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Introduction

Micro- vs macro-parasitic diseases

Infectious diseases can be classified in two categories:

1. Those due to virus or bacteria — the micro-parasitic
diseases (e.g., measles, flu, gastroenteritis)

2. Those due to worms (that will be mainly found in developing
countries) — the macro-parasitic diseases (e.g., filariasis,
nematode worms within organisms)

In addition to the size of the infectious agent, micro-parasites
reproduce within the host and are transmitted directly from one
host to another.

Macro-parasites have much more complex life cycles, with
secondary hosts or transport hosts.

S. Charles Biomathematics 1 - page 3/42



Introduction

Micro-parasitic diseases

In this course, we will deal with micro-parasitic diseases and the
associated mathematical models which come under the dynamic
systems theory as introduced in lectures.

The basic mathematical techniques you will need are available from
the following web site (menu "COURS", then "Théorie des systémes
dynamiques”): http://bmm.univ-1lyoni.fr/

We will come back to these techniques while relying on numerical
simulations, which you will perform under the ‘R software.
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Introduction

Modelling micro-parasitic diseases

It may be tempting to model the population dynamics of both
hosts and infectious agents, however:

» It is almost impossible to measure or estimate the population
size of infectious agents;

» The distribution of infectious agents within hosts is not
homogeneous;

» Infectious agents do not circulate freely in the environment;

> The encounter between hosts and infectious agents is not
random.

In addition, we must to take into account that micro-parasitic
epidemics spread through close contacts between susceptible
(healthy) and infected hosts.
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Introduction

Compartment modelling (SIR)

All micro-parasitic disease models are compartmental models,
based on different classes of hosts, relative to their state of health :

> Healthy hosts (or Susceptible) who may contract the disease
through contact with...

> Infective hosts (or contagious or infecting) who will transmit
the disease;

» Removed, Recovered or Immune hosts who can no longer

contract the disease through contact, because they have
become immune, have been placed in isolation, or have died.
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Introduction

Compartment modelling (SIR)

In these compartment models, variables of interest are therefore
the numbers of individuals in each class at time ¢:

> Variable S(t), for susceptible hosts;
» Variable I(?), for infective hosts;

» Variable R(t), for recovered hosts.

Note that if the disease under interest confers a temporary
immunity, individuals in class R may return to the class S.
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The SIR model Simulation of an SIR model
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The SIR model Simulation of an SIR model
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The SIR model
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Introduction

The SIR model Simulation of an SIR model

Basic hypotheses

In SIR type models, the following assumptions are always made:

» The transmission is horizontal, i.e., only by contacts;

» The epidemic cycle is short, allowing births, deaths,
immigration and emigration, as well as any other event that
may alter the dynamics of the host population, to be
neglected;

» The total population size remains constant and equal to
N=S8(t)+I(t)+ R(1).

Other hypotheses may be added depending on the complexity of
the disease under consideration.
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Introduction

The SIR model Simulation of an SIR model

Schematic diagram

> Function f(I,N) represents the force of infection, in [f]7! ;
In general, f(0,N)=0 and f(I,N) increases with I while
decreasing with N;

> Parameter v is the recovery rate, in [¢]7!.
(that is the immunity acquisition rate or the immunization
rate);

» All individuals are identical within a class
(there is no inter-individual or intra-class variability).
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Introduction

The SIR model Simulation of an SIR model

Expression of the force of infection

The incidence is defined as the number of cases of a disease
occurring in a population during a given time interval.

The disease transmission rate is usually denoted via parameter B.
(infection rate or contagion rate).

» If the incidence follows a mass action law, the transmission is
density-dependent and in general we write f(I,N) = BI.
— Airborne diseases: a doubling of the infected population
can lead to a doubling of the transmission rate (e.g., flu)

> Otherwise, transmission is frequency-dependent and in
general we write f(I,N) = I/N
— Sexually transmitted diseases: transmission is dependent on
the average frequency of sexual contacts per individual, V
number of healthy individuals (e.g., AIDS)
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Introduction

The SIR model Simulation of an SIR model

Equations of model SIR

4D = —fU0),N)xS(8)

dD = FUw0),NxS@H  -vI®)

dR(®) _
RO = w1

It is easy to check that the total population size does not change
over time:
das(t) N dai(r) N dR (1)
dat dt dat

=0SMH+IM+R()=
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Introduction

The SIR model Simulation of an SIR model

Plan détaillé

The SIR model

Simulation of an SIR model
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Introduction

The SIR model Simulation of an SIR model

The model of Kermack & McKendrick (1927)

In 1927, Kermack & McKendrick proposed the very first SIR
model with an infection strength dependent on density:

BU = _BxI()xS(D)
a0 = Bx (xS —vI(t)
dR() vI (1)
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Introduction

The SIR model Simulation of an SIR model

Plague epidemic in Bombay (India, 1906)

900

Number of deaths per week as
a function of the weather dur-
ing a plague epidemic in Bombay

800

700

e s (India) between 17/12/1905 and
0 . 21/07/1906.

