Exercise: Population dynamics - Classical models (identifier: edor-TD)

Population dynamics - Classical models (INSA-3BS-1.1) - statement

In order to model the dynamics of isolated populations, we consider different EDO-based models defined as follows:

$$\frac{dN(t)}{dt} = N(t)g(N(t))$$

where N(t) is the population density and g(N(t)) the intrinsic population growth rate.

- 1. Demonstrate that an equilibrium point of this equation, denoted $N^* \neq 0$ is asymptotically stable if and only if $\frac{dg}{dN}\Big|_{N^*} < 0$.
- 2. Differents models have been proposed:
 - (a) Gompertz model $g(N) = r \ln(K/N)$
 - (b) Allee effect model $g(N) = r(K N(t))(N(t) \alpha)$
 - (c) Allee effect model with exploitation $g(N) = r(K N(t))(N(t) \alpha) E$ (with $\alpha < K$)

Where parameters $r,\,K,\,\alpha$ and E are strictly positive.

In each case, draw g(N) as a function of N. Deduce then the equilibrium points and their stability.