Advanced ODE modelling in Life Sciences

INSA - 3BIM - Biomathematics 3
Practical session with R: Bazikin's model

Introduction

In this practical exercise, we model the time course of a plant biomass consumed by herbivores with the following system of ODE:

$$
\left\{\begin{array}{l}
\frac{d x(t)}{d t}=x(t)-\frac{x(t) y(t)}{1+\alpha x(t)}-\varepsilon x(t)^{2} \tag{1}\\
\frac{d y(t)}{d t}=-\gamma y(t)\left(1-\frac{x(t)}{1+\alpha x(t)}\right)
\end{array}\right.
$$

We assume that parameter $\varepsilon \geq 0$, and for simplicity reasons, we fix $\alpha=0.5$ and $\gamma=1$.
The objective is therefore to study the dynamics of both populations according to parameter ε.

1. Give a biological interpretation of both equations as initially written with the three parameters.
2. Find the equilibrium points and specify under which conditions on parameters they exist.
3. Write an R function taking parameter ε as argument and returning a dataframe with each row corresponding to the equilibrium points of system (1) according to the input ε value.

Cas (I): $\varepsilon=0$
4. Calculate the Jacobian matrix of system (1) and specify both the stability and the nature of all equilibrium points.
5. Using function stability within library phaseR, check your previous calculations of Jacobian matrices for each equilibrium point.
6. Plot the phase portrait within the phase plane (x, y) and both chronicles for the following initial conditions:

- $x(0)=1$ and $y(0)=10$
- $x(0)=20$ and $y(0)=5$

7. Give your conclusions.

Cas (II): $\varepsilon \neq 0$

8. Calculate the Jacobian matrix of system (1) and specify both the stability and the nature of all equilibrium points.
9. For the non-trivial equilibrium point $\left(x^{*}, y^{*}\right) \neq(0,0)$, detail the different possibilities according to ε values and display them along an ε axis. Justify why we can suspect a Poincaré-Andronov-Hopf bifurcation, and specify for with bifurcation value ε^{*}.
10. Check if the application conditions of the Poincaré-Andronov-Hopf theorem are verified.
11. If you answered yes to the previous question, calculate the Marsden-MacCracken index ${ }^{1}$ to study the stability of the non-trivial equilibrium point at bifurcation value ε^{*}. We will assume here that the calculation of this index remains valid without bringing the equilibrium point back to the origin.
12. What type of bifurcation is this?
13. Using function stability within library phaseR, check your stability conclusion for all equilibrium points with the following ε values:

- $\varepsilon=0.1$
- $\varepsilon=1 / 6$
- $\varepsilon=0.25$
- $\varepsilon=0.4$
- $\varepsilon=1$

14. How does R proceed to return the stability of the non-trivial equilibrium point for $\varepsilon=1 / 6$?
15. For all the above ε values, plot both phase portraits and chronicles with the initial condition $x(0)=10$ and $y(0)=3$. Provide in each case a biologically meaningful conclusion.
[^0]
[^0]: ${ }^{1}$ We remind that the Marsden-MacCracken index writes as follows:

 $$
 I=\omega^{*}\left(f_{x x x}+f_{x y y}+g_{x x y}+g_{y y y}\right)-f_{x y}\left(f_{x x}+f_{y y}\right)+g_{x y}\left(g_{x x}+g_{y y}\right)+f_{x x} g_{x x}-f_{y y} g_{y y}
 $$