20 The outcome being fatal in 80 to
20 90% of the cases, we can consider

that this graph approximately rep-
resentsthe quantity

dR(t)

Flgu €. From Kermack & McKendrick (1927). dt
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BRITISH MEDICAL JOURNAL 4 MARCH 1978

EPIDEMIOLOGY

Influenza in a boarding school

The following notes are compiled by the Communi-
cable Disease Surveillance Centre (Public Health
Laboratory Service) and the Communicable
Diseases (Scotland) Unit from reports submitted
by biological ~ laboratories, 1
Dphysicians, and environmental health officers.

During January an epidemic of influenza
occurred in a boarding school in the north of
England. A total of 763 boys between the ages
of 10 and 18 were at risk, all except 30 being
full boarders; the staff were from the surround-
ing villages. There were 113 boys between the
ages of 10 and 13 in the junior house, while
the rest were divided into 10 houses of about
60 boys each.

The Easter term began on 10 January, with
boys returning from all over Britain and some
from Europe and the Far East. One boy from
Hong Kong had a transient febrile illness
from 15 to 18 January. On Sunday 22 January
three boys were in the college infirmary. The
graph shows the daily total number confined
to bed or convalescent during the epidemic:
512 boys (67 °,) spent between three and seven
days away from class, and 83 % of the boys in
the junior house were affected. Of about 130
adults who had some contact with the boys,
only one, a house matron, developed similar
symptoms.

Most of the boys who became ill first com-

tired, with headache as

Introduction

The SIR model

Flu epidemic (England, 1978)
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signs had temperatures of 105°-106°F (40°-
41°C). Many had mild reddening of the
anterior pillars of the fauces, but the throat
never looked as inflamed as symptoms sug-
gested. In only five boys were there abnormal
signs on chest examination. Symptoms sub-
sided quickly once the boys were confined to
bed. They were allowed up 36 hours after
their temperatures had returned to normal and
back to classes two to four days later, depending
on the severity of the attack. The average time
off sick was five to six days.
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Simulation of an SIR model
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sounds in his right lung. He was given
ampicillin and by next morning his tempera-
ture was 99°F (37°C) and his chest clear. Five
days later he went home to convalesce. Four
boys developed wheezy bronchitis. Two
received ampicillin and two tetracycline. All
recovered quickly and were back at work in
seven to cight days. Four boys with otitis
media, with bulging red ear drums, responded
to ampicillin within 48 hours and none had
any aural discharge. One boy had sinusitis,
which again responded to ampicillin. He was
in bed for seven days and off work for ten days.
In all, only 10 of the 512 boys who became ill
received antibiotics.

Throat swabs were taken from eight boys,
and influenza A viruses similar to A/USSR/90/
77 (HIN 1) were isolated from six. The spread
of this virus through the school was much
more rapid than in the outbreaks due to in-
fluenza B in November 1954 and to influenza A
(Asian flu) H2N2 in October 1957. These two
epidemics reached their peak in two weeks and
lasted four weeks. This year’s epidemic
reached a peak in seven days and was over in
13 days. Influenza vaccine (Fluvirin) had been
given to 630 boys in October 1977—as had
been the practice for some years. The inci-
dence of influenza among the boys had been
low except in those years in which a definite
antigenic shift occurred. The fact that this is
the first major outbreak of influenza at the
school since the Asi 1
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The SIR model Simulation of an SIR model

Flu epidemic (England, 1978)

The previous paper is extracted from the British Medical Journal
which reports a case of flu epidemic in an English boarding school
for boys in 1978.

This flu have started with only one infected boy in a total
population of 763 individuals.

The epidemic lasted 15 days.
The data provided concern only the number of individuals

bedridden each day, which can be assimilated to the number of
infected individuals (variable I(1)).
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Introduction

The SIR model Simulation of an SIR model

Simulation of Kermack & McKendrick model

Parameter values: f= 0.00225 t~! and v= 0.5 1.
Initial condition: (762,1,0).
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Introduction

The SIR model Simulation of an SIR model

Adequacy to epidemiological data

Parameter values: f= 0.00225 t~! and v= 0.5 1.
Initial condition: (762,1,0).
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The SIRS model

Generalisation of model SIR

The SIR model can be generalised by considering that immunity is
lost after a while and that recovered individuals become susceptible
again.

