99
Ricker’s equation, 43
Ricker’s map, 54, 243
Riemann zeta function, 409
right-shifting, 277
Rodrigues’ formula, 426
Rouché’s theorem, 256, 295
Routh stability criterion, 310

Saddle (unstable), 196
Samuelson–Hicks model, 233
Schäfli’s integral, 426
Schur–Cohn criterion, 246, 247
Schwarzian derivative, 31, 49
second-order difference equations,

369
second-order linear autonomous

(time-invariant) systems,
194

Sedaghat, 181, 261
self-adjoint, 320
self-adjoint second-order equations,

320
semi-asymptotically stable, 35, 44,

480
semisimple, 143, 187
semisimple eigenvalue, 143
semistability, 34
semistable from the left, 30
semistable from the right, 30
shift operator, 57
shifting, 277
similar, 135
similarity transformation, 440
simple, 143
simple eigenvalue, 160
simple poles, 284
skew symmetric matrices, 142
Smith, 261
solution, 3, 65
spectral radius, 175
stability, 11
stability by linear approximation,

219
stability of a k periodic point, 39
stability of linear systems, 184
stability of nondifferentiable maps,

483

stability of periodic points, 39
stability of the 2-cycle, 45
stability theory, 173
stability via linearization, 256
stabilizability, 462
stabilizable, 462, 463
stabilization by state feedback, 457
stabilization of nonlinear systems

by feedback, 463
stable, 11, 176, 184
stable and unstable manifolds, 488
stable economy, 166
stable equilibrium price, 16
Stable Manifold Theorem, 487–489
stable matrix, 191
stable subspace (manifold), 188
Stable Subspace (Manifold)

Theorem, 189
stable subspaces, 487
Stair Step (Cobweb) diagrams, 13
state feedback, 457
state feedback gain matrix, 459
state transition matrix, 127
step size, 21
Stirling numbers, 63, 64
Stirling’s formula, 338
Strong Poincaré type (SP), 390
Sturm separation theorem, 321
sufficient conditions for

stability, 251
sum of residues, 293
summation, 5
summation by parts formula, 62
superposition principle, 72
survival coefficient, 258
susceptible individuals, 302
susceptibles, 226
Sylvester’s criterion, 214
symbol O, 335, 337
symbol o, 337
symmetric matrices, 142
symmetric matrix, 216
synchronous, 241
synchronous 3-cycle, 243
system of first-order equations, 132
systems, 117

T 2, 37
T 3, 37
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Taylor’s theorem, 477
tent function, 36
tent map, 10
3-cycle, 37, 48
three-term difference equations, 313
time domain analysis, 273
time-invariant, 2, 117, 118, 135
time-variant, 2, 118
Toeplitz, 168
Toeplitz matrix, 168
trade model, 165
transform method, 273
transient, 163
transition matrix, 160
transmission of information, 110
tridiagonal determinant, 82
tridiagonal Toeplitz matrix, 168
Trjitzinsky, 377
2-cycle, 39, 45
22-cycle, 46
23-cycle, 46

Ultraspherical polynomials, 416
uncontrolled system, 429, 430
uniform attractivity, 176, 185
uniformly asymptotically stable,

177, 185, 186, 294, 300
uniformly attracting, 176
uniformly stable, 176, 184, 186, 294
unique solution, 2, 66, 126
uniqueness, 66
uniqueness of solutions, 125
unit impulse sequence, 276
unitary matrices, 142
unstable, 11, 176
unstable fixed point, 43
unstable focus, 199
unstable limit cycle, 211
unstable node, 196
unstable subspaces, 487

Vandermonde determinant, 75, 82
variation of constants formula, 130,

166, 168, 305, 353, 382
variation of constants parameters,

89
variation of V , 204
vector space, 73
Volterra difference equation, 294

Volterra difference equations of
convolution type, 291

Volterra integrodifferential
equation, 291

Volterra system of convolution
type, 299

Volterra systems, 299

Weak Poincaré type (WP), 390
weakly monotonic, 263
Weierstrass M -test, 354
whale populations, 258
Wimp, 346, 423
Wong and Li, 377
Wronskian, 67

Z-transform, 273, 274, 432
Z-transform pairs, 311
Z-transform of the periodic

sequence, 280
Z-transform versus the Laplace

transform, 308
zero solution, 179, 187
zero-order hold, 431
zeros of the polynomial, 491
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