Biomathematics 1 ODE modelling in Life Sciences The inter-specific competition model

Sandrine CHARLES

sandrine.charles@univ-lyon1.fr

From a document by Sylvain MOUSSET

University Claude Bernard Lyon 1 - France

January 6, 2021

Hypotheses of the model

Here we consider two competing species for which we will build a dynamical model to better understand possible outputs linked to their interaction.

The basic hypotheses are :

- A logistic-type growth for each species when there is no competition, with parameters r_i and K_i, i = 1,2;
- Each individual of species 1 inhibits the growth of individuals of species 2 in proportion *α* of individuals from species 2.
- Each individual of species 2 inhibits the growth of individuals of species 1 in proportion β individuals from species 1.

The inter-specific competition model Model equations

Species 1

$$\frac{dN_1}{dt} = r_1 N_1 \left(1 - \frac{N_1 + \alpha N_2}{K_1} \right)$$

Species 2

$$\frac{dN_2}{dt} = r_2 N_2 \left(1 - \frac{N_2 + \beta N_1}{K_2} \right)$$

Growth is of logistic-type for species 1 and 2 when there is no interaction, that is when $\alpha = 0$ and $\beta = 0$.

We will perform the qualitative analysis of this model in phase plane (N_1, N_2) .

The phase plane

- In phase plane (N₁, N₂), the flow field is defined by vectors of coordinates (^{dN₁}/_{dt}, ^{dN₂}/_{dt}).
- The sign of $\frac{dN_1}{dt}$ will give information on the x-coordinate of each vector.
- The sign of $\frac{dN_2}{dt}$ will give information on the y-coordinate of each vector.
- ► Hence, because $\frac{dN_1}{dt}$ and $\frac{dN_2}{dt}$ are defined by the ODE system itself, this study is made possible.
- As a reminder, trajectories (namely, solution curves) follow the flow pattern of the direction field (tangency).
- Because we are dealing with autonomous equations, trajectories do never intersect.

Vertical nullclines

As a reminder, vertical nullclines are curves in the phase plane along which vectors of the flow field are strictly vertical, meaning that vertical nullclines are solution curves of equation $\frac{dN_1}{dt} = 0$.

$$\frac{dN_1}{dt} = 0$$

$$\Leftrightarrow \quad r_1 N_1 \left(1 - \frac{N_1 + \alpha N_2}{K_1} \right) = 0$$

$$\Leftrightarrow \quad N_1 = 0$$

or
$$\frac{N_1 + \alpha N_2}{K_1} = 1$$

$$\Leftrightarrow \quad N_1 + \alpha N_2 = K_1$$

$$\Leftrightarrow \quad N_2 = \frac{K_1 - N_1}{\alpha}$$

So, there are two vertical nullclines:

- ▶ N₁ = 0 : the y-axis (*i.e.*, the vertical axis);
- ► $N_2 = \frac{K_1 N_1}{\alpha}$: a decreasing straight line of slope $-\frac{1}{\alpha}$ going through the point of coordinates (K_1 ,0). The intercept with the y-axis is located at $\frac{K_1}{\alpha}$.

The inter-specific competition model Horizontal nullclines

We can think in terms of symmetry of equations: $N_1 \leftrightarrow N_2, K_1 \leftrightarrow K_2, r_1 \leftrightarrow r_2$ et $\alpha \leftrightarrow \beta$ Hence:

$$\begin{aligned} \frac{dN_2}{dt} &= 0\\ \Leftrightarrow & N_2 &= 0\\ \text{ou} & N_1 &= \frac{K_2 - N_2}{\beta}\\ \Leftrightarrow & N_2 &= K_2 - \beta N_1 \end{aligned}$$

So, there are two horizontal nullclines:

- N₂ = 0 : the x-axis (*i.e.*, the horizontal axis);
- ► $N_2 = K_2 \beta N_1$: a decreasing straight line of slope $-\beta$ going through the point of coordinates $(0, K_2)$. The intercept with the x-axis is located at $\frac{K_2}{\beta}$.

Species 1

The inter-specific competition model Combining nullclines

Plotting both vertical and horizontal nullclines on the same graph requires to consider different cases regarding the respective positions of K_1 and $\frac{K_2}{\beta}$, as well as K_2 and $\frac{K_1}{\alpha}$.

 \rightarrow Give these possible cases.

 \rightarrow Plot nullclines in each of these cases. Add directions of the flow field.

 \rightarrow Under the hypothesis of this model, can both species possibly coexist?

Search for equilibrium points

As a reminder, equilibrium points are constant solutions.

 \rightarrow How many equilibrium points do you find for this model of inter-specific competition?

 \rightarrow What are the conditions on parameters to ensure their biological meaning, that is to ensure that both N_1^* and N_2^* are positive?

Stability of equilibrium points

 \rightarrow Give the Jacobian matrix of the model?

 \rightarrow For each equilibrium point, calculate the Jacobian matrix and determine its local stability. When possible, give also its nature (node, spiral,...).

The inter-specific competition model Phase portraits

 \rightarrow For each of the different cases identified earlier, plot the phase portrait.

- \rightarrow Add some trajectories
- \rightarrow Give a biological interpretation of the results.

The inter-specific competition model Chronicles

- \rightarrow In the particular case where both species can coexist, plot both chronicles for an initial condition of your choice.
- \rightarrow Discuss the outputs on a biological point of view.