If we assume that this process is proportional to R(f), with y being
the rate of proportionality (in [£]7!), then:
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The SIRS model

Equations of model SIRS

e

a

%Z =fU(),N)=xS() +yR(1)
A0 _ ), N xS —vI®)
% = vI(D) —YR (1)

Y =0 brings us back to model SIR.
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The SIRS model

Equations of the density-dependent SIRS model

With a density-dependent infection force the following system is
obtained:

480 = _BI (1) S(+YR (1)
D = BI(1)S(1)—vI (1)

4BD — yI(H)~yR (1)

Let's look at the simulations under the same conditions as for the
SIR model but adding parameter .
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The SIRS model

Simulation of model SIRS

Parameter values: = 0.00225 ™!, v=0.5 ' and y= 05 7!
Initial condition: (762,1,0).
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— Recovered
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— With a SIR model, after a while, there are only resistant individuals
left. With a STRS model and the addition of parameter y, the three
classes are able to co-exist.
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The SIRS model

Effect of parameter y values
Y =0 : model SIR.
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The SIRS model

Equilibrium points of model SIRS
As in Kermack & McKendrick model, here again S(t) +I(f) + R(¢) =
constant.

We can look for equilibrium points of model SIRS, i.e., the
constant solutions that verify:

450 o ~BS*I* +YR* =0

a0 =0 &1 BS*I*-vI*=0
4

48D — o vI* —yR*=0

By using N=S"+1"+R*, we get two equilibrium points:
St=N I}=0 R'=0

I . ep
R = VTZ Endemic equilibrium
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The SIRS model

Equilibrium points interpretation

In the 3D space (S,I,R) :

» Equilibrium point (V,0,0): all individuals in the population are
healthy, the disease has been eradicated,;

> Equilibrium point (S;,I;, R;): the three classes of individuals
co-exist, given that S;, I and R; are >0, which implies
S;<Ne Z<N.

5
Indeed, I3 =yS—2 so that I; >0 if Sy =5 <N

— The population must be large enough for the disease to become
endemic.
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The SIRS model

v

B

> Since v is the recovery rate from class I (in []7! unit), the
average period of infectivity (or contagion) is 1/v (unit [t]).

Interpretation of ratio

» The B/v ratio is the fraction of the population that is in
contact with infected individuals during the period of
contagion.

» The quantity Ry = Ng is called the intrinsic reproduction
rate of the disease or the basic reproduction rate (May,
1983).

— Ry represents the number of secondary infections generated by
the introduction of a single infected individual into a
population of healthy individuals.

v
—<N<:>R0>1
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The SIRS model

Qualitative analysis of model SIRS

Since the total population is constant, we can eliminate one of the
three variables and write the model in dimension 2:

SH+I)+R(H)=N<R(H)=N-S(t)-1(1)
Then the system becomes:

d_( =—BIMS()+y(N=S(t)—1(1))

410 = BI (D) S() - VI(D)
We will now try to plot the trajectories, i.e., the (S(¢),I(f)) curves,

based on the properties of the system. We can choose the default
phase plane (S, 1).
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Phase plane drawing



Phase plane drawing



The SIRS model

Parameterisation for simulations

In what follows, we keep the same parameter values as before:

> £=0.00225 7!

> v=0.5 !

> y=05 ¢!

> N =763, the total population size
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The SIRS model

Phase plane drawing: Ry>1 < % <N

Vertical nullclines s
(N-S)
=0 pSI=y(N-S-D o =L

It is a decreasing curve going through (0, N) and (N,0).
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The SIRS model

Phase plane drawing: Ry>1 < % <N

Horizontal nullclines

% =0 BSI-vI=0s1=0or S=v/B. These equations

correspond to horizontal and vertical lines, respectively.
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The SIRS model

Phase plane drawing: Ry>1 < % <N

Equilibrium points
Given their definition, equilibrium points are at the intersection of
the vertical and horizontal nullclines.
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The SIRS model

Phase plane drawing: Ry>1< X <N

Trajectories
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V the initial condition, the dynamics of the system converge
towards the endemic equilibrium point: the epidemic maintains.

S. Charles Biomathematics 1 - page 39/42



The SIRS model

Phase plane drawing: Ry<1l< X >N
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V the initial condition, the dynamics of the system converge
towards the equilibrium point (IV,0): the disease is eradicated.
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The SIRS model

What can be said about the dynamics time course?

Chronicles when Ry >1 & % <N

Chronicles
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The SIRS model

What can be said about the dynamics time course?

Chronicles when Ry <1 & % >N

Chronicles
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